1
|
Kong D, Wu R, Chen Y, Yue J, Zhang C. N-doped MoS2 nanoflowers for the ultrasonic-vibration-driven high piezoelectric catalytic degradation. J Chem Phys 2025; 162:084701. [PMID: 39991997 DOI: 10.1063/5.0244608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025] Open
Abstract
In this study, N-doped few-layer MoS2 piezocatalysts were successfully prepared by a one-pot hydrothermal method with urea as a nitrogen source. Benefiting from the optimized proportion of minority layers at edge positions and higher conductivity by N doping, the optimal N-doped few-layer MoS2 (120 mg of added urea) sample showed the optimal piezocatalytic activity for Rhodamine B (RhB) and levofloxacin (LEV), reaching 84.6 and 73.1% with the reaction kinetic rate constant of 0.020 86 and 0.017 05 min-1, respectively. In addition, the generation of superoxide radicals (·O2-) from the 120-MoS2 sample was determined to be greater than that from the 0-MoS2 sample in the piezocatalyst process by free radical scavenging experiments and electron paramagnetic resonance tests. Based on experimental data, a potential mechanism has been proposed to explain the enhanced piezocatalyst performance of N-doped few-layer MoS2. This research sheds new light on the development of efficient, cost-effective MoS2 piezoelectric catalysts through the doping of non-metallic dopants.
Collapse
Affiliation(s)
- Dezheng Kong
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Rong Wu
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Yutong Chen
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Jianyong Yue
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| | - Chen Zhang
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830017, People's Republic of China
| |
Collapse
|
2
|
Roy S, Joseph A, Zhang X, Bhattacharyya S, Puthirath AB, Biswas A, Tiwary CS, Vajtai R, Ajayan PM. Engineered Two-Dimensional Transition Metal Dichalcogenides for Energy Conversion and Storage. Chem Rev 2024; 124:9376-9456. [PMID: 39042038 DOI: 10.1021/acs.chemrev.3c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Designing efficient and cost-effective materials is pivotal to solving the key scientific and technological challenges at the interface of energy, environment, and sustainability for achieving NetZero. Two-dimensional transition metal dichalcogenides (2D TMDs) represent a unique class of materials that have catered to a myriad of energy conversion and storage (ECS) applications. Their uniqueness arises from their ultra-thin nature, high fractions of atoms residing on surfaces, rich chemical compositions featuring diverse metals and chalcogens, and remarkable tunability across multiple length scales. Specifically, the rich electronic/electrical, optical, and thermal properties of 2D TMDs have been widely exploited for electrochemical energy conversion (e.g., electrocatalytic water splitting), and storage (e.g., anodes in alkali ion batteries and supercapacitors), photocatalysis, photovoltaic devices, and thermoelectric applications. Furthermore, their properties and performances can be greatly boosted by judicious structural and chemical tuning through phase, size, composition, defect, dopant, topological, and heterostructure engineering. The challenge, however, is to design and control such engineering levers, optimally and specifically, to maximize performance outcomes for targeted applications. In this review we discuss, highlight, and provide insights on the significant advancements and ongoing research directions in the design and engineering approaches of 2D TMDs for improving their performance and potential in ECS applications.
Collapse
Affiliation(s)
- Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Antony Joseph
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Xiang Zhang
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Sohini Bhattacharyya
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Anand B Puthirath
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Abhijit Biswas
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Liang X, Liu P, Qiu Z, Shen S, Cao F, Zhang Y, Chen M, He X, Xia Y, Wang C, Wan W, Zhang J, Huang H, Gan Y, Xia X, Zhang W. Plasma Technology for Advanced Electrochemical Energy Storage. Chemistry 2024; 30:e202304168. [PMID: 38264940 DOI: 10.1002/chem.202304168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Indexed: 01/25/2024]
Abstract
"Carbon Peak and Carbon Neutrality" is an important strategic goal for the sustainable development of human society. Typically, a key means to achieve these goals is through electrochemical energy storage technologies and materials. In this context, the rational synthesis and modification of battery materials through new technologies play critical roles. Plasma technology, based on the principles of free radical chemistry, is considered a promising alternative for the construction of advanced battery materials due to its inherent advantages such as superior versatility, high reactivity, excellent conformal properties, low consumption and environmental friendliness. In this perspective paper, we discuss the working principle of plasma and its applied research on battery materials based on plasma conversion, deposition, etching, doping, etc. Furthermore, the new application directions of multiphase plasma associated with solid, liquid and gas sources are proposed and their application examples for batteries (e. g. lithium-ion batteries, lithium-sulfur batteries, zinc-air batteries) are given. Finally, the current challenges and future development trends of plasma technology are briefly summarized to provide guidance for the next generation of energy technologies.
