1
|
Ben-Haim AE, Shalev N, Amalraj AJJ, Zelinger E, Mani KA, Belausov E, Shoval I, Nativ-Roth E, Maria R, Atkins A, Sadashiva R, Koltai H, Mechrez G. Nanocarriers for cancer-targeted delivery based on Pickering emulsions stabilized by casein nanoparticles. Int J Biol Macromol 2025; 298:140822. [PMID: 39929470 DOI: 10.1016/j.ijbiomac.2025.140822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
This study demonstrates the development of stimuli-responsive Pickering emulsions stabilized by casein nanoparticles (CNPs) for targeted drug delivery to colorectal cancer cells (CRC). Encapsulation of a fluorescent dye simulates therapeutic delivery, demonstrating biomedical potential. The oil-in-water nanoemulsions stabilized by CNPs function as nanocarriers sensitive to matrix metalloproteinase-7 (MMP-7), an enzyme overexpressed in CRC cells, enabling precise drug release. Emulsions exhibited strong stability due CNPs forming a robust layer at the oil-water interface, enhancing bioavailability and controlled release. Covalent modifications of CNPs with polyethyleneimine (PEI) or polyacrylic acid (PAA), and pH adjustments optimize the zeta potential, improving surface charge and delivery efficiency. Maximal CNP uptake occurred with PAA-modified CNPs (-20 mV), showing superior interaction with CRC cells compared to pristine (-6.7 mV) and PEI-modified (+30.5, +42.1 mV) CNPs. Confocal microscopy and imaging flow cytometry confirmed that CNP-stabilized emulsions enhance CRC inter-localization compared to dispersed CNPs. Nanoemulsions with the highest CNP uptake showed selective interaction with tumor cells, while minimizing oil droplet uptake, driven by nanoscale dimensions and targeted surface interactions. Enzymatic degradation of CNPs by MMP-7 induces phase separation and targeted release. This dual-functional system, leveraging charge modification and enzymatic responsiveness, highlights CNP-stabilized nanoemulsions as a promising CRC-targeted drug delivery platform.
Collapse
Affiliation(s)
- Avital Ella Ben-Haim
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Nurit Shalev
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Institute, PO Box 6, Beit Dagan 50250, Israel
| | - Antolin Jesila Jesu Amalraj
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
| | - Einat Zelinger
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Karthik Ananth Mani
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Eduard Belausov
- Department of Ornamental Plants and Agricultural Biotechnology, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
| | - Irit Shoval
- The Kanbar core facility unit, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | - Einat Nativ-Roth
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Israel
| | - Raquel Maria
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Israel
| | - Ayelet Atkins
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Rajitha Sadashiva
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Institute, PO Box 6, Beit Dagan 50250, Israel
| | - Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Institute, PO Box 6, Beit Dagan 50250, Israel
| | - Guy Mechrez
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel.
| |
Collapse
|
2
|
Chen L, Quinn L, York JT, Polaske TJ, Nelson AE, Appadoo V, Audu CO, Blackwell HE, Lynn DM. Sprayable Biocide-Free Polyurethane Paint that Reduces Biofouling and Facilitates Removal of Pathogenic Bacteria from Surfaces. ACS OMEGA 2025; 10:7295-7305. [PMID: 40028086 PMCID: PMC11866211 DOI: 10.1021/acsomega.4c11020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/22/2025] [Accepted: 01/29/2025] [Indexed: 03/05/2025]
Abstract
The ability to prevent bacterial adhesion on surfaces and to facilitate the removal of bacteria once they have already contaminated or colonized a surface is important in a broad range of fundamental and applied contexts. The work reported here sought to characterize the physicochemical properties of a family of biocide-free hydrophobic polyurethane coatings containing polysiloxane segments and evaluate their ability to mitigate bacterial fouling and/or facilitate subsequent surface cleaning after exposure to pathogenic bacteria. We developed benchtop microbiological assays to characterize surface fouling and subsequent removal of bacteria after repeated (i) short-term intermittent physical contact with and (ii) longer-term continuous flow-based contact with liquid growth media containing either S. aureus or E. coli, two common Gram-positive or Gram-negative bacterial pathogens, respectively. Characterization of fouled and cleaned surfaces using fluorescence microscopy and standard agar-based plaque assays revealed significant differences in both reductions in initial fouling and subsequent cleanability after gentle rinsing with water. These differences correlated to differences in the surface properties of these materials (e.g., hydrophobicity and contact angle hysteresis), with coatings exhibiting lower contact angle hysteresis generally having the greatest antibiofouling and easy-to-clean properties. Our results suggest that these biocide-free, siloxane-containing polyurethane-based clearcoat materials show significant promise for the mitigation of surface fouling and bacterial adhesion, which could prove useful in a range of commercial applications, including in "high touch" environments where microbial contamination is endemic.
