1
|
Zhang H, Zheng T, Wang Y, Li T, Chi Q. Multifaceted impacts of nanoparticles on plant nutrient absorption and soil microbial communities. FRONTIERS IN PLANT SCIENCE 2024; 15:1497006. [PMID: 39606675 PMCID: PMC11600800 DOI: 10.3389/fpls.2024.1497006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
With the growth of the global population and the increasing scarcity of resources, the sustainability and efficiency improvement of agricultural production have become urgent needs. The rapid development of nanotechnology provides new solutions to this challenge, especially the application of nanoparticles in agriculture, which is gradually demonstrating its unique advantages and broad prospects. Nonetheless, various nanoparticles can influence plant growth in diverse manners, often through distinct mechanisms of action. Beyond their direct effects on the plant itself, they frequently alter the physicochemical properties of the soil and modulate the structure of microbial communities in the rhizosphere. This review focuses intently on the diverse methods through which nanoparticles can modulate plant growth, delving deeply into the interactions between nanoparticles and plants, as well as nanoparticles with soil and microbial communities. The aim is to offer a comprehensive reference for the utilization of functionalized nanoparticles in the agricultural sector.
Collapse
Affiliation(s)
- Hanfeng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Tiantian Zheng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yue Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ting Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Qing Chi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Shahbazi M, Jäger H, Ettelaie R, Chen J, Kashi PA, Mohammadi A. Dispersion strategies of nanomaterials in polymeric inks for efficient 3D printing of soft and smart 3D structures: A systematic review. Adv Colloid Interface Sci 2024; 333:103285. [PMID: 39216400 DOI: 10.1016/j.cis.2024.103285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/03/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Nanoscience-often summarized as "the future is tiny"-highlights the work of researchers advancing nanotechnology through incremental innovations. The design and innovation of new nanomaterials are vital for the development of next-generation three-dimensional (3D) printed structures characterized by low cost, high speed, and versatile capabilities, delivering exceptional performance in advanced applications. The integration of nanofillers into polymeric-based inks for 3D printing heralds a new era in additive manufacturing, allowing for the creation of custom-designed 3D objects with enhanced multifunctionality. To optimize the use of nanomaterials in 3D printing, effective disaggregation techniques and strong interfacial adhesion between nanofillers and polymer matrices are essential. This review provides an overview of the application of various types of nanomaterials used in 3D printing, focusing on their functionalization principles, dispersion strategies, and colloidal stability, as well as the methodologies for aligning nanofillers within the 3D printing framework. It discusses dispersive methods, synergistic dispersion, and in-situ growth, which have yielded smart 3D-printed structures with unique functionality for specific applications. This review also focuses on nanomaterial alignment in 3D printing, detailing methods that enhance selective deposition and orientation of nanofillers within established and customized printing techniques. By emphasizing alignment strategies, we explore their impact on the performance of 3D-printed composites and highlight potential applications that benefit from ordered nanoparticles. Through these continuing efforts, this review shows that the design and development of the new class of nanomaterials are crucial to developing the next generation of smart 3D printed architectures with versatile abilities for advanced structures with exceptional performance.
Collapse
Affiliation(s)
- Mahdiyar Shahbazi
- Institute of Material Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| | - Henry Jäger
- Institute of Material Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| | - Rammile Ettelaie
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Jianshe Chen
- Food Oral Processing Laboratory, School of Food Science & Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Peyman Asghartabar Kashi
- Faculty of Biosystem, College of Agricultural and Natural Resources Tehran University, Tehran, Iran
| | - Adeleh Mohammadi
- Department of Chemistry, University Hamburg, Institute of Food Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
3
|