Collapse
Affiliation(s)
- Xinqi Liang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 611371, China
| | - Ping Liu
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 611371, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhong Qiu
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 611371, China
| | - Shenghui Shen
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Feng Cao
- Department of Engineering Technology, Huzhou College, Huzhou, 313000, P. R. China
| | - Yongqi Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 611371, China
| | - Minghua Chen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Xinping He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yang Xia
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 611371, China
| | - Chen Wang
- Zhejiang Academy of Science and Technology for Inspection & Quarantine, Zhejiang, Hangzhou 311215, P. R. China
| | - Wangjun Wan
- Zhejiang Academy of Science and Technology for Inspection & Quarantine, Zhejiang, Hangzhou 311215, P. R. China
| | - Jun Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hui Huang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yongping Gan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinhui Xia
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 611371, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenkui Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
4
|
Xin J, Pang H, Gómez-García CJ, Jin Z, Wang Y, Au CM, Ma H, Wang X, Yang G, Yu WY. Nitrogen doped 1 T/2H mixed phase MoS 2/CuS heterostructure nanosheets for enhanced peroxidase activity. J Colloid Interface Sci 2024; 659:312-319. [PMID: 38176240 DOI: 10.1016/j.jcis.2023.12.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/03/2023] [Accepted: 12/24/2023] [Indexed: 01/06/2024]
Abstract
Heteroatom doping and phase engineering are effective ways to promote the catalytic activity of nanoenzymes. Nitrogen-doped 1 T/2H mixed phase MoS2/CuS heterostructure nanosheets N-1 T/2H-MoS2/CuS are prepared by a simple hydrothermal approach using polyoxometalate (POM)-based metal-organic frameworks (MOFs) (NENU-5) as a precursor and urea as nitrogen doping reagent. The XPS spectroscopy (XPS) and Raman spectrum of N-1 T/2H-MoS2/CuS prove the successful N-doping. NENU-5 was used as the template to prepare 1 T/2H-MoS2/CuS with high content of 1 T phase by optimizing the reaction time. The use of urea as nitrogen dopant added to 1 T/2H-MoS2/CuS, resulted in N-1 T/2H-MoS2/CuS with an increase in the content of the 1 T phase from 80 % to 84 % and higher number of defects. N-1 T/2H-MoS2/CuS shows higher peroxidase activity than 1 T/2H-MoS2/CuS and a catalytic efficiency (Kcat/Km) for H2O2 twice as high as that of 1 T/2H-MoS2/CuS. The enhanced catalytic activity has probably been attributed to several reasons: (i) the insertion of urea during the hydrothermal process in the S-Mo-S layer of MoS2, causing an increase in the interlayer spacing and in 1 T phase content, (ii) the replacement of S atoms in MoS2 by N atoms from the urea decomposition, resulting in more defects and more active sites. As far as we know, N-1 T/2H-MoS2/CuS nanosheets have the lowest detection limit (0.16 µm) for the colorimetric detection of hydroquinone among molybdenum disulfide-based catalysts. This study affords a new approach for the fabrication of high-performance nanoenzyme catalysts.
Collapse
Affiliation(s)
- Jianjiao Xin
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China; Center of Teaching Experiment and Equipment Management, Qiqihar University, Qiqihar 161006, China
| | - Haijun Pang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China.
| | - Carlos J Gómez-García
- Departamento de Química Inorgánica, Universidad de Valencia, C/Dr. Moliner 50. 46100 Burjasot, Spain
| | - Zhongxin Jin
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Ying Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Chi-Ming Au
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Huiyuan Ma
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China.
| | - Xinming Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Guixin Yang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Wing-Yiu Yu
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
5
|
Sovizi S, Angizi S, Ahmad Alem SA, Goodarzi R, Taji Boyuk MRR, Ghanbari H, Szoszkiewicz R, Simchi A, Kruse P. Plasma Processing and Treatment of 2D Transition Metal Dichalcogenides: Tuning Properties and Defect Engineering. Chem Rev 2023; 123:13869-13951. [PMID: 38048483 PMCID: PMC10756211 DOI: 10.1021/acs.chemrev.3c00147] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/31/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) offer fascinating opportunities for fundamental nanoscale science and various technological applications. They are a promising platform for next generation optoelectronics and energy harvesting devices due to their exceptional characteristics at the nanoscale, such as tunable bandgap and strong light-matter interactions. The performance of TMD-based devices is mainly governed by the structure, composition, size, defects, and the state of their interfaces. Many properties of TMDs are influenced by the method of synthesis so numerous studies have focused on processing high-quality TMDs with controlled physicochemical properties. Plasma-based methods are cost-effective, well controllable, and scalable techniques that have recently attracted researchers' interest in the synthesis and modification of 2D TMDs. TMDs' reactivity toward plasma offers numerous opportunities to modify the surface of TMDs, including functionalization, defect engineering, doping, oxidation, phase engineering, etching, healing, morphological changes, and altering the surface energy. Here we comprehensively review all roles of plasma in the realm of TMDs. The fundamental science behind plasma processing and modification of TMDs and their applications in different fields are presented and discussed. Future perspectives and challenges are highlighted to demonstrate the prominence of TMDs and the importance of surface engineering in next-generation optoelectronic applications.
