1
|
Niu W, Kang K, Hao J, Chen X, Dong Y, Ren H, Guo Y, Wang Y, Zhang P, Hu W, Wu Y, He Y, Guo Y. Metal-Organic Framework-Derived Ni-Doped Indium Oxide Nanorods for Parts per Billion-Level Nitrogen Dioxide Gas Sensing at High Humidity. ACS Sens 2024; 9:6103-6112. [PMID: 39445775 DOI: 10.1021/acssensors.4c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Detecting parts per billion (ppb)-level nitrogen dioxide in high-moisture environments at room temperature without reducing sensing performance is a well-recognized significant challenge for metal oxide-based gas sensors. In this study, metal-organic framework-derived nickel-doped indium oxide (Ni-doped In2O3) mesoporous nanorods were prepared by a solvothermal method combined with the calcination process. The sensors prepared using the obtained Ni-doped In2O3 nanorods showcase an ultrahigh response, low detection limit, and excellent selectivity. Moreover, the abundant active sites triggered by nickel doping and the capillary enhancement effect caused by mesopores endow the sensor with ppb-level (20 ppb) NO2 detection capability in high-moisture environments (95% RH) at room temperature. With the increase in humidity, the carrier concentration of the sensor increases, and the nitric acid generated by nitrogen dioxide dissolved in water can be completely ionized in water and has high conductivity. Therefore, the gas response of the sensors increases with the increase in humidity. This study establishes a promising approach for the development of trace nitrogen dioxide-sensing devices that are resilient in high-humidity environments.
Collapse
Affiliation(s)
- Wen Niu
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Kaijin Kang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Jiongyue Hao
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xuefeng Chen
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Yingchun Dong
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Hao Ren
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Yi Guo
- Chongqing Key Laboratory of Toxic and Drug Analysis, Chongqing Police College, Chongqing 401331, China
| | - Yong Wang
- Chongqing Key Laboratory of Toxic and Drug Analysis, Chongqing Police College, Chongqing 401331, China
| | - Peng Zhang
- Chongqing Key Laboratory of Toxic and Drug Analysis, Chongqing Police College, Chongqing 401331, China
| | - Wei Hu
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Yuhong Wu
- Chongqing Key Laboratory of Toxic and Drug Analysis, Chongqing Police College, Chongqing 401331, China
| | - Yong He
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Yongcai Guo
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
2
|
Wang X, Li Y, Jin X, Sun G, Cao J, Wang Y. Effectively Improved CH 4 Sensing Performance of In 2O 3 Porous Hollow Nanospheres by Doping with Cd. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24740-24749. [PMID: 39501523 DOI: 10.1021/acs.langmuir.4c03927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Recently, due to the promising application of metal oxide semiconductors in high-performance methane (CH4) sensors, more attention has been paid to the development of feasible strategies for improving CH4 sensing performance. Herein, we present a strategy of cadmium (Cd) doping to improve the CH4 sensing property of In2O3 porous hollow nanospheres (PHNSs). The Cd-doped In2O3 PHNSs were prepared via an impregnation-calcination approach with self-made carbon nanospheres as a hard template. The samples were characterized by various techniques to evaluate their structure, morphology, surface state, composition, and band gap. When applied as a sensitive material in the CH4 sensor, the Cd-doped In2O3 PHNSs, compared with bare In2O3 PHNSs, showed some significant improvements in performance, especially a reduced operating temperature (200 °C vs 300 °C), an enhanced response (9.5 vs 2.5 for 500 ppm of CH4), a faster response speed (16 s vs 276 s), and better selectivity. In addition, the Cd-doped In2O3 sensor can also maintain a commendable long-term stability, and the range of its response amplitude within 30 days is only 6.3%. The sensitization effects of the Cd dopant on the In2O3 PHNSs are discussed.
