1
|
Sarkar DJ, Raja R, Das BK, Bhattacharyya S, Pal S, Mukherjee S. Peroxidase mimic feroxyhyte (FeOOH) nanoparticles enabled highly specific colorimetric detection of arsenate in water and fish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126299. [PMID: 40306036 DOI: 10.1016/j.saa.2025.126299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Arsenic poses a serious health risk to humans. Hence, a simple and robust analytical approach for monitoring arsenic levels in water and food matrixes is required. We present a simple and rapid approach for quantifying arsenate in water and fish using feroxyhyte (FeOOH) nanoparticles as a sensor probe. The FeOOH nanoparticles showed peroxidase mimetic activity oxidizing 3,5,3'5'-tetramethylbenzidine (TMB) to a blue product (oxTMB, λmax 650 nm) in the presence of H2O2. However, arsenate's presence inhibits the peroxidase activity of FeOOH nanoparticles through binding on the catalytic active sites. Based on this principle, the presently developed method obtained a good linear response (R2, 0.99) over the range of 0.005 to 5.000 mg L-1 arsenate with 0.006 mg L-1 as the detection limit which is less than the prescribed limit (0.010 mg L-1) by WHO for drinking water. The average recoveries at different fortification levels ranged from 89.51 to 115.61 % in water and 101.11 to 106.99 % in fish muscle. The present analytical technique showed good selectivity due to pronounced peroxidase inhibition alibility (60.53-103.78 %) by arsenate than other non-target ions like PO43-, NO3-, Cr2O72-, etc. The FeOOH nanoparticles showed a promising application prospect for colorimetric detection of arsenate with a wide detection range in water and fish samples.
Collapse
Affiliation(s)
- Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120 West Bengal, India.
| | - Ramij Raja
- Aquatic Environmental Biotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120 West Bengal, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120 West Bengal, India
| | | | - Souvik Pal
- Centre for Development of Advanced Computing-Kolkata, Kolkata 700091 West Bengal, India
| | - Subhankar Mukherjee
- Centre for Development of Advanced Computing-Kolkata, Kolkata 700091 West Bengal, India
| |
Collapse
|
2
|
Liu Y, Zhang C, Zhang K. Ultra-small gold nanoparticle-coupled MOF-808 enabled sensitive detection of bacteria at neutral pH. Talanta 2025; 289:127764. [PMID: 39985928 DOI: 10.1016/j.talanta.2025.127764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Metal-organic framework (MOF)-based mimics are considered star materials to replace natural enzymes. However, their activity is generally limited to acidic conditions, which severely restricts their applications in biological systems where neutral pH is commonly required. Herein, a Zr(IV)-based MOF (MOF-808)/gold nanoparticle (AuNP) hybrid (called Hybrid-60) that shows superior peroxidase-like (POD-like) activity in both acidic and neutral media was prepared by in-situ growth of ultra-small AuNPs (UsAuNPs, ∼3.5 nm) on MOF-808. In comparison with the conventional AuNPs and MOF-808 nanozymes, Hybrid-60 demonstrated ∼8.04- and ∼6.74-time enhanced POD-like activities and superior high activity under neutral conditions, which broke the pH limitation. Furthermore, Hybrid-60 exhibited good tolerance to extreme pH value, concentrated salinity, and high-temperature environments. Taking Staphylococcus aureus (S. aureus) as a model analyte, we developed a simple immune sandwich assay using Hybrid-60 as colorimetric nanotags (ISAHC). A dual recognition strategy using anti-S. aureus antibody and concanavalin A-labeled Hybrid-60 was proposed to specifically capture and high-affinity label the target S. aureus. Then, leveraging the high POD-like activity of Hybrid-60, a simple and specific detection of S. aureus at nearly neutral pH was realized with a wide linear range (1 × 102-1 × 105 CFU/mL) and a low detection limit (32 CFU/mL). Moreover, the ISAHC method enabled one to detect the target S. aureus in human urine and serum with satisfactory recoveries from 93.8 % to 111.0 %, which indicates its clinical applicability. This study provides a new approach to develop neutral nanozymes and facilitate the point-of-care detection of bacteria.