Collapse
Affiliation(s)
- Saeed Sovizi
- Faculty of
Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Shayan Angizi
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| | - Sayed Ali Ahmad Alem
- Chair in
Chemistry of Polymeric Materials, Montanuniversität
Leoben, Leoben 8700, Austria
| | - Reyhaneh Goodarzi
- School of
Metallurgy and Materials Engineering, Iran
University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | | | - Hajar Ghanbari
- School of
Metallurgy and Materials Engineering, Iran
University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | - Robert Szoszkiewicz
- Faculty of
Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Abdolreza Simchi
- Department
of Materials Science and Engineering and Institute for Nanoscience
and Nanotechnology, Sharif University of
Technology, 14588-89694 Tehran, Iran
- Center for
Nanoscience and Nanotechnology, Institute for Convergence Science
& Technology, Sharif University of Technology, 14588-89694 Tehran, Iran
| | - Peter Kruse
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
6
|
Aydin K, Kanade C, Kanade VK, Bahit G, Ahn C, Kim T. Synthesis of multiphase MoS 2 heterostructures using temperature-controlled plasma-sulfurization for photodetector applications. NANOSCALE 2023; 15:17326-17334. [PMID: 37877424 DOI: 10.1039/d3nr01910a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Two-dimensional (2D) materials exhibit outstanding performance in photodetectors because of their excellent optical and electronic properties. Specifically, 2D-MoS2, a transition metal dichalcogenide, is a prominent candidate for flexible and portable photodetectors based on its inherent phase-dependent tunable optical band gap properties. This research focused on creating high-performance photodetectors by carefully arranging out-of-plane 2D heterostructures. The process involved stacking different phases of MoS2 (1T and 2H) using controlled temperature during plasma-enhanced chemical vapor deposition. Among the various phase combinations, the best photocurrent response was obtained for the 1T/2H-MoS2 heterostructure, which exhibited an approximately two-fold higher photocurrent than the 2H/1T-MoS2 heterostructure and 2H/2H-MoS2 monostructure. The 1T/2H-MoS2 heterostructure exhibited a higher photoresponse than the monostructured MoS2 of the same thickness (1T/1T- and 2H/2H-MoS2, respectively). The effect of the stacking sequences of different phases was examined, and their photoperformances were investigated. This study demonstrates that phase engineering in 2D-MoS2 van der Waals heterostructures has significant potential for developing high-performance photodetectors.
Collapse
Affiliation(s)
- Kubra Aydin
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
- Department of Nano Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Chaitanya Kanade
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
- Department of Nano Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Centre for Materials for Electronics Technology, CMET Pune, Panchawati Rd, Mansarovar, Panchawati, Pashan, Pune, Maharashtra 411008, India
| | - Vinit Kaluram Kanade
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
- Department of Nano Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Gulgun Bahit
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Chisung Ahn
- Heat & Surface Technology R&D Department, Korea Institute of Industrial Technology, 113-58 Seohaean-ro, Siheung-si, Gyeonggi-do 15014, Republic of Korea.
| | - Taesung Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
- Department of Nano Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
7
|
Li Y, Meng J, Wang X, Song M, Jiao M, Qin Q, Mi L. Phosphorus doped molybdenum disulfide regulated by sodium chloride for advanced supercapacitor electrodes. Dalton Trans 2023; 52:14613-14620. [PMID: 37786378 DOI: 10.1039/d3dt02184j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
As a pseudocapacitor electrode material, molybdenum disulfide (MoS2) usually shows inferior capacity, rate capability and cyclability. Structural regulation and heteroatom doping are the available methods to ameliorate the electrochemical properties of MoS2. Herein, phosphorus doped molybdenum disulfide regulated by sodium chloride (SP-MoS2) is successfully synthesized using phosphomolybdate acid as a molybdenum source and an in situ dopant and sodium chloride (NaCl) as a structural regulator. Under the structural regulation of NaCl, the SP-MoS2 nanosheets exhibit an interweaved architecture with a large interlayer spacing of 0.68 nm. Owing to the in situ P doping and large specific surface area (21.0 m2 g-1), the SP-MoS2 electrode possesses a maximum capacity of 564.8 F g-1 at 1 A g-1 and retains 56.3% of the original capacity at 20 A g-1. Density functional theory (DFT) calculations indicate that SP-MoS2 displays a high K+ average adsorption energy of -3.636 eV. In addition, the fabricated SP-MoS2//AC asymmetric supercapacitor device displays an energy density of 22.8 W h kg-1 at 759 W kg-1.