Collapse
Affiliation(s)
- Xiaohua Wang
- School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
- School of Chemical Engineering and Environmental Engineering, Jiaozuo University, Jiaozuo 454000, China
| | - Yanwei Li
- School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
- The Collaboration Innovation Center of Coal Safety Production of Henan Province, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xinhui Jin
- School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
- The Collaboration Innovation Center of Coal Safety Production of Henan Province, Henan Polytechnic University, Jiaozuo 454000, China
| | - Guang Sun
- School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
- The Collaboration Innovation Center of Coal Safety Production of Henan Province, Henan Polytechnic University, Jiaozuo 454000, China
| | - Jianliang Cao
- School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Yan Wang
- The Collaboration Innovation Center of Coal Safety Production of Henan Province, Henan Polytechnic University, Jiaozuo 454000, China
| |
Collapse
|
3
|
Ko JK, Park IH, Hong K, Kwon KC. Recent Advances in Chemoresistive Gas Sensors Using Two-Dimensional Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1397. [PMID: 39269059 PMCID: PMC11397462 DOI: 10.3390/nano14171397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
Two-dimensional (2D) materials have emerged as a promising candidate in the chemoresistive gas sensor field to overcome the disadvantages of conventional metal-oxide semiconductors owing to their strong surface activities and high surface-to-volume ratio. This review summarizes the various approaches to enhance the 2D-material-based gas sensors and provides an overview of their progress. The distinctive attributes of semiconductor gas sensors employing 2D materials will be highlighted with their inherent advantages and associated challenges. The general operating principles of semiconductor gas sensors and the unique characteristics of 2D materials in gas-sensing mechanisms will be explored. The pros and cons of 2D materials in gas-sensing channels are discussed, and a route to overcome the current challenges will be delivered. Finally, the recent advancements to enhance the performance of 2D-material-based gas sensors including photo-activation, heteroatom doping, defect engineering, heterostructures, and nanostructures will be discussed. This review should offer a broad range of readers a new perspective toward the future development of 2D-material-based gas sensors.
Collapse
Affiliation(s)
- Jae-Kwon Ko
- Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Analytical Science and Technology, Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - In-Hyeok Park
- Department of Analytical Science and Technology, Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kootak Hong
- Department of Materials Science and Engineering, Chonnam National University (CNU), Gwangju 61186, Republic of Korea
| | - Ki Chang Kwon
- Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| |
Collapse
|
4
|
Yang H, Yang Y, Ma C, Wu Q, Tang J, Zhu C, Wang X, Zeng D. Vacancy-assisted exposed Sn atoms enhancing NO 2 room temperature sensing of SnSe 2 nanoflowers. Talanta 2024; 276:126208. [PMID: 38718651 DOI: 10.1016/j.talanta.2024.126208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 06/14/2024]
Abstract
NO2 is a hazardous gas extremely harmful to the ecosystem and human health, so effective detection of NO2 is critical. SnSe2 is a promising candidate for gas sensors owing to its unique layered configuration that facilitates the diffusion of gas molecules. Here, ultrathin self-assembled nanoflowers F-SnSe2 rich in defects were synthesized by a simple solvothermal method. It exhibits excellent gas sensing performances for NO2 at room temperature (25 °C), with a high gas sensing response of 8.6 for 1 ppm NO2 and a lower detection limit as low as 200 ppb, capable of sensitively detecting ppb-level NO2. DFT calculations revealed that the presence of Se vacancies assists the central Sn atoms to break through the shielding effect of the surface Se atoms and become exposed active sites. The higher reactivity leads to more charge transfer and higher adsorption energy, which strongly promoted the adsorption of NO2. This work verifies the important role of vacancies for the exposed active sites and provides new guidance for defect engineering to modulate the gas sensing performances of SnSe2.