Collapse
Affiliation(s)
- Lawrence
M. Chen
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
| | - La’Darious
J. Quinn
- Department
of Chemistry, University of Wisconsin−Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Jordan T. York
- Department
of Chemistry, University of Wisconsin−Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Thomas J. Polaske
- Department
of Chemistry, University of Wisconsin−Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Alexandra E. Nelson
- Department
of Chemistry, University of Wisconsin−Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Visham Appadoo
- PPG
Industries, Inc., Coating Innovation Center, 4325 Rosanna Dr., Allison Park, Pennsylvania 15101, United States
| | - Cornelius O. Audu
- PPG
Industries, Inc., Coating Innovation Center, 4325 Rosanna Dr., Allison Park, Pennsylvania 15101, United States
| | - Helen E. Blackwell
- Department
of Chemistry, University of Wisconsin−Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - David M. Lynn
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
- Department
of Chemistry, University of Wisconsin−Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Cohen R, Pirmatova M, Ananth KM, Jacobi G, Zelinger E, Belausov E, Samara M, Shoshani S, Banin E, Mechrez G. Latex-Bridged Inverse Pickering Emulsion for Durable Superhydrophobic Coatings with Dual Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59156-59173. [PMID: 39344674 DOI: 10.1021/acsami.4c09487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
There is agreement that every colloidal structure produces its own set of unique characteristics, properties, and applications. A colloidal phenomenon of latex-bridged water in a dimethyl carbonate (DMC) Pickering emulsion stabilized by R202 hydrophobic silica was investigated for its ability to act as a superhydrophobic coating (SHC) for cellulose substrates. First, various emulsion compositions were screened for their stability and droplet size. The final composition was then cross-examined by cryogenic scanning electron microscopy and optical and fluorescent microscopy to verify the colloidal structure. The drying pattern of the coating was investigated by using labeled samples under a fluorescent microscope and by scanning electron microscopy on a paper substrate. After the final ∼3 μm of dry coating was applied, it exhibited superhydrophobicity (advancing contact angle = 155°) and full functionality after 5 min at room temperature (RT). Coated samples maintained superhydrophobicity after 20 abrasion cycles and mechanical integrity after 50 s of water immersion. The SHC-coated paper demonstrated compatibility with a standard laser printer, and the coated paper demonstrated superhydrophobicity after printing. Finally, a propolis/DMC extract was produced and then analyzed by gas chromatography-mass spectroscopy (GC-MS) and infused into the SHC (PSHC). The newly formed PSHC demonstrated its ability to act effectively against E. coli biofilm and S. aureus planktonic cells and reduce their viability by over 90% and 99.99%, respectively.
Collapse
Affiliation(s)
- Raz Cohen
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon LeZion 7505101, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Madina Pirmatova
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon LeZion 7505101, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Karthik Mani Ananth
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon LeZion 7505101, Israel
| | - Gila Jacobi
- The Mina and Everard Goodman Faculty of Life Sciences, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Bldg 206, Ramat-Gan 82900, Israel
| | - Einat Zelinger
- The Interdepartmental Equipment Unit, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Eduard Belausov
- Plant Sciences, Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion 7505101, Israel
| | - Mohamed Samara
- The Interinstitutional Analytical Unit, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion 7505101, Israel
| | - Sivan Shoshani
- The Mina and Everard Goodman Faculty of Life Sciences, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Bldg 206, Ramat-Gan 82900, Israel
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Bldg 206, Ramat-Gan 82900, Israel
| | - Guy Mechrez
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon LeZion 7505101, Israel
| |
Collapse
|
4
|
Klein H, Cohen R, Mani KA, Feldbaum RA, Ben-Haim A, Zelinger E, Nirala NR, Muthukumar D, Domb AJ, Shtenberg G, Mechrez G. Soft surface-enhanced Raman scattering sensing platform based on an oil-in-water emulsion stabilized by silver nanoparticles. Colloids Surf B Biointerfaces 2024; 245:114278. [PMID: 39369477 DOI: 10.1016/j.colsurfb.2024.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
Pickering emulsions are excellent candidates for developing soft biosensors utilized for detecting native biomolecules such as peptides and proteins through the Surface-Enhanced Raman Spectroscopy (SERS) transduction mechanism. Here, we have developed a SERS sensor based on oil-in-water Pickering emulsions stabilized by Ag nanoparticles (Ag-NPs) with the Raman active molecule (4-Aminothiphenol, 4ATP) adsorbed to their surface. The structural properties and composition of the Pickering emulsion were tuned to meet the demands of the maximal optical response. Our results show that the obtained SERS signals of the main studied Pickering emulsion (water: oil ratio 7:3, 1 wt% Ag-NPs) outperformed colloidal dispersions with the same Ag-NPs concentration by 10-fold at any studied content of 4ATP. The superior optical response of the Pickering emulsion compared to the colloidal dispersion can thus pave the way for the detection of a large variety of analytes at high sensitivity by a soft sensing device. This study innovates by comparing the SERS signals of Raman-active Ag-NPs when they are assembled at the oil/water interface of an emulsion to the case where the NPs are individually dispersed in the medium. The findings shed light on the edit value of utilizing Raman-active Pickering stabilizers for biosensing applications.
Collapse
Affiliation(s)
- Hagai Klein
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Letzion 7505101, Israel; School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Karem, Jerusalem 9112102, Israel
| | - Raz Cohen
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Letzion 7505101, Israel; Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Karthik Ananth Mani
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Letzion 7505101, Israel; Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Reut Amar Feldbaum
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Letzion 7505101, Israel
| | - Avital Ben-Haim
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Letzion 7505101, Israel; Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Einat Zelinger
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Narsingh R Nirala
- Institute of Agricultural Engineering, ARO, Volcani Institute, Bet Dagan 50250, Israel
| | - Divagar Muthukumar
- Institute of Agricultural Engineering, ARO, Volcani Institute, Bet Dagan 50250, Israel
| | - Abraham J Domb
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Karem, Jerusalem 9112102, Israel
| | - Giorgi Shtenberg
- Institute of Agricultural Engineering, ARO, Volcani Institute, Bet Dagan 50250, Israel
| | - Guy Mechrez
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Letzion 7505101, Israel.