Collapse
Affiliation(s)
- Yunan Li
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China.
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China.
| | - Jiayin Meng
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China.
| | - Xiaotian Wang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China.
| | - Meng Song
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China.
| | - Mingli Jiao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China.
| | - Qi Qin
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China.
| | - Liwei Mi
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China.
| |
Collapse
|
8
|
Nawaz S, Khan Y, Khalid S, Malik MA, Siddiq M. Molybdenum disulfide (MoS 2) along with graphene nanoplatelets (GNPs) utilized to enhance the capacitance of conducting polymers (PANI and PPy). RSC Adv 2023; 13:28785-28797. [PMID: 37790101 PMCID: PMC10543645 DOI: 10.1039/d3ra04153k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023] Open
Abstract
Hybrid composites of molybdenum disulfide (MoS2), graphene nanoplatelets (GNPs) and polyaniline (PANI)/polypyrrole (PPy) have been synthesized as cost-effective electrode materials for supercapacitors. We have produced MoS2 from molybdenum dithiocarbamate by a melt method in an inert environment and then used a liquid exfoliation method to form its composite with graphene nanoplatelets (GNPs) and polymers (PANI and PPy). The MoS2 melt/GNP ratio in the resultant composites was 1 : 3 and the polymer was 10% by wt. of the original composite. XRD (X-ray diffraction analysis) confirmed the formation of MoS2 and SEM (scanning electron microscopy) revealed the morphology of the synthesized materials. The electrochemical charge storage performance of the synthesized composite materials was assessed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge (GCCD) measurements. Resultant composites showed enhanced electrochemical performances (specific capacitance = 236.23 F g-1, energy density = 64.31 W h kg-1 and power density = 3858.42 W kg-1 for MoS2 melt 5 mPP at a current density of 0.57 A g-1 and had 91.87% capacitance retention after 10 000 charge-discharge cycles) as compared to the produced MoS2; thus, they can be utilized as electrode materials for supercapacitors.
Collapse
Affiliation(s)
- Saima Nawaz
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92 5190642147
- Nanoscience and Technology Department, National Centre for Physics, QAU Campus Shahdra Valley Road Islamabad 45320 Pakistan
| | - Yaqoob Khan
- Nanoscience and Technology Department, National Centre for Physics, QAU Campus Shahdra Valley Road Islamabad 45320 Pakistan
| | - Sadia Khalid
- Nanoscience and Technology Department, National Centre for Physics, QAU Campus Shahdra Valley Road Islamabad 45320 Pakistan
| | - Mohammad Azad Malik
- Department of Chemistry, University of Zululand Private Bag X1001 KwaDlangezwa 3880 South Africa +44 7403781143
| | - Muhammad Siddiq
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92 5190642147
| |
Collapse
|
9
|
Li Y, Sun Y, Zhang S, Wu X, Song M, Jiao M, Qin Q, Mi L. Self-assembled molybdenum disulfide nanoflowers regulated by lithium sulfate for high performance supercapacitors. RSC Adv 2023; 13:26509-26515. [PMID: 37671349 PMCID: PMC10476554 DOI: 10.1039/d3ra04852g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023] Open
Abstract
Recently, molybdenum disulfide (MoS2) has been extensively investigated as a promising pseudocapacitor electrode material. However, MoS2 usually exhibits inferior rate capability and cyclability, which restrain its practical application in energy storage. In this work, MoS2 nanoflowers regulated by Li2SO4 (L-MoS2) are successfully fabricated via intercalating solvated Li ions. Via appropriate intercalation of Li2SO4, MoS2 nanosheets could self-assemble to form L-MoS2 nanoflowers with an interlayer spacing of 0.65 nm. Due to the large specific surface area (23.7 m2 g-1) and high 1T phase content (77.5%), L-MoS2 as supercapacitor electrode delivers a maximum specific capacitance of 356.7 F g-1 at 1 A g-1 and maintains 49.8% of capacitance retention at 20 A g-1. Moreover, the assembled L-MoS2 symmetric supercapacitor (SSC) device displays an energy density of 6.5 W h kg-1 and 79.6% of capacitance retention after 3000 cycles.