Collapse
Affiliation(s)
- Huimin Yang
- The State Key Laboratory of Materials and Processing Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Yazhou Yang
- The State Key Laboratory of Materials and Processing Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Chaofan Ma
- The State Key Laboratory of Materials and Processing Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Qirui Wu
- The State Key Laboratory of Materials and Processing Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Jiahong Tang
- The State Key Laboratory of Materials and Processing Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Chaoqi Zhu
- The State Key Laboratory of Materials and Processing Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xiaoxia Wang
- The State Key Laboratory of Materials and Processing Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Dawen Zeng
- The State Key Laboratory of Materials and Processing Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
| |
Collapse
|
5
|
Sui N, Song Z, Xu X, Cao S, Xu Y, Zhou T, Zhang T. Effect of heterogenous dopant and high temperature pulse excitation on ozone sensing behavior of In 2O 3 nanostructures and an image recognition method coupled to ozone sensing array. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133379. [PMID: 38160555 DOI: 10.1016/j.jhazmat.2023.133379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Ground-level ozone (O3) is a primary air pollutant with potential adverse impacts on human health and ecosystems. Aiming to detect O3 concentration and develop efficient O3 sensing materials, sensing behavior of heterogenous cation (Fe3+, Sn4+ and Sb5+) doped In2O3 nanostructures was investigated. The incorporation of these cations modulated the electronic structure of semiconductor oxides, affecting the density of chemisorbed oxygen species and reactive sites. From O3 sensing results, Fe3+ doped In2O3 based sensors featuring saturated resistance curves in O3 gas, demonstrated fast sensing speed and qualified detection threshold (20 ppb). In contrast, Sn4+ and Sb5+ doped counterparts exhibited non-saturated sensing curves, resulting in slower response/recovery speed. As a proof-of-concept, these optimized sensors were integrated as the sensor array. Coupled to the image recognition technique, this sensor array could successfully discriminate O3 and NOx. That is, through the tailored combination of material modulation and sensor array, this study paves a novel approach for highly sensitive and selective O3 detection.
Collapse
Affiliation(s)
- Ning Sui
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Zijie Song
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Xiaoyi Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Shuang Cao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Yifeng Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
6
|
Zhao K, Chang X, Zhang J, Yuan F, Liu X. Electronic Modulation of MoS 2 Nanosheets by N-Doping for Highly Sensitive NO 2 Detection at Room Temperature. ACS Sens 2024; 9:388-397. [PMID: 38147687 DOI: 10.1021/acssensors.3c02148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Transition metal dichalcogenide (TMD) materials hold great promise for gas sensors working at room temperature (RT). But the low response and slow dynamics derived from pristine TMDs remain a challenge toward their real applications. In this work, we report an efficient N-doping strategy to modulate the electronic structure of MoS2 nanosheets (N-MoS2) to achieve improved detection toward NO2. The effect of N-doping on the sensor properties, which has been rarely investigated, is elucidated by both experimental and computational studies. Due to N-doping, the Fermi level of N-MoS2 decreased from -5.29 to -5.33 eV and the band gap was reduced from 1.79 to 1.65 eV. The smaller band gap indicated the reduced resistance of N-MoS2 compared to that of original MoS2. As a result, the response of the MoS2 sensor to 10 ppm of NO2 was improved from 1.23 to 2.31 at RT. The sensor also has a limit of detection (LOD) of 62.5 ppb. To explain the effect of N-doping, density functional theory (DFT) calculations were conducted to figure out the important roles played by N-doping. This work demonstrates a pathway to modulate the chemical and electronic structures of TMD materials for advanced sensors.
Collapse
Affiliation(s)
- Kai Zhao
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Xiao Chang
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Jun Zhang
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Feng Yuan
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Xianghong Liu
- College of Physics, Qingdao University, Qingdao 266071, China
| |
Collapse
|
7
|
Wawrzyniak J. Advancements in Improving Selectivity of Metal Oxide Semiconductor Gas Sensors Opening New Perspectives for Their Application in Food Industry. SENSORS (BASEL, SWITZERLAND) 2023; 23:9548. [PMID: 38067920 PMCID: PMC10708670 DOI: 10.3390/s23239548] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
Volatile compounds not only contribute to the distinct flavors and aromas found in foods and beverages, but can also serve as indicators for spoilage, contamination, or the presence of potentially harmful substances. As the odor of food raw materials and products carries valuable information about their state, gas sensors play a pivotal role in ensuring food safety and quality at various stages of its production and distribution. Among gas detection devices that are widely used in the food industry, metal oxide semiconductor (MOS) gas sensors are of the greatest importance. Ongoing research and development efforts have led to significant improvements in their performance, rendering them immensely useful tools for monitoring and ensuring food product quality; however, aspects related to their limited selectivity still remain a challenge. This review explores various strategies and technologies that have been employed to enhance the selectivity of MOS gas sensors, encompassing the innovative sensor designs, integration of advanced materials, and improvement of measurement methodology and pattern recognize algorithms. The discussed advances in MOS gas sensors, such as reducing cross-sensitivity to interfering gases, improving detection limits, and providing more accurate assessment of volatile organic compounds (VOCs) could lead to further expansion of their applications in a variety of areas, including food processing and storage, ultimately benefiting both industry and consumers.