| |
Collapse
|
5
|
Tang Z, Gao M, Li H, Zhang Z, Su X, Li Y, Han Z, Lv X, He J, Zheng Z, Liu Y. One-Step Spraying Strategy for Fabricating Bioinspired, Graphene-Based, and Multifunctional-Integrated Coatings on Structural Steel with Good Water Repellency, Fireproofing, Anticorrosion, and Durability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39096278 DOI: 10.1021/acs.langmuir.4c02001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Traditionally, many coatings were merely concentrated on settling the inherent fire protection problem of steel structures, while surface contamination and corrosion susceptibility should also be considered. Concurrently addressing these problems in fireproof efficiency and surface multifunctionality has become an issue of great significance in further expanding the application value in industrial and daily scenarios. Based on this condition, ecofriendly, graphene-based, and superhydrophobic coatings with multifunctional integration were constructed on steel via a one-step spraying method. The as-prepared coatings mainly consist of epoxy resin (EP), silicone resin (SR), a cyclodextrin-based flame retardant (MCDPM), expandable graphite (EG), and multilayered graphene (MG). The results demonstrate that the water contact angle (WCA) and water sliding angle (WSA) of as-prepared coatings can reach 156.8 ± 1.6 and 5.8 ± 0.7°, respectively, revealing good water repellency and self-cleaning properties. The coatings can also exhibit adequate adaptability for various substrates including wood, polyurethane foam, and cotton fabrics. Besides, good durability and robustness of coatings have been also verified via acid/alkali immersion, outdoor exposure, O2/plasma etching, and linear abrasion tests. Simultaneously, the coatings can exhibit excellent anticorrosion capacity for steel materials via a double barrier effect. Most importantly, the coatings have exhibited the lowest backside temperature (234.5 °C) during fire impact tests, suggesting excellent fireproof and heat insulation performance. This fact can be ascribed to the conjunct action between the physical/chemical charring process of flame retardants and the remarkable thermal stability of graphene. Consequently, this article can be expected to further promote the development and application of multifunctional-integrated coatings for steel structures in more fields.
Collapse
Affiliation(s)
- Zhenlin Tang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P. R. China
| | - Meihuan Gao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P. R. China
| | - Haidi Li
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P. R. China
| | - Ziyang Zhang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P. R. China
| | - Xinying Su
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P. R. China
| | - Yingge Li
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P. R. China
| | - Zhishuang Han
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P. R. China
| | - Xinmeng Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P. R. China
| | - Jing He
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P. R. China
| | - Zaihang Zheng
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P. R. China
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, P. R. China
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, P. R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, P. R. China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, P. R. China
| |
Collapse
|
6
|
Tan M, Wang F, Yang J, Zhong Z, Chen G, Chen Z. Hydroxyl silicone oil grafting onto a rough thermoplastic polyurethane surface created durable super-hydrophobicity. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1359-1378. [PMID: 38490948 DOI: 10.1080/09205063.2024.2329453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Indwelling medical catheters are frequently utilized in medical procedures, but they are highly susceptible to infection, posing a vital challenge for both health workers and patients. In this study, the superhydrophobic micro-nanostructure surface was constructed on the surface of thermoplastic polyurethane (TPU) membrane using heavy calcium carbonate (CaCO3) template. To decrease the surface free energy, hydroxyl silicone oil was grafted onto the surface, forming a super-hydrophobic surface. The water contact angle (WCA) increased from 91.1° to 143 ± 3° when the concentration of heavy calcium CaCO3 was 20% (weight-to-volume (w/v)). However, the increased WCA was unstable and tended to decrease over time. After grafting hydroxyl silicone oil, the WCA rose to 152.05 ± 1.62° and remained consistently high for a period of 30 min. Attenuated total reflection infrared spectroscopy (ATR-FTIR) analysis revealed a chemical crosslinking between silicone oil and the surface of TPU. Furthermore, Scanning electron microscope (SEM) image showed the presence of numerous nanoparticles on the micro surface. Atomic force microscope (AFM) testing indicated a significant improvement in surface roughness. This method of creating a hydrophobic surface demonstrated several advantages, including resistance to cell, bacterial, protein, and platelet adhesion and good biosecurity. Therefore, it holds promising potential for application in the development of TPU-based medical catheters with antibacterial properties.
Collapse
Affiliation(s)
- Miaomiao Tan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Fuping Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Jinlan Yang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Zhengpeng Zhong
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Zhongmin Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
7
|
Lou Y, Palermo EF. Dynamic Antimicrobial Poly(disulfide) Coatings Exfoliate Biofilms On Demand Via Triggered Depolymerization. Adv Healthc Mater 2024; 13:e2303359. [PMID: 38288658 DOI: 10.1002/adhm.202303359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Indexed: 02/13/2024]
Abstract
Bacterial biofilms are notoriously problematic in applications ranging from biomedical implants to ship hulls. Cationic, amphiphilic antibacterial surface coatings delay the onset of biofilm formation by killing microbes on contact, but they lose effectiveness over time due to non-specific binding of biomass and biofilm formation. Harsh treatment methods are required to forcibly expel the biomass and regenerate a clean surface. Here, a simple, dynamically reversible method of polymer surface coating that enables both chemical killing on contact, and on-demand mechanical delamination of surface-bound biofilms, by triggered depolymerization of the underlying antimicrobial coating layer, is developed. Antimicrobial polymer derivatives based on α-lipoic acid (LA) undergo dynamic and reversible polymerization into polydisulfides functionalized with biocidal quaternary ammonium salt groups. These coatings kill >99.9% of Staphylococcus aureus cells, repeatedly for 15 cycles without loss of activity, for moderate microbial challenges (≈105 colony-forming units (CFU) mL-1, 1 h), but they ultimately foul under intense challenges (≈107 CFU mL-1, 5 days). The attached biofilms are then exfoliated from the polymer surface by UV-triggered degradation in an aqueous solution at neutral pH. This work provides a simple strategy for antimicrobial coatings that can kill bacteria on contact for extended timescales, followed by triggered biofilm removal under mild conditions.