Collapse
Affiliation(s)
- Yunan Li
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 China
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Yang Sun
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Sen Zhang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Xueling Wu
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Meng Song
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Mingli Jiao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Qi Qin
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Liwei Mi
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology Zhengzhou 450007 China
| |
Collapse
|
10
|
Dai J, Yang C, Xu Y, Wang X, Yang S, Li D, Luo L, Xia L, Li J, Qi X, Cabot A, Dai L. MoS 2 @Polyaniline for Aqueous Ammonium-Ion Supercapacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303732. [PMID: 37358064 DOI: 10.1002/adma.202303732] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Ammonium-ion aqueous supercapacitors are raising notable attention owing to their cost, safety, and environmental advantages, but the development of optimized electrode materials for ammonium-ion storage still lacks behind expectations. To overcome current challenges, here, a sulfide-based composite electrode based on MoS2 and polyaniline (MoS2 @PANI) is proposed as an ammonium-ion host. The optimized composite possesses specific capacitances above 450 F g-1 at 1 A g-1 , and 86.3% capacitance retention after 5000 cycles in a three-electrode configuration. PANI not only contributes to the electrochemical performance but also plays a key role in defining the final MoS2 architecture. Symmetric supercapacitors assembled with such electrodes display energy densities above 60 Wh kg-1 at a power density of 725 W kg-1 . Compared with Li+ and K+ ions, the surface capacitive contribution in NH4 + -based devices is lower at every scan rate, which points to an effective generation/breaking of H-bonds as the mechanism controlling the rate of NH4 + insertion/de-insertion. This result is supported by density functional theory calculations, which also show that sulfur vacancies effectively enhance the NH4 + adsorption energy and improve the electrical conductivity of the whole composite. Overall, this work demonstrates the great potential of composite engineering in optimizing the performance of ammonium-ion insertion electrodes.
Collapse
Affiliation(s)
- Juguo Dai
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, China
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, Catalonia, 08930, Spain
| | - Chunying Yang
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yiting Xu
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xiaohong Wang
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Siyu Yang
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Dongxu Li
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Lili Luo
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Long Xia
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Junshan Li
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, Catalonia, 08930, Spain
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Xueqiang Qi
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Andreu Cabot
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, Catalonia, 08930, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona, Catalonia, 08010, Spain
| | - Lizong Dai
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
11
|
Bulusheva LG, Semushkina GI, Fedorenko AD. Heteroatom-Doped Molybdenum Disulfide Nanomaterials for Gas Sensors, Alkali Metal-Ion Batteries and Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2182. [PMID: 37570500 PMCID: PMC10420692 DOI: 10.3390/nano13152182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023]
Abstract
Molybdenum disulfide (MoS2) is the second two-dimensional material after graphene that received a lot of attention from the research community. Strong S-Mo-S bonds make the sandwich-like layer mechanically and chemically stable, while the abundance of precursors and several developed synthesis methods allow obtaining various MoS2 architectures, including those in combinations with a carbon component. Doping of MoS2 with heteroatom substituents can occur by replacing Mo and S with other cations and anions. This creates active sites on the basal plane, which is important for the adsorption of reactive species. Adsorption is a key step in the gas detection and electrochemical energy storage processes discussed in this review. The literature data were analyzed in the light of the influence of a substitutional heteroatom on the interaction of MoS2 with gas molecules and electrolyte ions. Theory predicts that the binding energy of molecules to a MoS2 surface increases in the presence of heteroatoms, and experiments showed that such surfaces are more sensitive to certain gases. The best electrochemical performance of MoS2-based nanomaterials is usually achieved by including foreign metals. Heteroatoms improve the electrical conductivity of MoS2, which is a semiconductor in a thermodynamically stable hexagonal form, increase the distance between layers, and cause lattice deformation and electronic density redistribution. An analysis of literature data showed that co-doping with various elements is most attractive for improving the performance of MoS2 in sensor and electrochemical applications. This is the first comprehensive review on the influence of foreign elements inserted into MoS2 lattice on the performance of a nanomaterial in chemiresistive gas sensors, lithium-, sodium-, and potassium-ion batteries, and supercapacitors. The collected data can serve as a guide to determine which elements and combinations of elements can be used to obtain a MoS2-based nanomaterial with the properties required for a particular application.
Collapse
Affiliation(s)
- Lyubov G. Bulusheva
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (G.I.S.); (A.D.F.)