Collapse
Affiliation(s)
- Yujie Liu
- Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai, 200433, China
| | - Chenran Zhang
- Department of Pediatric Neurosurgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Kun Zhang
- Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
3
|
Liang D, Ding Z, Ding Y, Tang W, Yang S, Xu X, Wang Y, Qian K. Dual model biosensor integrated with peroxidase-like activity and self-assembly for uric acid detection. J Mater Chem B 2025. [PMID: 40421811 DOI: 10.1039/d5tb00692a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Uric acid (UA), the final product of purine metabolism, is a crucial biomarker for gout diagnostics and highly related to various metabolic diseases. Precise detection of UA levels in serum and urine enables disease diagnosis and guides treatment. Combining the advantages of colorimetry and laser desorption/ionization mass spectrometry (LDI-MS), we developed a dual-model biosensor based on hollow Cu2O@Au nanocubes (h-Cu2O@Au NCs) for UA detection. The h-Cu2O@Au NCs demonstrated excellent peroxidase (POD)-like activity and were used to rapidly detect UA by colorimetric assay, with a linear range of 0.05-2 mM and limit of detection (LOD) of 35.71 μM. Moreover, the h-Cu2O@Au NCs achieved enrichment and detection of UA via the liquid-liquid interface self-assembly-assisted LDI-MS, with a linear range of 0.01-0.5 mM, LOD of 15.6 μM, and reproducibility of <5%. In view of its advantages, the dual-model nanoplatform based on h-Cu2O@Au NCs achieved UA detection in serum samples by colorimetry assay and in urine samples by LDI-MS, obtaining results consistent with the commercial UA assay kit (72-511 μM for serum, R2 = 0.956 and 2-9 mM for urine, R2 = 0.876), presenting potential in the rapid and sensitive detection of UA in clinic.
Collapse
Affiliation(s)
- Dingyitai Liang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Ziqi Ding
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Yushu Ding
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Wenxuan Tang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Shouzhi Yang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Xiaoyu Xu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Yuning Wang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Kun Qian
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| |
Collapse
|
4
|
Yang Y, Chen Z, Pan Y, Zhang Y, Le T. Interactions of metal-based nanozymes with aptamers, from the design of nanozyme to its application in aptasensor: Advances and perspectives. Talanta 2025; 286:127450. [PMID: 39724857 DOI: 10.1016/j.talanta.2024.127450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Nanozymes, characterized by enzyme-like activity, have been extensively used in quantitative analysis and rapid detection due to their small size, batch fabrication, and ease of modification. Researchers have combined aptamers, an emerging molecular probe, with nanozymes for biosensing to address the limited reaction specificity of nanozymes. Nanozyme aptasensors are currently experiencing significant growth, offering a promising solution to the lack of rapid detection methods across various fields. Unlike traditional nanozyme research, the development of nanozyme aptasensors is challenging as it requires the design of highly active nanozymes as well as the establishment of efficient and agile interactions between aptamers and nanozymes. Therefore, this review summarizes the active species and catalytic mechanisms of various nanozymes along with classical design options, discussing the future development of nanozyme aptasensors. It is anticipated that this review will inspire researchers in this domain, leading to the design of more enzymatically active nanozymes and advanced nanozyme aptasensors.