Collapse
Affiliation(s)
- Yang Lou
- Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
| | - Edmund F Palermo
- Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
- Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
| |
Collapse
|
8
|
Teng X, Yao C, McCoy CP, Zhang S. Comparison of Superhydrophilic, Liquid-Like, Liquid-Infused, and Superhydrophobic Surfaces in Preventing Catheter-Associated Urinary Tract Infection and Encrustation. ACS Biomater Sci Eng 2024; 10:1162-1172. [PMID: 38183269 PMCID: PMC10865292 DOI: 10.1021/acsbiomaterials.3c01577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Over the past decade, superhydrophilic zwitterionic surfaces, slippery liquid-infused porous surfaces, covalently attached liquid-like surfaces, and superhydrophobic surfaces have emerged as the most promising strategies to prevent biofouling on biomedical devices. Despite working through different mechanisms, they have demonstrated superior efficacy in preventing the adhesion of biomolecules (e.g., proteins and bacteria) compared with conventional material surfaces. However, their potential in combating catheter-associated urinary tract infection (CAUTI) remains uncertain. In this research, we present the fabrication of these four coatings for urinary catheters and conduct a comparative assessment of their antifouling properties through a stepwise approach. Notably, the superhydrophilic zwitterionic coating demonstrated the highest antifouling activity, reducing 72.3% of fibrinogen deposition and over 75% of bacterial adhesion (Escherichia coli and Staphylococcus aureus) when compared with an uncoated polyvinyl chloride (PVC) surface. The zwitterionic coating also exhibited robust repellence against blood and improved surface lubricity, decreasing the dynamic coefficient of friction from 0.63 to 0.35 as compared with the PVC surface. Despite the fact that the superhydrophilic zwitterionic and hydrophobic liquid-like surfaces showed great promise in retarding crystalline biofilm formation in the presence of Proteus mirabilis, it is worth noting that their long-term antifouling efficacy may be compromised by the proliferation and migration of colonized bacteria as they are unable to kill them or inhibit their swarming. These findings underscore both the potential and limitations of these ultralow fouling materials as urinary catheter coatings for preventing CAUTI.
Collapse
Affiliation(s)
- Xiao Teng
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, U.K.
| | - Chenghao Yao
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, U.K.
| | - Colin P. McCoy
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, U.K.
| | - Shuai Zhang
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, U.K.
| |
Collapse
|
9
|
Li L, Wei J, Zhang J, Li B, Yang Y, Zhang J. Challenges and strategies for commercialization and widespread practical applications of superhydrophobic surfaces. SCIENCE ADVANCES 2023; 9:eadj1554. [PMID: 37862425 PMCID: PMC10588945 DOI: 10.1126/sciadv.adj1554] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/20/2023] [Indexed: 10/22/2023]
Abstract
Superhydrophobic (SH) surfaces have progressed rapidly in fundamental research over the past 20 years, but their practical applications lag far behind. In this perspective, we first present the findings of a survey on the current state of SH surfaces including fundamental research, patenting, and commercialization. On the basis of the survey and our experience, this perspective explores the challenges and strategies for commercialization and widespread practical applications of SH surfaces. The comprehensive performances, preparation methods, and application scenarios of SH surfaces are the major constraints. These challenges should be addressed simultaneously, and the actionable strategies are provided. We then highlight the standard test methods of the comprehensive performances including mechanical stability, impalement resistance, and weather resistance. Last, the prospects of SH surfaces in the future are discussed. We anticipate that SH surfaces may be widely commercialized and used in practical applications around the year 2035 through combination of the suggested strategies and input from both academia and industry.
Collapse
Affiliation(s)
- Lingxiao Li
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P.R. China
| | - Jinfei Wei
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P.R. China
| | - Junping Zhang
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Bucheng Li
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P.R. China
| | - Yanfei Yang
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P.R. China
| | - Jiaojiao Zhang
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P.R. China
| |
Collapse
|
10
|
Ruan H, Aulova A, Ghai V, Pandit S, Lovmar M, Mijakovic I, Kádár R. Polysaccharide-based antibacterial coating technologies. Acta Biomater 2023; 168:42-77. [PMID: 37481193 DOI: 10.1016/j.actbio.2023.07.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
To tackle antimicrobial resistance, a global threat identified by the United Nations, is a common cause of healthcare-associated infections (HAI) and is responsible for significant costs on healthcare systems, a substantial amount of research has been devoted to developing polysaccharide-based strategies that prevent bacterial attachment and biofilm formation on surfaces. Polysaccharides are essential building blocks for life and an abundant renewable resource that have attracted much attention due to their intrinsic remarkable biological potential antibacterial activities. If converted into efficient antibacterial coatings that could be applied to a broad range of surfaces and applications, polysaccharide-based coatings could have a significant potential global impact. However, the ultimate success of polysaccharide-based antibacterial materials will be determined by their potential for use in manufacturing processes that are scalable, versatile, and affordable. Therefore, in this review we focus on recent advances in polysaccharide-based antibacterial coatings from the perspective of fabrication methods. We first provide an overview of strategies for designing polysaccharide-based antimicrobial formulations and methods to assess the antibacterial properties of coatings. Recent advances on manufacturing polysaccharide-based coatings using some of the most common polysaccharides and fabrication methods are then detailed, followed by a critical comparative overview of associated challenges and opportunities for future developments. STATEMENT OF SIGNIFICANCE: Our review presents a timely perspective by being the first review in the field to focus on advances on polysaccharide-based antibacterial coatings from the perspective of fabrication methods along with an overview of strategies for designing polysaccharide-based antimicrobial formulations, methods to assess the antibacterial properties of coatings as well as a critical comparative overview of associated challenges and opportunities for future developments. Meanwhile this work is specifically targeted at an audience focused on featuring critical information and guidelines for developing polysaccharide-based coatings. Including such a complementary work in the journal could lead to further developments on polysaccharide antibacterial applications.