| | | | | |
Collapse
|
12
|
Wang L, Wu J, Fu S. A mini review of recent progress in Mo-based electrode materials for supercapacitors. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2022.110329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
1T-MoS2/Co3S4/Ni3S2 nanoarrays with abundant interfaces and defects for overall water splitting. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Solati N, Karakaya C, Kaya S. Advancing the Understanding of the Structure–Activity–Durability Relation of 2D MoS 2 for the Hydrogen Evolution Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Navid Solati
- Materials Science and Engineering, Koç University, 34450 Istanbul, Turkey
- Koç University Tüpraş Energy Center (KUTEM), 34450 Istanbul, Turkey
| | - Cüneyt Karakaya
- Materials Science and Engineering, Koç University, 34450 Istanbul, Turkey
- Koç University Tüpraş Energy Center (KUTEM), 34450 Istanbul, Turkey
- Turkish Petroleum Refineries Co. (Tüpraş) R&D, Kocaeli 41790, Turkey
| | - Sarp Kaya
- Koç University Tüpraş Energy Center (KUTEM), 34450 Istanbul, Turkey
- Department of Chemistry, Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
15
|
Al-Khaldi A, Fadlallah MM, Alhajri F, Maarouf AA. Hybrid G/BN@2H-MoS 2 Nanomaterial Composites: Structural, Electronic and Molecular Adsorption Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4351. [PMID: 36558204 PMCID: PMC9784729 DOI: 10.3390/nano12244351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Hybrid structures often possess superior properties to those of their component materials. This arises from changes in the structural or physical properties of the new materials. Here, we investigate the structural, electronic, and gas-adsorption properties of hybrid structures made from graphene/hexagonal boron nitride and 2H-molybdenum disulfide (G/BN@MoS2) monolayers. We consider hybrid systems in which the G/BN patch is at the Mo plane (model I) and the S plane (model II). We find that the implanted hexagon of G or BN in MoS2 alters its electronic properties: G@MoS2 (I,II) are metallic, while BN@MoS2 (I) is an n-type conducting and BN@MoS2 (II) is semiconducting. We study the molecular adsorption of some diatomic gases (H2, OH, N2, NO, CO), triatomic gases (CO2, NO2, H2S, SO2), and polyatomic gases (COOH, CH4, and NH3) on our hybrid structures while considering multiple initial adsorption sites. Our results suggest that the hybrid systems may be suitable materials for some applications: G@MOS2 (I) for oxygen reduction reactions, BN@MoS2 (I,II) for NH3-based hydrogen production, and G@MoS2 (I) and BN@MoS2 (I,II) for filtration of No, Co, SO2, H2S, and NO2.
Collapse
Affiliation(s)
- Amal Al-Khaldi
- Department of Physics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | | | - Fawziah Alhajri
- Department of Physics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Ahmed A. Maarouf
- Department of Physics, Faculty of Basic Sciences, The German University in Cairo, New Cairo 13411, Egypt
| |
Collapse
|
16
|
Deng Y, Zhao Y, Peng K, Yu L. One-Step Hydrothermal Synthesis of MoO 2/MoS 2 Nanocomposites as High-Performance Electrode Material for Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49909-49918. [PMID: 36314603 DOI: 10.1021/acsami.2c11244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
By only changing the ratio of Mo to S source, a distinctive single phase MoO2 or MoS2 and MoO2/MoS2 nanocomposites (NCs) are obtained through a simple one-step hydrothermal method based on CH4N2S as a sulfur source and (NH4)6Mo7O24·4H2O as a source of Mo in oxalic acid. The effect of ratio of Mo to S source on the composition, structure, and electrochemical performance are systematically researched. Due to its unique design, abundant macropores active sites in MoO2/MoS2 NCs induce superior rate property (55.30% capacitance retention to 20 from 1 A g-1) and larger specific capacitance (1667.3 F g-1 at 1 A g-1) and longer cycle life (94.75% after 5000 cycles) as used directly as an electrode. Furthermore, at a power density of 225 W kg-1, a maximal energy density of 21.85 Wh kg-1 is provided by the asymmetric supercapacitor (MoO2/MoS2//AC). The capacitance of asymmetric supercapacitor (ASC) is remarkably enhanced by 129.02% under 5000 cycles at a current density of 1.5 A g-1, demonstrating outstanding cycle property. These results imply the prepared MoO2/MoS2 NCs have promising applications in advanced energy storages. It is important and should be noted that NCs of oxide and sulfide are prepared with only a simple one-step process.
Collapse
Affiliation(s)
- Yakun Deng
- College of Physics and Materials, Nanchang University, Nanchang330031, P. R. China
| | - Youjun Zhao
- College of Physics and Materials, Nanchang University, Nanchang330031, P. R. China
| | - Kangliang Peng
- College of Physics and Materials, Nanchang University, Nanchang330031, P. R. China
| | - Lixin Yu
- College of Physics and Materials, Nanchang University, Nanchang330031, P. R. China
| |
Collapse
|
17
|
Namsheer K, Thomas S, Sharma A, Thomas SA, Sree Raj KA, Kumar V, Gagliardi A, Aravind A, Rout CS. Rational design of selenium inserted 1T/2H mixed-phase molybdenum disulfide for energy storage and pollutant degradation applications. NANOTECHNOLOGY 2022; 33:445703. [PMID: 35830771 DOI: 10.1088/1361-6528/ac80ca] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
MoS2based materials are recognized as the promising candidate for multifunctional applications due to its unique physicochemical properties. But presence of lower number of active sites, poor electrical conductivity, and less stability of 2H and 1T MoS2inherits its practical applications. Herein, we synthesized the Se inserted mixed-phase 2H/1T MoS2nanosheets with abundant defects sites to achieve improved overall electrochemical activity. Moreover, the chalcogen insertion induces the recombination of photogenerated excitons and enhances the life of carriers. The bifunctional energy storage and photocatalytic pollutant degradation studies of the prepare materials are carried out. Fabricated symmetric solid-state supercapacitor showed an exceptional capacitance of 178 mF cm-2with an excellent energy density of 8μWh cm-2and power density of 137 mW cm-2, with remarkable capacitance retention of 86.34% after successive 8000 charge-discharge cycles. The photocatalytic dye degradation experiments demonstrate that the prepared Se incorporated 1T/2H MoS2is a promising candidate for dye degradation applications. Further, the DFT studies confirmed that the Se inserted MoS2is a promising electrode material for supercapacitor applications with higherCQdue to a larger density of states near Fermi level as compared to pristine MoS2.