Collapse
Affiliation(s)
- Jolanta Wawrzyniak
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-624 Poznań, Poland
| |
Collapse
|
8
|
Ji W, Yang F, Sun J, Xu R, Li P, Jing L. Improved Performance of g-C 3N 4 for Optoelectronic Detection of NO 2 Gas by Coupling Metal-Organic Framework Nanosheets with Coordinatively Unsaturated Ni(II) Sites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11961-11969. [PMID: 36826836 DOI: 10.1021/acsami.3c00903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sensitive and selective optoelectronic detection of NO2 with g-C3N4 (CN) is critical, but it remains challenging to achieve ultralow concentration (ppb-level) detection. Herein, Ni metal-organic frameworks/CN nanosheet heterojunctions were successfully fabricated by the electrostatic induced assembly strategy and then treated by a post-alkali etching process for creating coordinatively unsaturated Ni(II) sites. The optimized heterojunction exhibits a record detection limitation of 1 ppb for NO2, well below that observed on pristine CN, and an outstanding selectivity over other gases, along with long-time stability (120 days) at room temperature. The resulting superior detection performance benefits from the enhanced charge transfer and separation of the closely contacted heterojunction interface and the favorable adsorption of NO2 by unsaturated Ni(II) as selective adsorption sites mainly by means of the time-resolved photoluminescence spectra and in situ X-ray photoelectron spectra. Moreover, the in situ Fourier transform infrared spectra and temperature-programmed desorption disclose that the promotion adsorption of NO2 depends on the strengthened interaction between NO2 and Ni(II) node sites at the aid of OH groups from unsaturated coordination. This work offers a versatile solution to develop promising CN-based optoelectronic sensors at room temperature.
Collapse
Affiliation(s)
- Wenting Ji
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China
| | - Fan Yang
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China
| | - Jianhui Sun
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China
- College of Physical Science and Technology, Heilongjiang University, Harbin 150080, P. R. China
| | - Rongping Xu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China
| | - Peng Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China
- College of Physical Science and Technology, Heilongjiang University, Harbin 150080, P. R. China
| | - Liqiang Jing
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China
| |
Collapse
|
9
|
Wang Y, Zhou Y. Recent Progress on Anti-Humidity Strategies of Chemiresistive Gas Sensors. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15248728. [PMID: 36556531 PMCID: PMC9784667 DOI: 10.3390/ma15248728] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 05/14/2023]
Abstract
In recent decades, chemiresistive gas sensors (CGS) have been widely studied due to their unique advantages of expedient miniaturization, simple fabrication, easy operation, and low cost. As one ubiquitous interference factor, humidity dramatically affects the performance of CGS, which has been neglected for a long time. With the rapid development of technologies based on gas sensors, including the internet of things (IoT), healthcare, environment monitoring, and food quality assessing, the humidity interference on gas sensors has been attracting increasing attention. Inspiringly, various anti-humidity strategies have been proposed to alleviate the humidity interference in this field; however, comprehensive summaries of these strategies are rarely reported. Therefore, this review aims to summarize the latest research advances on humidity-independent CGS. First, we discussed the humidity interference mechanism on gas sensors. Then, the anti-humidity strategies mainly including surface engineering, physical isolation, working parameters modulation, humidity compensation, and developing novel gas-sensing materials were successively introduced in detail. Finally, challenges and perspectives of improving the humidity tolerance of gas sensors were proposed for future research.