Collapse
Affiliation(s)
- Hengzhi Ruan
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Alexandra Aulova
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Viney Ghai
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Martin Lovmar
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wellspect Healthcare AB, 431 21 Mölndal, Sweden
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Roland Kádár
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wallenberg Wood Science Centre (WWSC), Chalmers University of Technology, 412 96 Göteborg, Sweden.
| |
Collapse
|
11
|
Cohen R, Mani KA, Primatova M, Jacobi G, Zelinger E, Belausov E, Fallik E, Banin E, Mechrez G. A green formulation for superhydrophobic coatings based on Pickering emulsion templating for anti-biofilm applications. Colloids Surf B Biointerfaces 2023; 227:113355. [PMID: 37216726 DOI: 10.1016/j.colsurfb.2023.113355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023]
Abstract
This study reports significant steps toward developing anti-biofilm surfaces based on superhydrophobic properties that meet the complex demands of today's food and medical regulations. It presents inverse Pickering emulsions of water in dimethyl carbonate (DMC) stabilized by hydrophobic silica (R202) as a possible food-grade coating formulation and describes its significant passive anti-biofilm properties. The final coatings are formed by applying the emulsions on the target surface, followed by evaporation to form a rough layer. Analysis shows that the final coatings exhibited a Contact Angle (CA) of up to 155° and a Roll-off Angle (RA) lower than 1° on the polypropylene (PP) surface, along with a relatively high light transition. Dissolving polycaprolactone (PCL) into the continuous phase enhanced the average CA and coating uniformity but hindered the anti-biofilm activity and light transmission. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed a uniform coating by a "Swiss-cheese" like structure with high nanoscale and microscale roughness. Biofilm experiments confirm the coating's anti-biofilm abilities that led to the reduction in survival rates of S.aureus and E.coli, by 90-95% respectively, compared to uncoated PP surfaces.
Collapse
Affiliation(s)
- Raz Cohen
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel; The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Karthik Ananth Mani
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Madina Primatova
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel; The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Gila Jacobi
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Einat Zelinger
- The Interdepartmental Unit, Microscopy Lab, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Eduard Belausov
- Department of Ornamental Plants and Agricultural Biotechnology, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Letzion 7505101, Israel
| | - Elazar Fallik
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon Lezion, 7505101, Israel
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Guy Mechrez
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel.
| |
Collapse
|
12
|
Chen Q, Zhang X, Wang Q, Yang J, Zhong Q. The mixed biofilm formed by Listeria monocytogenes and other bacteria: Formation, interaction and control strategies. Crit Rev Food Sci Nutr 2023; 64:8570-8586. [PMID: 37070220 DOI: 10.1080/10408398.2023.2200861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Listeria monocytogenes is an important foodborne pathogen. It can adhere to food or food contact surface for a long time and form biofilm, which will lead to equipment damage, food deterioration, and even human diseases. As the main form of bacteria to survive, the mixed biofilms often exhibit higher resistance to disinfectants and antibiotics, including the mixed biofilms formed by L. monocytogenes and other bacteria. However, the structure and interspecific interaction of the mixed biofilms are very complex. It remains to be explored what role the mixed biofilm could play in the food industry. In this review, we summarized the formation and influence factors of the mixed biofilm developed by L. monocytogenes and other bacteria, as well as the interspecific interactions and the novel control measures in recent years. Moreover, the future control strategies are prospected, in order to provide theoretical basis and reference for the research of the mixed biofilms and the targeted control measures.
Collapse
Affiliation(s)
- Qingying Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xingguo Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingqing Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jingxian Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Li Y, Shi X, Bai W, Li J, Zhu S, Li Y, Ding J, Liu Y, Feng L. Robust Superhydrophobic Materials with Outstanding Durability Fabricated by Epoxy Adhesive-Assisted Facile Spray Method. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
14
|
Xue Y, Dong J, Li X. Fabricating switchable Pickering emulsions by dynamic covalent copolymer amphiphiles. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Bu N, Huang L, Cao G, Pang J, Mu R. Stable O/W emulsions and oleogels with amphiphilic konjac glucomannan network: preparation, characterization, and application. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6555-6565. [PMID: 35587687 DOI: 10.1002/jsfa.12021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The stabilization of oil-in-water (O/W) emulsions has long been explored. Assembly of polymer networks is an effective method for stabilizing O/W emulsions. Konjac glucomannan (KGM) is a plant polysaccharide and the network of KGM gel is a good candidate for stabilizing O/W emulsions based on its high viscosity and thickening properties. However, natural KGM has strong hydrophilicity and is not able to offer interfacial activity. Octenyl succinic anhydride (OSA) is a hydrophobic molecule, which is widely used as thickener and stabilizer in food emulsions. In this work, the amphiphilic biopolymer (OSA-KGM) was fabricated by modifying the KGM with OSA. Furthermore, OSA-KGM biopolymer was used to prepare O/W emulsions, which were then freeze-dried and used to prepare oleogels as fat substitute for bakery products. RESULTS OSA-KGM had advanced hydrophobicity with water contact angle 81.13° and adsorption behavior at the oil-water interface, with interfacial tension decreasing from 18.52 to 13.57 mN m-1 within 1 h. The emulsification of OSA-KGM remarkably improved the stability of emulsions without phase separation during storage for 31 days. Oleogels with OSA-KGM showed good thixotropic and structure recovery properties (approximately 100%) and low oil loss (from 69.5% to 50.4%). Cakes made from oleogels had a softer texture than cakes made from peanut oil and margarine. CONCLUSION Amphiphilic biopolymer OSA-KGM shows advanced interfacial activity and hydrophobicity. This paper provides an insight into preparing stable O/W emulsions with a new biopolymer and oleogels potentially applied as fat substitute in bakery products. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nitong Bu
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liying Huang
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guoyu Cao
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Pang
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruojun Mu
- Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
16
|
Wu T, Yang Y, Su H, Gu Y, Ma Q, Zhang Y. Recent developments in antibacterial or antibiofilm compound coating for biliary stents. Colloids Surf B Biointerfaces 2022; 219:112837. [PMID: 36137334 DOI: 10.1016/j.colsurfb.2022.112837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
Cholestasis of the indwelling biliary stents usually leads to stone recurrence after endoscopic retrograde cholangio pancreatoraphy (ERCP). Biliary stents, including metallic and none-degradable plastic stents are widely used in clinical settings due to their many excellent properties. However, conventional biliary stents still suffer from poor antibacterial activity and anti-bile-adhesion, which lead to injured, local fibroblasts proliferating. Currently, various coatings for biliary stents have been prepared to meet the clinical demands. In this review, we start by summarizing and discussing classifications of biliary stents and antibacterial/antibiofilm mechanism. Then, the latest advances about developing antibacterial and antibiofilm coatings for improving the properties of biliary stents are reviewed and discussed in detail. Lastly, we list several possible directions for future development of biliary stents coatings and biliary stent, such as anti-bile-adhesion coating, multifunctional coating, drug-eluting biodegradable biliary stents and 3D printed biliary stents.