Zhu Z, Huang X, Lyu J, Yang X, Tan J, Liu X. Optical properties of monolithic zirconia fabricated with nanoparticle jetting. J Prosthet Dent 2024; 132:464.e1-464.e8. [PMID: 38796354 DOI: 10.1016/j.prosdent.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
STATEMENT OF PROBLEM Excellent optical properties are essential for esthetic dental materials. However, the translucency and color masking ability of zirconia fabricated with nanoparticle jetting (NPJ), a type of printed zirconia, are unknown. PURPOSE The purpose of this in vitro study was to evaluate the translucency and color masking ability of zirconia fabricated using NPJ. MATERIAL AND METHODS A total of 90 specimens with thicknesses of 1.5, 1.0, and 0.5 mm were fabricated using high translucent milled zirconia (HT), low translucent milled zirconia (LT), and NPJ. CIELab values (L*, a*, and b*) of the specimens over 7 backgrounds, black, white, VitaB1, VitaA2, VitaA4, gold alloy (Au), and titanium (Ti), were obtained using a spectral radiometer. The relative translucency parameter (RTP) and color difference (∆E) of specimens over VitaB1, VitaA4, Au, and Ti were determined using VitaA2 as the control with the CIEDE2000 color difference equation. The normality of the data distribution was determined using the Shapiro-Wilk test. Differences among groups were analyzed using 2-way analysis of variance and the Student-Newman-Keuls (SNK) post hoc test (α=.05). The ∆E of specimens was analyzed according to perceptibility (∆E=0.8) and acceptability (∆E=1.8) thresholds using the 1 sample t test. The correlation between RTP and ∆E and RTP/∆E and thickness was examined using the Pearson correlation analysis. RESULTS Statistically significant differences were observed in translucency and color masking ability among HT, LT, and NPJ (P<.05). The RTP value was the lowest for zirconia fabricated with NPJ (P<.001) and highest for HT (P<.001). Monolithic zirconia fabricated with NPJ had lower ∆E values than those of HT and LT for the same thickness and background (P<.05). A positive correlation was found in RTP and ∆E (P<.001). A negative correlation was observed in RTP and thickness (P<.001) and ∆E and thickness across a constant background (P<.001). CONCLUSIONS Zirconia fabricated with NPJ was less translucent and had a greater color masking ability for discolored backgrounds than HT and LT.
Collapse
Affiliation(s)
- Zhiyao Zhu
- Graduate student, Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Xinyue Huang
- Graduate student, Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Jizhe Lyu
- Graduate student, Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Xu Yang
- Clinical Associate Professor, Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Jianguo Tan
- Professor, Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Xiaoqiang Liu
- Clinical Professor, Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China.
| |
Collapse
|
4
|
Sundaravadivelan B, Ravichandran D, Dmochowska A, Patil D, Thummalapalli SV, Ramanathan A, Peixinho J, Miquelard-Garnier G, Song K. Ink-Based Additive Manufacturing of a Polymer/Coal Composite: A Non-Traditional Reinforcement. ACS APPLIED ENGINEERING MATERIALS 2024; 2:1315-1323. [PMID: 38808268 PMCID: PMC11129187 DOI: 10.1021/acsaenm.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024]
Abstract
Coal, a crucial natural resource traditionally employed for generating carbon-rich materials and powering global industries, has faced escalating scrutiny due to its adverse environmental impacts outweighing its utility in the contemporary world. In response to the worldwide shift toward sustainability, the United States alone has witnessed an approximate 50% reduction in coal consumption. Nevertheless, the ample availability of coal has spurred interest in identifying alternative sustainable applications. This research delves into the feasibility of utilizing coal as a nonconventional carbon-rich reinforcement in direct ink writing (DIW)-based 3D printing techniques. Our investigation here involves a thermosetting resin serving as a matrix, incorporating pulverized coal (250 μm in size) and carbon black as the reinforcement and a viscosity modifier, respectively. The ink formulation is meticulously designed to exhibit shear-thinning behavior essential for DIW 3D printing, ensuring uniform and continuous printing. Mechanical properties are assessed through the 3D printing of ASTM standard specimens to validate the reinforcing impact. Remarkably, the study reveals that a 2 wt % coal concentration in the ink leads to a substantial improvement in both tensile and flexural properties, resulting in enhancements of 35 and 12.5%, respectively. Additionally, the research demonstrates the printability of various geometries with coal as reinforcement, opening up new possibilities for coal utilization while pursuing more sustainable manufacturing and applications.
