1
|
Chen C, Yao Q, Wang J, Ran C, Chao L, Xia Y, Chen Y. Fluid Chemistry of Metal Halide Perovskites. Angew Chem Int Ed Engl 2025; 64:e202503593. [PMID: 40122693 DOI: 10.1002/anie.202503593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Solution-processed metal halide perovskites (MHPs) have been rapidly developed worldwide, with much attention to fluid dynamic, fluid crystallization, and fluid interfaces, all falling within the realm of fluid chemistry. It is widely recognized that the theory of fluid chemistry has been proven to provide an effective means for the improvement of perovskite crystallization and the enhancement of perovskite solar cells (PSCs) performance. In this review, the fluid behavior, microfluidic synthesis, and aging process of perovskite materials are first investigated, with emphasis on the related improvement methods and chemical mechanisms. Second, the internal crystallization chemistry, external interface chemistry, and the large-area PSCs based on the fluid chemistry are discussed. Finally, four specific directions for future studies of fluid chemistry of MHPs are proposed, aiming to harness the theoretical advantages of fluid chemistry and contribute to the industrialization of PSCs.
Collapse
Affiliation(s)
- Changshun Chen
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Qing Yao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Jinpei Wang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Chenxin Ran
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Lingfeng Chao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Yingdong Xia
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Yonghua Chen
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| |
Collapse
|
2
|
Liu H, Lu LY, Zhang Y, Zhao J, Liu C, Zhu L, Li Q, Chen S. Covalently cross-linked ultrastrong SiO 2-loaded polyvinyl alcohol fibers via microfluidic spinning. NANOSCALE 2024; 16:12007-12012. [PMID: 38805180 DOI: 10.1039/d4nr01336k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Polyvinyl alcohol (PVA) fiber materials have gained immense recognition due to their good biocompatibility and wide applications. However, methods allowing the synergistic enhancement of mechanical strength and toughness of PVA fibers still remain a key challenge. To this end, we developed covalently cross-linked ultrastrong SiO2-loaded polyvinyl alcohol fibers via a microfluidic spinning chemistry strategy. The thermal stretching and annealing processes not only promote the ordered arrangement of molecules, but also facilitate the ring opening reaction and increase crystallinity. Thus, the resulting fiber has a high tensile strength of 866 MPa, a specific toughness of 288 J g-1 and a tensile strain of 80%. This work provides a covalent cross-linking reinforcement method to prepare ultrastrong composite fibers assisted by microfluidic spinning chemistry and thermal stretching, which would lead to the fabrication of mechanically strong fiber materials through a simple pathway.
Collapse
Affiliation(s)
- Heng Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, China.
| | - Ling-Yu Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, China.
| | - Yujiao Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, China.
| | - Jin Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, China.
| | - Chang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, China.
| | - Liangliang Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, China.
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, China.
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, China.
| |
Collapse
|
3
|
Getachew G, Wibrianto A, Rasal AS, Batu Dirersa W, Chang JY. Metal halide perovskite nanocrystals for biomedical engineering: Recent advances, challenges, and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
4
|
Xie A, Zhu L, Liang Y, Mao J, Liu Y, Chen S. Fiber‐spinning Asymmetric Assembly for Janus‐structured Bifunctional Nanofiber Films towards All‐Weather Smart Textile. Angew Chem Int Ed Engl 2022; 61:e202208592. [DOI: 10.1002/anie.202208592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 11/06/2022]
Affiliation(s)
- An‐Quan Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| | - Liangliang Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| | - Yunzheng Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| | - Jian Mao
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| | - Yijiang Liu
- College of Chemistry Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education Xiangtan University Xiangtan 411105 Hunan Province P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| |
Collapse
|
5
|
Fiber‐spinning Asymmetric Assembly for Janus‐structured Bifunctional Nanofiber Films towards All‐Weather Smart Textile. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Cheng R, Liang Z, Zhu L, Li H, Zhang Y, Wang C, Chen S. Fibrous Nanoreactors from Microfluidic Blow Spinning for Mass Production of Highly Stable Ligand‐Free Perovskite Quantum Dots. Angew Chem Int Ed Engl 2022; 61:e202204371. [DOI: 10.1002/anie.202204371] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Rui Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 China
| | - Zhi‐Bin Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 China
| | - Liangliang Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 China
| | - Hao Li
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 China
| | - Yi Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 China
| | - Cai‐Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 China
| |
Collapse
|
7
|
Cheng R, Liang ZB, Zhu L, Li H, Zhang Y, Wang CF, Chen S. Fibrous Nanoreactors from Microfluidic Blow Spinning for Mass Production of Highly Stable Ligand‐Free Perovskite Quantum Dots. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rui Cheng
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Zhi-Bin Liang
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Liangliang Zhu
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Hao Li
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Yi Zhang
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Cai-Feng Wang
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Su Chen
- Nanjing Tech University College of Chemistry and Chemical Engineering 5 Xin Mofan Road 210009 Nanjing CHINA
| |
Collapse
|
8
|
Guo R, Liu Y, Fang Y, Liu Z, Dong L, Wang L, Li W, Hou J. Large-scale continuous preparation of highly stable α-CsPbI 3/m-SiO 2 nanocomposites by a microfluidics reactor for solid state lighting application. CrystEngComm 2022. [DOI: 10.1039/d2ce00424k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CsPbI3-Mesoporous SiO2 nanocomposites with ultrahigh chemical stability were fabricated by the microfluidic technology for large-scale continuous production.
Collapse
Affiliation(s)
- Runze Guo
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Yufeng Liu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Yongzheng Fang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Zhifu Liu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Langping Dong
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Lei Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Wenyao Li
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Jingshan Hou
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| |
Collapse
|
9
|
Zhu Y, Wu D, Chen J, Ma N, Dai W. Enhanced water-resistant performance of Cu-BTC through polyvinylpyrrolidone protection and its capture ability evaluation of methylene blue. NEW J CHEM 2022. [DOI: 10.1039/d1nj05561e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water instability issues greatly restrict the application of Cu-BTC for cationic dye (e.g. methylene blue (MB)) capture from wastewater.
Collapse
Affiliation(s)
- Yingzhi Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Danping Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jiehong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Na Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Wei Dai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| |
Collapse
|