Collapse
Affiliation(s)
- Tao Wu
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu province, Gansu Provincial Hospital, 730000 Lanzhou, PR China
| | - Yan Yang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu province, Gansu Provincial Hospital, 730000 Lanzhou, PR China
| | - He Su
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu province, Gansu Provincial Hospital, 730000 Lanzhou, PR China
| | - Yuanhui Gu
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu province, Gansu Provincial Hospital, 730000 Lanzhou, PR China
| | - Quanming Ma
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu province, Gansu Provincial Hospital, 730000 Lanzhou, PR China
| | - Yan Zhang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu province, Gansu Provincial Hospital, 730000 Lanzhou, PR China; The First School of Clinical Medicine, Lanzhou University, 730000 Lanzhou, PR China.
| |
Collapse
|
17
|
Mani KA, Belausov E, Zelinger E, Mechrez G. Durable superhydrophobic coating with a self-replacing mechanism of surface roughness based on multiple Pickering emulsion templating. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Wang Z, Yao D, He Z, Liu Y, Wang H, Zheng Y. Fabrication of Durable, Chemically Stable, Self-Healing Superhydrophobic Fabrics Utilizing Gellable Fluorinated Block Copolymer for Multifunctional Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48106-48122. [PMID: 36240508 DOI: 10.1021/acsami.2c12895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Limited durability and complex materials restrict the application of superhydrophobic fabrics in daily life. In this work, gellable fluorinated block copolymer poly(dodecafluoroheptyl methacrylate)-block-poly(3-(triethoxysilyl)propyl methacrylate) (PDFMA-b-PTEPM) was used to fabricate adhesive-free superhydrophobic poly(ethylene terephthalate) (PET) fabrics via a simple dip-coating technology and sol-gel reaction. The growth of silica nanoparticles builds up a rough hierarchical structure and provides sol-gel reaction sites of PTEPM segments. The grafting of block copolymer significantly reduced the surface free energy of the fabrics, resulting in an excellent superhydrophobicity with a water contact angle of 160.2°. Benefiting from extensive chemical bond grafting and cross-linking of the PTEPM segment, the fabric exhibits excellent durability in mechanical abrasion, chemical treatment, and washing. The coating has withstood 50 sandpaper abrasion cycles and 400 soft friction cycles and can maintain superhydrophobic properties in various solvents, freezing and a wide pH range. These superhydrophobic fabrics with a long life span possess self-cleaning, anti-icing, oil-water separation, and self-healing capabilities. The multifunctional fabrics developed in this study are durable and easy to produce, possessing the potential for applications in industry and daily life.
Collapse
Affiliation(s)
- Zehao Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi710129, People's Republic of China
| | - Dongdong Yao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi710129, People's Republic of China
| | - Zhongjie He
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi710129, People's Republic of China
| | - Yisong Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi710129, People's Republic of China
| | - Hongni Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi710129, People's Republic of China
| | - Yaping Zheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi710129, People's Republic of China
| |
Collapse
|
19
|
Kotliarevski L, Cohen R, Ramakrishnan J, Wu S, Mani KA, Amar-Feldbaum R, Yaakov N, Zelinger E, Belausov E, Shapiro-Ilan D, Glazer I, Ment D, Mechrez G. Individual Coating of Entomopathogenic Nematodes with Titania (TiO 2) Nanoparticles Based on Oil-in-Water Pickering Emulsion: A New Formulation for Biopesticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13518-13527. [PMID: 36226658 DOI: 10.1021/acs.jafc.2c04424] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study presents a new eco-friendly formulation of entomopathogenic nematodes (EPNs) based on individual coating of EPNs with titanium dioxide (TiO2) nanoparticles (NPs) and mineral oil via oil-in-water Pickering emulsions. Mineral oil-in-water emulsions stabilized by amine-functionalized titanium dioxide (TiO2-NH2) particles were prepared. 40:60 and 50:50 oil-water volume ratios using 2 wt % TiO2-NH2 particles were found to be the most stable emulsions with a droplet size suitable for the formulation and were further studied for their toxicity against the incorporated EPNs. Carboxyfluorescein was covalently bonded to TiO2-NH2 NPs, and the resulting composite was observed via fluorescence confocal microscopy. The dry coating was evaluated using SEM and confocal microscopy, which showed significant nematode coverage by the particles and oil. The final formulation was biocompatible with the studied EPNs, where the viability of the EPNs in the formulation was equivalent to control aqueous suspension after 120 days. Finally, yields of nematodes from infected Galleria mellonella cadavers collected for 150 days showed no significant differences (P > 0.05) using the tested emulsions compared to the control containing nematodes in water.