Collapse
Affiliation(s)
- Ying Yang
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, College of Life Sciences, Chongqing, 401331, China
| | - Zhuoer Chen
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, College of Life Sciences, Chongqing, 401331, China
| | - Yangwei Pan
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, College of Life Sciences, Chongqing, 401331, China
| | - Yongkang Zhang
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, College of Life Sciences, Chongqing, 401331, China
| | - Tao Le
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, College of Life Sciences, Chongqing, 401331, China.
| |
Collapse
|
5
|
Zhu X, He Y, Xie X, Zhang B, Wang J, Shen H, Liu Y, Ji H, Zhu H. MOF-engineered Cu 2O nanozymes with boosted peroxidase-like activity for colorimetric-fluorescent dual-mode detection of deoxynivalenol. Mikrochim Acta 2025; 192:320. [PMID: 40274648 DOI: 10.1007/s00604-025-07140-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025]
Abstract
The development of a high sensitivity biosensor for the detection of highly toxic deoxynivalenol (DON) is vital for human health and food security. In this work, by integrating metal-organic frameworks (MOF) with cubic Cu2O nanoparticles (Cu2O@MOF), the nanocomposite achieved a 4.8-fold increase in specific surface area compared to pristine Cu2O, which synergistically enhanced its peroxidase-like (POD) activity through optimized substrate affinity and accelerated charge transfer. Consequently, based on the marriage properties of POD activity and fluorescence signal from Cu2O@MOF nanoparticles and carbon dots (CDs), a colorimentric-fluorescent dual-mode biosensor was constructed for DON detection. Concurrently, the competitive binding of DON with immobilized antigens on Cu2O@MOF-CDs results in antibody displacement, leading to progressive reduction of captured probes with increasing DON concentrations, thereby inducing proportional attenuation in both colorimetric and fluorescence signal intensities. Under the optimum conditions, the established biosensor achieved a detection limit of 0.0018 ng/mL for DON. Furthermore, the prepared dual-mode biosensor was successfully applied to detect DON in tap water, wheat and corn, demonstrating its practical utility for real-world applications. Overall, this work not only advances nanozyme design through MOF-mediated interface engineering but also provides a rapid, accurate, and field-deployable strategy for monitoring mycotoxins in complex matrices.
Collapse
Affiliation(s)
- Xiaodong Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yangchun He
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xinhua Xie
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory for Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450002, China
| | - Bobo Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory for Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450002, China
| | - Junhao Wang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haoran Shen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Huifu Ji
- Tobacco College, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Hongshuai Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
- Key Laboratory for Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450002, China.
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Wang W, Sheng X, Wang Y, Yu M, Shen Y, Xia Y, Li T, Cao S, Zhang M, Wang W, Yang Y. A Mo-doped carbon dot nanozyme for enhanced phototherapy in vitro. NANOSCALE ADVANCES 2025; 7:2231-2238. [PMID: 40012580 PMCID: PMC11851171 DOI: 10.1039/d5na00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Cancer is a leading cause of death globally, and traditional treatment methods often come with non-negligible toxic side effects in its treatment, threatening patients' quality of life. Thus, developing novel, efficient, low-toxicity cancer treatment strategies is crucial. Nanozymes, as a class of powerful nanomaterials, can subtly mimic the catalytic activity of natural enzymes, making them a formidable alternative. Hypoxic molybdenum oxide (MoO3-x ), as a typical nanozyme material, possesses unique physical and chemical properties, showing great potential in fields such as cancer treatment. In this study, a simple and rapid one-pot hydrothermal synthesis method was ingeniously employed, innovatively combining molybdenum, which has high biosafety, with safflower, which exhibits anticancer pharmacological activity, to successfully prepare hypoxic molybdenum oxide (MoO3-x )-doped safflower carbon dots (H-Mo-CDs). H-Mo-CDs exhibit exceptional catalase (CAT)-like, peroxidase (POD)-like, and superoxide dismutase (SOD)-like catalytic activities and superior photothermal conversion efficiency and photostability. In vitro cellular experiments have verified their multiple therapeutic potentials in photothermal therapy (PTT), chemodynamic therapy (CDT), and photodynamic therapy (PDT), providing novel ideas and means for precise cancer treatment. This study not only paves an efficient and feasible path for the development of Mo-based nanomaterials as "smart" nanozymes but also injects new vitality and possibilities into the types and applications of nanozymes in cancer treatment.