Collapse
Affiliation(s)
- Barath Sundaravadivelan
- Department
of Mechanical Engineering, School for Engineering of Matter, Transport,
and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Dharneedar Ravichandran
- School
of Manufacturing Systems and Networks Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, Arizona 85212, United States
| | - Anna Dmochowska
- Laboratoire
PIMM, CNRS, Arts et Métiers Institute
of Technology, Cnam, HESAM Universite, 75013 Paris, France
| | - Dhanush Patil
- School
of Manufacturing Systems and Networks Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, Arizona 85212, United States
| | - Sri Vaishnavi Thummalapalli
- School
of Environmental, Civil, Agricultural, and Mechanical Engineering
(ECAM), College of Engineering, University
of Georgia, Athens, Georgia 30602, United States
| | - Arunachalam Ramanathan
- School
of Environmental, Civil, Agricultural, and Mechanical Engineering
(ECAM), College of Engineering, University
of Georgia, Athens, Georgia 30602, United States
| | - Jorge Peixinho
- Laboratoire
PIMM, CNRS, Arts et Métiers Institute
of Technology, Cnam, HESAM Universite, 75013 Paris, France
| | - Guillaume Miquelard-Garnier
- Laboratoire
PIMM, CNRS, Arts et Métiers Institute
of Technology, Cnam, HESAM Universite, 75013 Paris, France
| | - Kenan Song
- School
of Manufacturing Systems and Networks Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, Arizona 85212, United States
- School
of Environmental, Civil, Agricultural, and Mechanical Engineering
(ECAM), College of Engineering, University
of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
5
|
Shen HY, Xing F, Shang SY, Jiang K, Kuzmanović M, Huang FW, Liu Y, Luo E, Edeleva M, Cardon L, Huang S, Xiang Z, Xu JZ, Li ZM. Biomimetic Mineralized 3D-Printed Polycaprolactone Scaffold Induced by Self-Adaptive Nanotopology to Accelerate Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18658-18670. [PMID: 38587811 DOI: 10.1021/acsami.4c02636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Three-dimensional (3D)-printed biodegradable polymer scaffolds are at the forefront of personalized constructs for bone tissue engineering. However, it remains challenging to create a biological microenvironment for bone growth. Herein, we developed a novel yet feasible approach to facilitate biomimetic mineralization via self-adaptive nanotopography, which overcomes difficulties in the surface biofunctionalization of 3D-printed polycaprolactone (PCL) scaffolds. The building blocks of self-adaptive nanotopography were PCL lamellae that formed on the 3D-printed PCL scaffold via surface-directed epitaxial crystallization and acted as a linker to nucleate and generate hydroxyapatite crystals. Accordingly, a uniform and robust mineralized layer was immobilized throughout the scaffolds, which strongly bound to the strands and had no effect on the mechanical properties of the scaffolds. In vitro cell culture experiments revealed that the resulting scaffold was biocompatible and enhanced the proliferation and osteogenic differentiation of mouse embryolous osteoblast cells. Furthermore, we demonstrated that the resulting scaffold showed a strong capability to accelerate in vivo bone regeneration using a rabbit bone defect model. This study provides valuable opportunities to enhance the application of 3D-printed scaffolds in bone repair, paving the way for translation to other orthopedic implants.
Collapse
Affiliation(s)
- Hui-Yuan Shen
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Fei Xing
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Si-Yuan Shang
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Kai Jiang
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Maja Kuzmanović
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Fu-Wen Huang
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mariya Edeleva
- Centre for Polymer and Material Technologies, Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent 9052, Belgium
| | - Ludwig Cardon
- Centre for Polymer and Material Technologies, Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent 9052, Belgium
| | - Shishu Huang
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhou Xiang
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Jambhulkar S, Ravichandran D, Zhu Y, Thippanna V, Ramanathan A, Patil D, Fonseca N, Thummalapalli SV, Sundaravadivelan B, Sun A, Xu W, Yang S, Kannan AM, Golan Y, Lancaster J, Chen L, Joyee EB, Song K. Nanoparticle Assembly: From Self-Organization to Controlled Micropatterning for Enhanced Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306394. [PMID: 37775949 DOI: 10.1002/smll.202306394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Nanoparticles form long-range micropatterns via self-assembly or directed self-assembly with superior mechanical, electrical, optical, magnetic, chemical, and other functional properties for broad applications, such as structural supports, thermal exchangers, optoelectronics, microelectronics, and robotics. The precisely defined particle assembly at the nanoscale with simultaneously scalable patterning at the microscale is indispensable for enabling functionality and improving the performance of devices. This article provides a comprehensive review of nanoparticle assembly formed primarily via the balance of forces at the nanoscale (e.g., van der Waals, colloidal, capillary, convection, and chemical forces) and nanoparticle-template interactions (e.g., physical confinement, chemical functionalization, additive layer-upon-layer). The review commences with a general overview of nanoparticle self-assembly, with the state-of-the-art literature review and motivation. It subsequently reviews the recent progress in nanoparticle assembly without the presence of surface templates. Manufacturing techniques for surface template fabrication and their influence on nanoparticle assembly efficiency and effectiveness are then explored. The primary focus is the spatial organization and orientational preference of nanoparticles on non-templated and pre-templated surfaces in a controlled manner. Moreover, the article discusses broad applications of micropatterned surfaces, encompassing various fields. Finally, the review concludes with a summary of manufacturing methods, their limitations, and future trends in nanoparticle assembly.