Collapse
Affiliation(s)
- Liliya Kotliarevski
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion7505101, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot7610001, Israel
| | - Raz Cohen
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion7505101, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot7610001, Israel
| | - Jayashree Ramakrishnan
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot7610001, Israel
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion7505101, Israel
| | - Shaohui Wu
- Department of Entomology, University of Georgia, 120 Cedar St, Athens, Georgia30602, United States
| | - Karthik Ananth Mani
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion7505101, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot7610001, Israel
| | - Reut Amar-Feldbaum
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion7505101, Israel
| | - Noga Yaakov
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion7505101, Israel
| | - Einat Zelinger
- The Interdepartmental Equipment Unit, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot7610001, Israel
| | - Eduard Belausov
- Department of Ornamental Plants and Agricultural Biotechnology, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion7505101, Israel
| | - David Shapiro-Ilan
- U.S. Department of Agriculture, Agricultural Research Service, 21 Dunbar Rd., Byron, Georgia 31008, United States
| | - Itamar Glazer
- Agricultural Research Organization, Volcani Center, Entomology and Nematology, Gluska Zharia, 9, Bet-Dagan50250, Israel
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion7505101, Israel
| | - Guy Mechrez
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion7505101, Israel
| |
Collapse
|
20
|
Ma R, Lu X, Zhang S, Ren K, Gu J, Liu C, Liu Z, Wang H. Constructing discontinuous silicon-island structure with low surface energy based on the responsiveness of hydrophilic layers to improve the anti-fouling property of membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Mani KA, Berenice M, Yaakov N, Feldbaum RA, Kotliarevsk L, Naftali SM, Belausov E, Zelinger E, Fallik E, Dombrovsky A, Mechrez G. Encapsulation of anti‐viral active material for plant protection based on inverse Pickering emulsions. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Karthik Ananth Mani
- Department of Food Sciences Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute Rishon Lezion Israel
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot Israel
| | - Meche Berenice
- Department of Food Sciences Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute Rishon Lezion Israel
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot Israel
| | - Noga Yaakov
- Department of Food Sciences Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute Rishon Lezion Israel
| | - Reut Amar Feldbaum
- Department of Food Sciences Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute Rishon Lezion Israel
| | - Liliya Kotliarevsk
- Department of Food Sciences Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute Rishon Lezion Israel
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot Israel
| | - Shoham Matsrafi Naftali
- Department of Food Sciences Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute Rishon Lezion Israel
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot Israel
| | - Eduard Belausov
- Department of Ornamental Plants and Agricultural Biotechnology Institute of Plant Science, Agricultural Research Organization (ARO), Volcani Institute Rishon Lezion Israel
| | - Einat Zelinger
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot Israel
| | - Elazar Fallik
- Department of Postharvest Science Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute Rishon Lezion Israel
| | - Aviv Dombrovsky
- Department of Plant Pathology and Weed Research Institute of Plant Protection, Agricultural Research Organization (ARO), Volcani Institute Rishon Lezion Israel
| | - Guy Mechrez
- Department of Food Sciences Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute Rishon Lezion Israel
| |
Collapse
|
22
|
Gupta A, Maruthapandi M, Das P, Saravanan A, Jacobi G, Natan M, Banin E, Luong JHT, Gedanken A. Cuprous Oxide Nanoparticles Decorated Fabric Materials with Anti-biofilm Properties. ACS APPLIED BIO MATERIALS 2022; 5:4310-4320. [PMID: 35952666 DOI: 10.1021/acsabm.2c00508] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Considering the global spread of bacterial infections, the development of anti-biofilm surfaces with high antimicrobial activities is highly desired. This work unraveled a simple, sonochemical method for coating Cu2O nanoparticles (NPs) on three different flexible substrates: polyester (PE), nylon 2 (N2), and polyethylene (PEL). The introduction of Cu2O NPs on these substrates enhanced their surface hydrophobicity, induced ROS generation, and completely inhibited the growth of sensitive (Escherichia coli and Staphyloccocus aureus) and drug-resistant (MDR E. coli and MRSA) planktonic and biofilm. The experimental results confirmed that Cu2O-PE exhibited complete biofilm mass reduction ability for all four strains, whereas Cu2O-N2 showed more than 99% biomass inhibition against both drug-resistant and sensitive pathogens in 6 h. Moreover, Cu2O-PEL also indicated a 99.95, 97.73, 98.00, and 99.20% biomass reduction of MRSA, MDR E. coli, E. coli, and S. aureus, respectively. All substrates were investigated for time-dependent inhibitions, and the associated biofilm mass and log reduction were evaluated. The mechanisms of Cu2O NP action against the mature biofilms include the generation of reactive oxygen species (ROS) as well as electrostatic interaction between Cu2O NPs and bacterial membranes. The current study could pave the way for the commercialization of sonochemically coated Cu2O NP flexible substrates for the prevention of microbial contamination in hospitals and industrial environments.