Collapse
Affiliation(s)
- Wenlong Wang
- School of Traditional Chinese Medicine, Bozhou University Anhui 236800 P. R. China
| | - Xuan Sheng
- School of Traditional Chinese Medicine, Bozhou University Anhui 236800 P. R. China
| | - Yihan Wang
- School of Traditional Chinese Medicine, Bozhou University Anhui 236800 P. R. China
| | - Mingjun Yu
- School of Traditional Chinese Medicine, Bozhou University Anhui 236800 P. R. China
| | - Yue Shen
- School of Traditional Chinese Medicine, Bozhou University Anhui 236800 P. R. China
| | - Youfu Xia
- School of Traditional Chinese Medicine, Bozhou University Anhui 236800 P. R. China
| | - Tiao Li
- School of Traditional Chinese Medicine, Bozhou University Anhui 236800 P. R. China
| | - Shuai Cao
- School of Traditional Chinese Medicine, Bozhou University Anhui 236800 P. R. China
| | - Mengjuan Zhang
- School of Traditional Chinese Medicine, Bozhou University Anhui 236800 P. R. China
| | - Wenjian Wang
- School of Traditional Chinese Medicine, Bozhou University Anhui 236800 P. R. China
| | - Yongjian Yang
- School of Traditional Chinese Medicine, Bozhou University Anhui 236800 P. R. China
| |
Collapse
|
7
|
Ren Y, Bi X, He Y, Zhang L, Luo L, Li L, You T. Research progress and applications of iron-based nanozymes in colorimetric sensing of agricultural pollutants. Biosens Bioelectron 2025; 271:116999. [PMID: 39642529 DOI: 10.1016/j.bios.2024.116999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Natural enzymes are highly valued for their efficient specificity and catalytic activity. However, their poor stability, environmental sensitivity, and costly preparation restrict their practical applications. Nanozymes are nanomaterials with superior catalytic properties that compensate for natural enzyme deficiencies. As one of the earliest developed nanozymes, iron-based nanozymes have diverse morphological structures and different simulated catalytic properties, showing promising potential for agricultural pollutant sensing. Compared with traditional detection methods, the colorimetric method based on nanozymes has the characteristics of simplicity, rapidity, and visualization, which can be used for immediate and rapid on-site detection. In this review, the catalytic types of iron-based nanozymes, such as peroxidase-like, oxidase-like, catalase-like, and superoxide dismutase-like activities, and the corresponding catalytic mechanisms are presented. The classification of iron-based nanozymes based on various structures is then discussed. Furthermore, this review focuses on the current status of iron-based nanozymes for the colorimetric detection of common agricultural pollutants, including heavy metal ions, nonmetal ions, pesticides, and pharmaceutical and personal care products. Finally, the current research status and development direction of iron-based nanozymes in sensing applications are summarized and prospected.
Collapse
Affiliation(s)
- Yue Ren
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiaoya Bi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yi He
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Li Zhang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lijun Luo
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan, 471003, China.
| |
Collapse
|
8
|
Qiu Y, Cheng T, Yuan B, Yip TY, Zhao C, Lee JH, Chou SW, Chen JL, Zhao Y, Peng YK. One-Pot and Gram-Scale Synthesis of Fe-Based Nanozymes with Tunable O 2 Activation Pathway and Specificity Between Associated Enzymatic Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408609. [PMID: 39676381 DOI: 10.1002/smll.202408609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/30/2024] [Indexed: 12/17/2024]
Abstract
Nanozymes have recently gained attention for their low cost and high stability. However, unlike natural enzymes, they often exhibit multiple enzyme-like activities, complicating their use in selective bioassays. Since H2O2 and O2 are common substrates in these reactions, controlling their activation-and thus reaction specificity-is crucial. Recent advances in tuning the chemical state of cerium have enabled control over H2O2 activation pathways for tunable peroxidase/haloperoxidase-like activities. In contrast, the control of O2 activation on an element in oxidase/laccase nanozymes and the impact of its chemical state on these activities remains unexplored. Herein, a facile one-pot method is presented for the gram-scale synthesis of Fe-based nanozymes with tunable compositions of Fe3O4 and Fe3C by adjusting preparation temperatures. The Fe3O4-containing samples exhibit superior laccase-like activity, while the Fe3C-containing counterparts demonstrate better oxidase-like activity. This divergent O2 activation behavior is linked to their surface Fe species: the abundant reactive Fe2+ in Fe3O4 promotes laccase-like activity via Fe3+-superoxo formation, whereas metallic Fe in Fe3C facilitates OH radical generation for oxidase-like activity. Controlled O2 activation pathways in these Fe-based nanozymes demonstrate improved sensitivity in the corresponding biomolecule detection, which should inform the design of nanozymes with enhanced activity and specificity.