Collapse
Affiliation(s)
- Sayli Jambhulkar
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Varunkumar Thippanna
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dhanush Patil
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Nathan Fonseca
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Barath Sundaravadivelan
- Department of Mechanical and Aerospace Engineering, School for Engineering of Matter, Transport & Energy, Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, AZ, 85281, USA
| | - Allen Sun
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Weiheng Xu
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University (ASU), Tempe, AZ, 85287, USA
| | - Arunachala Mada Kannan
- The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuval Golan
- Department of Materials Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Jessica Lancaster
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Lei Chen
- Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA
| | - Erina B Joyee
- Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Kenan Song
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia (UGA), Athens, GA, 30602, USA
- Adjunct Professor of School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| |
Collapse
|
7
|
Baniasadi H, Abidnejad R, Fazeli M, Lipponen J, Niskanen J, Kontturi E, Seppälä J, Rojas OJ. Innovations in hydrogel-based manufacturing: A comprehensive review of direct ink writing technique for biomedical applications. Adv Colloid Interface Sci 2024; 324:103095. [PMID: 38301316 DOI: 10.1016/j.cis.2024.103095] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Direct ink writing (DIW) stands as a pioneering additive manufacturing technique that holds transformative potential in the field of hydrogel fabrication. This innovative approach allows for the precise deposition of hydrogel inks layer by layer, creating complex three-dimensional structures with tailored shapes, sizes, and functionalities. By harnessing the versatility of hydrogels, DIW opens up possibilities for applications spanning from tissue engineering to soft robotics and wearable devices. This comprehensive review investigates DIW as applied to hydrogels and its multifaceted applications. The paper introduces a diverse range of printing techniques while providing a thorough exploration of DIW for hydrogel-based printing. The investigation aims to explain the progress made, challenges faced, and potential trajectories that lie ahead for DIW in hydrogel-based manufacturing. The fundamental principles underlying DIW are carefully examined, specifically focusing on rheological attributes and printing parameters, prompting a comprehensive survey of the wide variety of hydrogel materials. These encompass both natural and synthetic variations, all of which can be effectively harnessed for this purpose. Furthermore, the review explores the latest applications of DIW for hydrogels in biomedical areas, with a primary focus on tissue engineering, wound dressing, and drug delivery systems. The document not only consolidates the existing state of DIW within the context of hydrogel-based manufacturing but also charts potential avenues for further research and innovative breakthroughs.
Collapse
Affiliation(s)
- Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo, Finland.
| | - Roozbeh Abidnejad
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto FI-00076, Finland
| | - Mahyar Fazeli
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto FI-00076, Finland
| | - Juha Lipponen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto FI-00076, Finland
| | - Jukka Niskanen
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto FI-00076, Finland
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto FI-00076, Finland; Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry, Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
8
|
Xu X, Xue P, Gao M, Li Y, Xu Z, Wei Y, Zhang Z, Liu Y, Wang L, Liu H, Cheng B. Assembled one-dimensional nanowires for flexible electronic devices via printing and coating: Techniques, applications, and perspectives. Adv Colloid Interface Sci 2023; 321:102987. [PMID: 37852138 DOI: 10.1016/j.cis.2023.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/10/2023] [Accepted: 08/26/2023] [Indexed: 10/20/2023]
Abstract
The rapid progress in flexible electronic devices has necessitated continual research into nanomaterials, structural design, and fabrication processes. One-dimensional nanowires, characterized by their distinct structures and exceptional properties, are considered essential components for various flexible electronic devices. Considerable attention has been directed toward the assembly of nanowires, which presents significant advantages. Printing and coating techniques can be used to assemble nanowires in a relatively simple, efficient, and cost-competitive manner and exhibit potential for scale-up production in the foreseeable future. This review aims to provide an overview of nanowire assembly using printing and coating techniques, such as bar coating, spray coating, dip coating, blade coating, 3D printing, and so forth. The application of assembled nanowires in flexible electronic devices is subsequently discussed. Finally, further discussion is presented on the potential and challenges of flexible electronic devices based on assembled nanowires via printing and coating.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Pan Xue
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Meng Gao
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yibin Li
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zijun Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yu Wei
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhengjian Zhang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yang Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Lei Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| | - Hongbin Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Bowen Cheng
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
9
|
Firoozi AA, Firoozi AA. A systematic review of the role of 4D printing in sustainable civil engineering solutions. Heliyon 2023; 9:e20982. [PMID: 37928382 PMCID: PMC10622610 DOI: 10.1016/j.heliyon.2023.e20982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
This systematic review, not financially supported by any funding body, aims to synthesize the current knowledge on the applications, potential benefits, and challenges of 4D printing in civil engineering, with a focus on its role in sustainable solutions. Comprehensive searches were conducted in Scopus, Web of Science, and Google Scholar using related keywords. Articles that discussed 4D printing within civil engineering and construction contexts, encompassing both conceptual and empirical studies, were included. The findings suggest that 4D printing, with its time-responsive transformation feature, can enhance design freedom, improve structural performance, and increase environmental efficiency in construction. However, challenges persist in material performance, scalability, and cost. Despite these, ongoing advancements signal potential future developments that could widen the opportunities for large-scale applications of 4D printing in civil engineering. The potential use of renewable, bio-based materials could also lead to more sustainable construction practices. This review highlights the transformative potential of 4D printing, underlining the need for further research to fully leverage its capabilities and address current limitations. 4D printing emerges as a promising avenue for sustainable civil engineering solutions, offering a transformative approach that calls for continued exploration and development.