Collapse
|
10
|
Li B, Zhang X, Huo L, Gao S, Guo C, Zhang Y, Major Z, Zhang F, Cheng X, Xu Y. Controllable construction of ZnFe 2O 4-based micro-nano heterostructure for the rapid detection and degradation of VOCs. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129005. [PMID: 35500342 DOI: 10.1016/j.jhazmat.2022.129005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/10/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Micro-nano heterogeneous oxides have received extensive attention due to their distinctive physicochemical properties. However, it is a challenge to prepare the hierarchical multicomponent metal oxide nanomaterials with abundant heterogeneous interfaces in a controllable way. In this work, the effective construction of the heterogeneous structure of the material is achieved by regulating the ratio of metal salts under thermal solvent condition. Three-dimensional spheres (ZnFe2O4) constructed by zero-dimensional ultra-small nanoparticles, in particular three-dimensional hollow sea urchin spheres (ZnO/ZnFe2O4) constructed by one-dimensional nanorods and three-dimensional hydrangeas (α-Fe2O3/ZnFe2O4) assembled by two-dimensional nanosheets were obtained. The two composite materials contain a large number of heterojunctions, which enhances the sensitivity of material to volatile organic compounds gas. Among them, the α-Fe2O3/ZnFe2O4 composite shows the best sensing performance for VOCs. For example, its response to 100 ppm acetone reaches 142 at 170 °C with the response time shortened to 3 s and the detection limit falling to 10 ppb. Meanwhile, the composite material presents a degradation rate of more than 90% for VOCs at a flow rate of 20 mL/min at 170 °C. In addition, the sensing and sensitivity mechanism of the composite material are studied in detail by combining GC-MS, XPS with UV diffuse reflectance tests.
Collapse
Affiliation(s)
- Baosheng Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xianfa Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Lihua Huo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Shan Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Chuanyu Guo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yu Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Zoltán Major
- Institute of Polymer Product Engineering, Johannes Kepler University Linz, Austria
| | - Fangdou Zhang
- College of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoli Cheng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| | - Yingming Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
11
|
Lei G, Pan H, Mei H, Liu X, Lu G, Lou C, Li Z, Zhang J. Emerging single atom catalysts in gas sensors. Chem Soc Rev 2022; 51:7260-7280. [PMID: 35899763 DOI: 10.1039/d2cs00257d] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Single atom catalysts (SACs) offer unprecedented opportunities for high-efficiency reactions taking place in many important fields of catalytic processes, electrochemistry, and photoreactions. Due to their maximized atomic utilization and unique electronic and chemical properties, SACs can provide high activity and excellent selectivity for gas adsorption and electron transport, leveraging SACs that enhance the detection sensitivity and selectivity to target gases. In the past few years, SACs including both noble (Pt, Pd, Au, etc.) and non-noble (Mn, Ni, Zn etc.) metals have been demonstrated to be very useful in optimizing sensing performances. However, a comprehensive review on this topic is still missing. Herein, we summarize the synthesis technologies of SACs that are applicable to gas sensors. The electronic and chemical interactions between SACs and host sensing materials, which are crucial to sensor functions, are discussed. Then, we highlight the application progress of various SACs in gas sensors. Prospects in the creation of new sensing materials with emerging SACs and versatile supports are also present. Finally, the challenges and prospects of SACs in the future development of sensors are analyzed.
Collapse
Affiliation(s)
- Guanglu Lei
- College of Physics, Qingdao University, Qingdao 266071, China.
| | - Hongyin Pan
- College of Physics, Qingdao University, Qingdao 266071, China.
| | - Houshan Mei
- College of Physics, Qingdao University, Qingdao 266071, China.
| | - Xianghong Liu
- College of Physics, Qingdao University, Qingdao 266071, China.
| | - Guocai Lu
- College of Physics, Qingdao University, Qingdao 266071, China.
| | - Chengming Lou
- College of Physics, Qingdao University, Qingdao 266071, China.
| | - Zishuo Li
- College of Physics, Qingdao University, Qingdao 266071, China.