Collapse
Affiliation(s)
- Yuwei Qiu
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, 0000, China
| | - Tianqi Cheng
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, 0000, China
| | - Bo Yuan
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, 0000, China
| | - Tsz Yeung Yip
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, SAR, 0000, China
| | - Chao Zhao
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, 0000, China
| | - Jung-Hoon Lee
- Department of Chemistry, Soonchunhyang University, Asan, 31538, South Korea
| | - Shang-Wei Chou
- Instrumentation Center, National Taiwan University, Taipei, 10617, Taiwan
| | - Jian Lin Chen
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, SAR, 0000, China
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, 0000, China
- City University of Hong Kong Chengdu Research Institute, Chengdu, 610203, China
| |
Collapse
|
9
|
Li T, Zhao P, Ma K, Kong J. Cerium oxide mimetic enzyme based colorimetric detection of potential oesophageal cancer biomarkers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125060. [PMID: 39250848 DOI: 10.1016/j.saa.2024.125060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 08/25/2024] [Indexed: 09/11/2024]
Abstract
Oesophageal cancer (OC) is a prevalent malignant tumor that poses a significant threat to individuals. Current mainstream detection method is endoscopy, which requires professional operators and expensive instruments. Therefore, it is crucial to develop a rapid, easy-to-operate, and low-cost detection method. In this study, an RNA colorimetric biosensor was successfully constructed using cerium oxide mimetic enzyme. The sensor is constructed on 96-well plates, which are immobilized with DNA-RNA-DNA complexes in microtiter wells when target RNA is present. This immobilization is based on the principle of base complementary pairing. The CeO2 immobilized has the unique advantage of catalyzing the bluing of 3,3',5,5'-tetramethylbenzidine (TMB) directly without the need any additional oxidant in microtiter wells. This property allows for the detection of RNA and enables the visualization of multiple sample assays. Furthermore, the RNA colorimetric sensor demonstrates good selectivity, immunity to interference, and high stability. Under optimal conditions, the sensor exhibited linearity in the range of 10-13 to 10-9 M with a detection limit of 33.26 fM. Therefore, this study presents a new detection method for oesophageal cancer screening.
Collapse
Affiliation(s)
- Tiantian Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Peng Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Kefeng Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
10
|
Hou H, Jia W, Zhang A, Su M, Bu Y, Liu L, Du B. Unveiling Generally-ignored Co-substrate Effect of Catalase-inherent Peroxidase Mimic for Self-verifiable Detection of High-concentration Hydrogen Peroxide. SMALL METHODS 2025; 9:e2400847. [PMID: 39221463 DOI: 10.1002/smtd.202400847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
One nanoparticle possessing both peroxidase (POD) and catalase (CAT) activities is a prevalent co-substrate nanozyme system, distinct from the extensively researched cascade nanozyme system. During the sensing of hydrogen peroxide by POD, the impact of CAT is actually ignored in most studies. In this study, the CAT effect on hydrogen peroxide detection is thoroughly investigated based on POD catalysis by finely tuning the relative activity of POD and CAT. It is discovered that the CAT effect can be changed by delaying the injection of chromogenic substrate after adding hydrogen peroxide and that the linear range grows with the delayed time. Then, a theoretical mechanism showed that the time-delay mediated CAT effect magnification does not change the Vmax, but it causes Km to linearly increase with delayed time, consistent with the experiment results. Furthermore, the detection of high concentrations of hydrogen peroxide is successfully realized in contact lens care solutions by utilizing time-delay-mediated POD/CAT nanozyme. On the other hand, its linear range-tunable characteristic is used to produce multiple standard curves, then enabled self-verifying hydrogen peroxide detection. Overall, this work investigates the role of CAT in CAT-inherent POD nanozymes both theoretically and experimentally, and confirms POD/CAT nanozyme's priority in developing high-performance sensors.