Collapse
Affiliation(s)
- Akanksha Gupta
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Moorthy Maruthapandi
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Poushali Das
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Arumugam Saravanan
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Gila Jacobi
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan5290002, Israel
| | - Michal Natan
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan5290002, Israel
| | - Ehud Banin
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan5290002, Israel
| | - John H T Luong
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Aharon Gedanken
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
23
|
Yaakov N, Kottakota C, Mani KA, Naftali SM, Zelinger E, Davidovitz M, Ment D, Mechrez G. Encapsulation of Bacillus thuringiensis in an inverse Pickering emulsion for pest control applications. Colloids Surf B Biointerfaces 2022; 213:112427. [PMID: 35219966 DOI: 10.1016/j.colsurfb.2022.112427] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 01/23/2023]
Abstract
Here, we present an inverse Pickering emulsion-based formulation for Bacillus thuringiensis serovar aizawai (BtA) encapsulations utilized towards pest control applications. The emulsification was carried out by high shear homogenization process via ULTRA-TURRAX®. The water-in-mineral oil emulsions were stabilized by commercial hydrophobic silica. Different silica contents and water/oil ratios were studied. Stable emulsions were obtained at 2 and 3 wt% silica at 30% and 20% water volumes, respectively. The structure of the Pickering emulsions were characterized by laser scanning confocal microscopy and cryogenic scanning electron microscopy. The BtA cells, spores and crystals were encapsulated in the water droplets of the inverse Pickering emulsions. An emulsion composed of 3 wt% silica and 30% water was found to be the most suitable for encapsulation. The pest control efficiency of the encapsulated BtA against Spodoptera littoralis first instar larvae was tested. The studied BtA/emulsion system exhibited a mortality rate of 92%. However, the non-formulated BtA has shown 71% mortality, and the emulsion alone resulted in only 9% mortality. These findings confirm that an emulsion with encapsulated BtA can function as an efficient formulation for biopesticides.
Collapse
Affiliation(s)
- Noga Yaakov
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Chandrasekhar Kottakota
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel; Department of Biochemistry and Biotechnology, Sri Krishnadevaraya College of Agricultural Sciences (SKCAS), Anantapurum, Andhra Pradesh, 515002, Affiliated to Acharya N.G. Ranga Agricultural University (ANGRAU), Guntur, Andhra Pradesh 522034, India
| | - Karthik Ananth Mani
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Shoham Matsrafi Naftali
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Einat Zelinger
- The Interdepartmental Equipment Unit, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Michael Davidovitz
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Guy Mechrez
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel.
| |
Collapse
|
24
|
Novikov AA, Sayfutdinova AR, Gorbachevskii MV, Filatova SV, Filimonova AV, Rodrigues-Filho UP, Fu Y, Wang W, Wang H, Vinokurov VA, Shchukin DG. Natural Nanoclay-Based Silver-Phosphomolybdic Acid Composite with a Dual Antimicrobial Effect. ACS OMEGA 2022; 7:6728-6736. [PMID: 35252668 PMCID: PMC8892630 DOI: 10.1021/acsomega.1c06283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The problem of microbial growth on various surfaces has increased concern in society in the context of antibiotic misuse and the spreading of hospital infections. Thus, the development of new, antibiotic-free antibacterial strategies is required to combat bacteria resistant to usual antibiotic treatments. This work reports a new method for producing an antibiotic-free antibacterial halloysite-based nanocomposite with silver nanoparticles and phosphomolybdic acid as biocides, which can be used as components of smart antimicrobial coatings. The composite was characterized by using energy-dispersive X-ray fluorescence spectroscopy and transmission electron microscopy. The release of phosphomolybdic acid from the nanocomposite was studied by using UV-vis spectroscopy. It was shown that the antibiotic-free nanocomposite consisting of halloysite nanotubes decorated with silver nanoparticles loaded with phosphomolybdic acid and treated with calcium chloride possesses broad antibacterial properties, including the complete growth inhibition of Staphylococcus aureus and Pseudomonas aeruginosa bacteria at a 0.5 g × L-1 concentration and Acinetobacter baumannii at a 0.25 g × L-1 concentration.
Collapse
Affiliation(s)
- Andrei A. Novikov
- Physical
and Colloid Chemistry Department, Gubkin
University, 65/1 Leninsky
Prospect, Moscow 119991, Russian Federation
| | - Adeliya R. Sayfutdinova
- Physical
and Colloid Chemistry Department, Gubkin
University, 65/1 Leninsky
Prospect, Moscow 119991, Russian Federation
| | - Maksim V. Gorbachevskii
- Physical
and Colloid Chemistry Department, Gubkin
University, 65/1 Leninsky
Prospect, Moscow 119991, Russian Federation
| | - Sofya V. Filatova
- Physical
and Colloid Chemistry Department, Gubkin
University, 65/1 Leninsky
Prospect, Moscow 119991, Russian Federation
| | - Alla V. Filimonova
- Physical
and Colloid Chemistry Department, Gubkin
University, 65/1 Leninsky
Prospect, Moscow 119991, Russian Federation
| | | | - Ye Fu
- School
of Materials Science and Engineering, Beijing
Technology and Business University, Beijing 100048, People Republic of China
| | - Wencai Wang
- Key
Laboratory of Beijing City for Preparation and Processing of Novel
Polymer Materials, Beijing University of
Chemical Technology, Beijing 100029, People Republic of China
| | - Hongqiang Wang
- State
Key Laboratory of Solidification Processing, Center for Nano Energy
Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, People Republic of China
| | - Vladimir A. Vinokurov
- Physical
and Colloid Chemistry Department, Gubkin
University, 65/1 Leninsky
Prospect, Moscow 119991, Russian Federation
| | - Dmitry G. Shchukin
- Physical
and Colloid Chemistry Department, Gubkin
University, 65/1 Leninsky
Prospect, Moscow 119991, Russian Federation
- Stephenson
Institute for Renewable Energy, University
of Liverpool, Chadwick Building, Peach Street, Liverpool L69 7ZF, United Kingdom
| |
Collapse
|