Collapse
Affiliation(s)
- Ali Akbar Firoozi
- Department of Civil Engineering, Faculty of Engineering & Technology, University of Botswana, Gaborone, Botswana
| | - Ali Asghar Firoozi
- Department of Civil Engineering, Faculty of Engineering & Technology, University of Botswana, Gaborone, Botswana
| |
Collapse
|
10
|
Kundrata I, Barr MKS, Tymek S, Döhler D, Hudec B, Brüner P, Vanko G, Precner M, Yokosawa T, Spiecker E, Plakhotnyuk M, Fröhlich K, Bachmann J. Additive Manufacturing in Atomic Layer Processing Mode. SMALL METHODS 2022; 6:e2101546. [PMID: 35277944 DOI: 10.1002/smtd.202101546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Additive manufacturing (3D printing) has not been applicable to micro- and nanoscale engineering due to the limited resolution. Atomic layer deposition (ALD) is a technique for coating large areas with atomic thickness resolution based on tailored surface chemical reactions. Thus, combining the principles of additive manufacturing with ALD could open up a completely new field of manufacturing. Indeed, it is shown that a spatially localized delivery of ALD precursors can generate materials patterns. In this "atomic-layer additive manufacturing" (ALAM), the vertical resolution of the solid structure deposited is about 0.1 nm, whereas the lateral resolution is defined by the microfluidic gas delivery. The ALAM principle is demonstrated by generating lines and patterns of pure, crystalline TiO2 and Pt on planar substrates and conformal coatings of 3D nanostructures. The functional quality of ALAM patterns is exemplified with temperature sensors, which achieve a performance similar to the industry standard. This general method of multimaterial direct patterning is much simpler than standard multistep lithographic microfabrication. It offers process flexibility, saves processing time, investment, materials, waste, and energy. It is envisioned that together with etching, doping, and cleaning performed in a similar local manner, ALAM will create the "atomic-layer advanced manufacturing" family of techniques.
Collapse
Affiliation(s)
- Ivan Kundrata
- ATLANT 3D Nanosystems, Kongens Lyngby, 2800, Denmark
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry of Thin Film Materials, IZNF, 91058, Erlangen, Germany
- Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava, 841 04, Slovakia
| | - Maïssa K S Barr
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry of Thin Film Materials, IZNF, 91058, Erlangen, Germany
| | - Sarah Tymek
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry of Thin Film Materials, IZNF, 91058, Erlangen, Germany
| | - Dirk Döhler
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry of Thin Film Materials, IZNF, 91058, Erlangen, Germany
| | - Boris Hudec
- Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava, 841 04, Slovakia
| | | | - Gabriel Vanko
- Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava, 841 04, Slovakia
| | - Marian Precner
- Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava, 841 04, Slovakia
| | - Tadahiro Yokosawa
- Friedrich-Alexander University of Erlangen-Nürnberg, Chair of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, 91058, Erlangen, Germany
| | - Erdmann Spiecker
- Friedrich-Alexander University of Erlangen-Nürnberg, Chair of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, 91058, Erlangen, Germany
| | | | - Karol Fröhlich
- Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava, 841 04, Slovakia
- Center for Advanced Materials Application, Slovak Academy of Sciences, Bratislava, 845 11, Slovakia
| | - Julien Bachmann
- ATLANT 3D Nanosystems, Kongens Lyngby, 2800, Denmark
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry of Thin Film Materials, IZNF, 91058, Erlangen, Germany
| |
Collapse
|