Collapse
Affiliation(s)
- Haiwei Hou
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Weijuan Jia
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Aoxue Zhang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Minyang Su
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yazhong Bu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lan Liu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Baoji Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
11
|
Zheng JJ, Zhu F, Song N, Deng F, Chen Q, Chen C, He J, Gao X, Liang M. Optimizing the standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat Protoc 2024; 19:3470-3488. [PMID: 39147983 DOI: 10.1038/s41596-024-01034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/31/2024] [Indexed: 08/17/2024]
Abstract
Nanozymes are nanomaterials with enzyme-like catalytic properties. They are attractive reagents because they do not have the same limitations of natural enzymes (e.g., high cost, low stability and difficult storage). To test, optimize and compare nanozymes, it is important to establish fundamental principles and systematic standards to fully characterize their catalytic performance. Our 2018 protocol describes how to characterize the catalytic activity and kinetics of peroxidase nanozymes, the most widely used type of nanozyme. This approach was based on Michaelis-Menten enzyme kinetics and is now updated to take into account the unique physicochemical properties of nanomaterials that determine the catalytic kinetics of nanozymes. The updated procedure describes how to determine the number of active sites as well as other physicochemical properties such as surface area, shape and size. It also outlines how to calculate the hydroxyl adsorption energy from the crystal structure using the density functional theory method. The calculations now incorporate these measurements and computations to better characterize the catalytic kinetics of peroxidase nanozymes that have different shapes, sizes and compositions. This updated protocol better describes the catalytic performance of nanozymes and benefits the development of nanozyme research since further nanozyme development requires precise control of activity by engineering the electronic, geometric structure and atomic configuration of the catalytic sites of nanozymes. The characterization of the catalytic activity of peroxidase nanozymes and the evaluation of their kinetics can be performed in 4 h. The procedure is suitable for users with expertise in nano- and materials technology.
Collapse
Affiliation(s)
- Jia-Jia Zheng
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Feiyan Zhu
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Ningning Song
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Fang Deng
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Qi Chen
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Chen Chen
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Jiuyang He
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China.
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China.
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
12
|
Tai S, Cao H, Barimah AO, Gao Y, Peng C, Xu J, Wang Z. Highly sensitive colorimetric and paper-based detection for sildenafil in functional food based on monodispersed spherical magnetic graphene composite nanozyme. Anal Chim Acta 2024; 1329:343260. [PMID: 39396317 DOI: 10.1016/j.aca.2024.343260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/17/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Sildenafil (SIL) is regarded as an illegal adulterant in functional foods. Some functional foods doped with SIL have posed significant concern about their safety risks. However, the facile colorimetric detection of SIL is rarely investigated. RESULTS Herein, we prepared a monodispersed spherical composite nanozyme (Fe3O4-NH2/GONRs), possessing excellent peroxidase-like (POD-like) and catalase-like (CAT-like) activities and strong superparamagnetic property. The enzyme-like activities of Fe3O4-NH2/GONRs can be selectively inhibited by SIL due to the synergistic effect of hydrogen bonds and π-π stacking between Fe3O4-NH2/GONRs and SIL. Leveraging this mechanism, a highly sensitive and selective colorimetric detection for SIL with a detection limit (LOD) of 0.26 ng/mL was developed. In addition, we prepared a three-dimensional paper-based analytical device (3D-PAD) for SIL colorimetric detection with naked-eyes and the semi-quantitative analysis with a LOD of 88 ng/mL. SIGNIFICANCE The proposed colorimetric and PAD detections demonstrated the advantages of low-cost, highly sensitive and selective, thus have promise application potential in the rapid detection of adulterated functional foods.