Collapse
Affiliation(s)
- K Namsheer
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra, Ramanagaram, Bangalore-562112, India
| | - Siby Thomas
- Department of Electrical and Computer Engineering, Technical University of Munich (TUM), Karlstrasse 45-47, D-80333 Munich, Germany
| | - Aditya Sharma
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra, Ramanagaram, Bangalore-562112, India
| | - Susmi Anna Thomas
- Centre for Advanced Functional Materials (CAFM), Postgraduate and Research Department of Physics, Bishop Moore College, Mavelikara, Alappuzha, Kerala 690110, India
| | - K A Sree Raj
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra, Ramanagaram, Bangalore-562112, India
| | - Vipin Kumar
- Department of Physical Electronics, School of Electrical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Alessio Gagliardi
- Department of Electrical and Computer Engineering, Technical University of Munich (TUM), Karlstrasse 45-47, D-80333 Munich, Germany
| | - Arun Aravind
- Centre for Advanced Functional Materials (CAFM), Postgraduate and Research Department of Physics, Bishop Moore College, Mavelikara, Alappuzha, Kerala 690110, India
| | - Chandra Sekhar Rout
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra, Ramanagaram, Bangalore-562112, India
| |
Collapse
|
18
|
Sahoo D, Shakya J, Choudhury S, Roy SS, Devi L, Singh B, Ghosh S, Kaviraj B. High-Performance MnO 2 Nanowire/MoS 2 Nanosheet Composite for a Symmetrical Solid-State Supercapacitor. ACS OMEGA 2022; 7:16895-16905. [PMID: 35647444 PMCID: PMC9134226 DOI: 10.1021/acsomega.1c06852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/28/2022] [Indexed: 05/03/2023]
Abstract
To improve the production rate of MoS2 nanosheets as an excellent supercapacitor (SC) material and enhance the performance of the MoS2-based solid-state SC, a liquid phase exfoliation method is used to prepare MoS2 nanosheets on a large scale. Then, the MnO2 nanowire sample is synthesized by a one-step hydrothermal method to make a composite with the as-synthesized MoS2 nanosheets to achieve a better performance of the solid-state SC. The interaction between the MoS2 nanosheets and MnO2 nanowires produces a synergistic effect, resulting in a decent energy storage performance. For practical applications, all-solid-state SC devices are fabricated with different molar ratios of MoS2 nanosheets and MnO2 nanowires. From the experimental results, it can be seen that the synthesized nanocomposite with a 1:4 M ratio of MoS2 nanosheets and MnO2 nanowires exhibits a high Brunauer-Emmett-Teller surface area (∼118 m2/g), optimum pore size distribution, a specific capacitance value of 212 F/g at 0.8 A/g, an energy density of 29.5 W h/kg, and a power density of 1316 W/kg. Besides, cyclic charging-discharging and retention tests manifest significant cycling stability with 84.1% capacitive retention after completing 5000 rapid charge-discharge cycles. It is believed that this unique, symmetric, lightweight, solid-state SC device may help accomplish a scalable approach toward powering forthcoming portable energy storage applications.