| | - Jun Zhang
- College of Physics, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
12
|
Zhang Y, Jiang Y, Duan Z, Wu Y, Zhao Q, Liu B, Huang Q, Yuan Z, Li X, Tai H. Edge-enriched MoS 2 nanosheets modified porous nanosheet-assembled hierarchical In 2O 3 microflowers for room temperature detection of NO 2 with ultrahigh sensitivity and selectivity. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128836. [PMID: 35421674 DOI: 10.1016/j.jhazmat.2022.128836] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen dioxide (NO2) is one of the most hazardous toxic pollutants to human health and the environment. However, deficiencies of low sensitivity and poor selectivity at room temperature (RT) restrain the application of NO2 sensors. Herein, the edge-enriched MoS2 nanosheets modified porous nanosheets-assembled three-dimensional (3D) In2O3 microflowers have been synthesized to improve the sensitivity and selectivity of NO2 detection at RT. The results show that the In2O3/MoS2 composite sensor exhibits a response as high as 343.09-5 ppm NO2, which is 309 and 72.5 times higher than the sensors based on the pristine MoS2 and In2O3. The composite sensor also shows short recovery time (37 s), excellent repeatability and long-term stability. Furthermore, the response of the In2O3/MoS2 sensor to NO2 is at least 30 times higher than that of other gases, proving the ultrahigh selectivity of the sensor. The outstanding sensing performance of the In2O3/MoS2 sensor can be attributed to the synergistic effect and abundant active sites originating from the p-n heterojunction, exposed edge structures and the designed 2D/3D hybrid structure. The strategy proposed herein is expected to provide a useful reference for the development of high-performance RT NO2 sensors.
Collapse
Affiliation(s)
- Yajie Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Yadong Jiang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Zaihua Duan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Yingwei Wu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Qiuni Zhao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Bohao Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Qi Huang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Zhen Yuan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Xian Li
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Huiling Tai
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China.
| |
Collapse
|
13
|
Guo X, Ding Y, Yang X, Du B, Zhao C, Liang C, Ou Y, Kuang D, Wu Z, He Y. 2D SnSe 2 nanoflakes decorated with 1D ZnO nanowires for ppb-level NO 2 detection at room temperature. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128061. [PMID: 34953260 DOI: 10.1016/j.jhazmat.2021.128061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The detection of air pollutant nitrogen dioxide (NO2) is of great importance arising from its great harm to the ecological environment and human health. However, the detection range of most NO2 sensors is ppm-level, and it is still challenging to achieve lower concentration (ppb-level) NO2 detection. Herein, 2D tin diselenide nanoflakes decorated with 1D zinc oxide nanowires (SnSe2/ZnO) heterojunctions were first reported by facile hydrothermal and ultra-sonication methods. The response of the fabricated SnSe2/ZnO sensor enhances 3.41 times on average compared with that of pure SnSe2 sensor to 50-150 ppb NO2 with a high detection sensitivity (22.57 ppm-1) at room temperature. In addition, the SnSe2/ZnO sensor has complete recovery, negligible cross-sensitivity, and small relative standard deviation (6.98%) during the 1 month sensing test, which can meet the requirements for NO2 detection in environmental monitoring. The enhanced NO2 sensing performance can be attributed to the n-n heterojunction constructed between SnSe2 and ZnO. The as-prepared sensor based on SnSe2/ZnO hybrid significantly promotes the development of the low detection limit of the NO2 sensor at room temperature.