Collapse
Affiliation(s)
- Dhirendra Sahoo
- Department
of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Greater Noida, Gautam Budha Nagar, Uttar Pradesh 201314, India
| | - Jyoti Shakya
- Department
of Physics, Indian Institute of Science Bangalore 560012, India
| | - Sudipta Choudhury
- Department
of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Greater Noida, Gautam Budha Nagar, Uttar Pradesh 201314, India
| | - Susanta Sinha Roy
- Department
of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Greater Noida, Gautam Budha Nagar, Uttar Pradesh 201314, India
| | - Lalita Devi
- School
of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Budhi Singh
- School
of Mechanical Engineering, Sungkyunkwan
University, Suwon 03063, South Korea
| | - Subhasis Ghosh
- School
of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bhaskar Kaviraj
- Department
of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Greater Noida, Gautam Budha Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
19
|
Meng F, Xu J, Dai H, Yu Y, Lin D. Even Incorporation of Nitrogen into Fe 0 Nanoparticles as Crystalline Fe 4N for Efficient and Selective Trichloroethylene Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4489-4497. [PMID: 35316036 DOI: 10.1021/acs.est.1c08671] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface modification of microscale Fe powder with nitrogen has emerged recently to improve the reactivity of Fe0 for dechlorination. However, it is unclear how an even incorporation of a crystalline iron nitride phase into Fe0 nanoparticles affects their physicochemical properties and performance, or if Fe0 nanoparticles with a varied nitridation degree will act differently. Here, we synthesized nitridated Fe0 nanoparticles with an even distribution of N via a sol-gel and pyrolysis method. Nitridation expanded the Fe0 lattice and provided the Fe4N species, making the materials more hydrophobic and accelerating the electron transfer, compared to un-nitridated Fe0. These properties well explain their reactivity and selectivity toward trichloroethylene (TCE). The TCE degradation rate by nitridated Fe0 (up to 4.8 × 10-2 L m-2 h-1) was much higher (up to 27-fold) than that by un-nitridated Fe0, depending on the nitridation degree. The materials maintained a high electron efficiency (87-95%) due to the greatly suppressed water reactivity (109-127 times lower than un-nitridated Fe0). Acetylene was accumulated as the major product of TCE dechlorination via β-elimination. These findings suggest that the nitridation of Fe0 nanoparticles can change the materials' physicochemical properties, providing high reactivity and selectivity toward chlorinated contaminants for in situ groundwater remediation.
Collapse
Affiliation(s)
- Fanxu Meng
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jiang Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| | - Huiwang Dai
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| |
Collapse
|
20
|
Chen Z, Cao J, Wu X, Cai D, Luo M, Xing S, Wen X, Chen Y, Jin Y, Chen D, Cao Y, Wang L, Xiong X, Yu B. B, N Co-Doping Sequence: An Efficient Electronic Modulation of the Pd/MXene Interface with Enhanced Electrocatalytic Properties for Ethanol Electrooxidation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12223-12233. [PMID: 35235300 DOI: 10.1021/acsami.1c23718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Improving the electrocatalytic properties by regulating the surface electronic structure of supported metals has always been a hot issue in electrocatalysis. Herein, two novel catalysts Pd/B-N-Ti3C2 and Pd/N-B-Ti3C2 are used as the models to explore the effect of the B and N co-doping sequence on the surface electronic structure of metals, together with the electrocatalytic properties of ethanol oxidation reaction. The two catalysts exhibit obviously stratified morphology, and the Pd nanoparticles having the same amount are both uniformly distributed on the surface. However, the electron binding energy of Ti and Pd elements of Pd/B-N-Ti3C2 is smaller than that of Pd/N-B-Ti3C2. By exploring the electrocatalytic properties for EOR, it can be seen that all the electrochemical surface area, maximum peak current density, and antitoxicity of the Pd/B-N-Ti3C2 catalyst are much better than its counterpart. Such different properties of the catalysts can be attributed to the various doping species of B and N introduced by the doping sequence, which significantly affect the surface electronic structure and size distribution of supported metal Pd. Density functional theory calculations demonstrate that different B-doped species can offer sites for the H atom from CH3CH2OH of dehydrogenation in Pd/B-N-Ti3C2, thereby facilitating the progress of the EOR to a favorable pathway. This work provides a new insight into synthesizing the high-performance anode materials for ethanol fuel cells by regulating the supported metal catalyst with multielement doping.
Collapse
Affiliation(s)
- Zhangxin Chen
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| | - Jiajie Cao
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
- School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018 Zhejiang, China
| | - Xiaohui Wu
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
- School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018 Zhejiang, China
| | - Dongqin Cai
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| | - Minghui Luo
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| | - Shuyu Xing
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| | - Xiuli Wen
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| | - Yongyin Chen
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| | - Yanxian Jin
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| | - Dan Chen
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| | - Yongyong Cao
- College of Biological, Chemical Science and Engineering Jiaxing University, Jiaxing, 314001 Zhejiang, China
| | - Lingmin Wang
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| | - Xianqiang Xiong
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| | - Binbin Yu
- School of Pharmaceutical and Material Engineering, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| |
Collapse
|
21
|
Ma Y, Wei X, Aishanjiang K, Fu Y, Le J, Wu H. Boosting the photocatalytic performance of Cu 2O for hydrogen generation by Au nanostructures and rGO nanosheets. RSC Adv 2022; 12:31415-31423. [DOI: 10.1039/d2ra04132d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Au@Cu2O/rGO exhibited boosting photocatalytic performance due to the yolk–shelled structure, abundant hot charges on Au, and quick charge transfer by rGO.
Collapse
Affiliation(s)
- Yujie Ma
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Xindong Wei
- ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, 201203, China
| | - Kedeerya Aishanjiang
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yi Fu
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Jiamei Le
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Hailong Wu
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| |
Collapse
|