Collapse
Affiliation(s)
- Xuezheng Guo
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamic and Control, Chongqing University, Chongqing 400044, China; Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yanqiao Ding
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xi Yang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Bingsheng Du
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamic and Control, Chongqing University, Chongqing 400044, China; Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Chengjiu Zhao
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Chengyao Liang
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamic and Control, Chongqing University, Chongqing 400044, China; Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yi Ou
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Delin Kuang
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Zhilin Wu
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Yong He
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamic and Control, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
14
|
Eom TH, Cho SH, Suh JM, Kim T, Yang JW, Lee TH, Jun SE, Kim SJ, Lee J, Hong SH, Jang HW. Visible Light Driven Ultrasensitive and Selective NO 2 Detection in Tin Oxide Nanoparticles with Sulfur Doping Assisted by l-Cysteine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106613. [PMID: 35060312 DOI: 10.1002/smll.202106613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/18/2021] [Indexed: 06/14/2023]
Abstract
In the pandemic era, the development of high-performance indoor air quality monitoring sensors has become more critical than ever. NO2 is one of the most toxic gases in daily life, which induces severe respiratory diseases. Thus, the real-time monitoring of low concentrations of NO2 is highly required. Herein, a visible light-driven ultrasensitive and selective chemoresistive NO2 sensor is presented based on sulfur-doped SnO2 nanoparticles. Sulfur-doped SnO2 nanoparticles are synthesized by incorporating l-cysteine as a sulfur doping agent, which also increases the surface area. The cationic and anionic doping of sulfur induces the formation of intermediate states in the band gap, highly contributing to the substantial enhancement of gas sensing performance under visible light illumination. Extraordinary gas sensing performances such as the gas response of 418 to 5 ppm of NO2 and a detection limit of 0.9 ppt are achieved under blue light illumination. Even under red light illumination, sulfur-doped SnO2 nanoparticles exhibit stable gas sensing. The endurance to humidity and long-term stability of the sensor are outstanding, which amplify the capability as an indoor air quality monitoring sensor. Overall, this study suggests an innovative strategy for developing the next generation of electronic noses.
Collapse
Affiliation(s)
- Tae Hoon Eom
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Hwan Cho
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun Min Suh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taehoon Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Wook Yang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae Hyung Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Eon Jun
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Ju Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jongwon Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seong-Hyeon Hong
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
| |
Collapse
|
15
|
Wang D, Pu X, Yu X, Bao L, Cheng Y, Xu J, Han S, Ma Q, Wang X. Controlled preparation and gas sensitive properties of two-dimensional and cubic structure ZnSnO 3. J Colloid Interface Sci 2022; 608:1074-1085. [PMID: 34785455 DOI: 10.1016/j.jcis.2021.09.167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
Two-dimensional (2D) ZnSnO3 is a promising candidate for future gas sensors due to its high chemical response and excellent electronic properties. However, the preparation of 2D ZnSnO3 nanosheets by utilizing soluble inorganic salts and nonorganic solvents remains a challenge. In this work, 2D ZnSnO3 was synthesized via a facile graphene oxide (GO)-assisted co-precipitation method, in which inorganic salts in the aqueous phase replaced metal organic salts in a non-aqueous system. Meanwhile, a "dissolution and recrystallization" mechanism was proposed to explain the transformation from 3D nanocubes to 2D nanosheets. In comparison, the 2D ZnSnO3 nanosheets showed a higher response to formaldehyde (HCHO) at low operating temperature (100 °C). The response (Ra/Rg) of the 2D ZnSnO3 sensor to 10 ppm HCHO was as high as 57, which was approximately 5 times the response of the ZnSnO3 nanocubes sensor. However, the ZnSnO3 nanocubes sensor showed better gas sensing performance to ethanol at high temperature (200 °C). Different gas-sensitive properties were attributed to the different gas diffusion and adsorption processes caused by the morphology and nanostructure. Moreover, both sensors could detect either 0.1 ppm HCHO or ethanol at their optimum operating temperature. This work presents a relatively economical method to prepare 2D compound metal oxides, provides a novel "dissolution and recrystallization" mechanism for 2D multi-metal oxide preparation, and sheds light on the great potential of high-efficiency HCHO and/or ethanol gas sensors.
Collapse
Affiliation(s)
- Ding Wang
- School of Materials Science and Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China.
| | - Xinxin Pu
- School of Materials Science and Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Xin Yu
- School of Materials Science and Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Liping Bao
- School of Materials Science and Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Yu Cheng
- School of Materials Science and Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Jingcheng Xu
- School of Materials Science and Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Sancan Han
- School of Materials Science and Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China.
| | - Qingxiang Ma
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xianying Wang
- School of Materials Science and Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China; Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|
16
|
Design and optimization strategies of metal oxide semiconductor nanostructures for advanced formaldehyde sensors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214280] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|