Collapse
Affiliation(s)
- Shengmei Tai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hui Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Alberta Osei Barimah
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yanan Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Chifang Peng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China.
| | - Jianguo Xu
- Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
13
|
Zhu X, Zhang B, Wang J, He Y, Chen Z, Chang W, Xie X, Zhu H. Cu 2O nanoparticles with morphology-dependent peroxidase mimic activity: a novel colorimetric biosensor for deoxynivalenol detection. Mikrochim Acta 2024; 191:588. [PMID: 39256210 DOI: 10.1007/s00604-024-06676-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
Different morphological Cu2O nanoparticles including cube, truncated cube, and octahedron were successfully prepared by a selective surface stabilization strategy. The prepared cube Cu2O exhibited superior peroxidase-like activity over the other two morphological Cu2O nanoparticles, which can readily oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to form visually recognizable color signals. Consequently, a sensitive and simple colorimetric biosensor was proposed for deoxynivalenol (DON) detection. In this biosensor, the uniform cube Cu2O was employed as the vehicle to label the antibody for the recognition of immunoreaction. The sensing strategy showed a detection limit as low as 0.01 ng/mL, and a wide linear range from 2 to 100 ng/mL. Concurrently, the approximate DON concentration can be immediately and conveniently observed by the vivid color changes. Benefiting from the high sensitivity and selectivity of the designed biosensor, the detection of DON in wheat, corn, and tap water samples was achieved, suggesting the bright prospect of the biosensor for the convenient and intuitive detection of DON in actual samples.
Collapse
Affiliation(s)
- Xiaodong Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - BoBo Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory for Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450002, China
| | - Junhao Wang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yangchun He
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ziyue Chen
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Weidan Chang
- Department of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450002, China
| | - Xinhua Xie
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
- Key Laboratory for Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450002, China.
| | - Hongshuai Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
- Key Laboratory for Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450002, China.
- Agricultural Engineering Postdoctoral Research Station, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
14
|
Tai S, Cao H, Cui Y, Peng C, Xu J, Wang Z. Sensitive colorimetric and fluorescence dual-mode detection of thiophanate-methyl based on spherical Fe 3O 4/GONRs composite nanozyme. Food Chem 2024; 450:139258. [PMID: 38626710 DOI: 10.1016/j.foodchem.2024.139258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/18/2024]
Abstract
Pesticide detection based on nanozyme is largely limited in terms of the variety of pesticides. Herein, a spherical and well-dispersed Fe3O4/graphene oxide nanoribbons (Fe3O4/GONRs) composite nanozyme was applied to firstly develop an enzyme-free and sensitive colorimetric and fluorescence dual-mode detection of thiophanate-methyl (TM). The synthesized Fe3O4/GONRs possess excellent dual enzyme-like activities (peroxidase and catalase) and can catalyze H2O2 to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) into oxidized TMB (oxTMB). We found that Fe3O4/GONRs can adsorb TM through the synergistic effect of multiple forces, thereby inhibiting the catalytic activities of nanozyme. This inhibition can modulate the transformation of TMB to oxTMB, producing dual responses of absorbance decrease (oxTMB) and fluorescence enhancement (TMB). The limits of detection (LODs) of TM were 28.1 ng/mL (colorimetric) and 8.81 ng/mL (fluorescence), respectively. Moreover, the developed method with the recoveries of 94.8-100.8% also exhibited a good potential application in the detection of pesticides residues in water and food samples.
Collapse
Affiliation(s)
- Shengmei Tai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yingkang Cui
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chifang Peng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China; International Joint Laboratory On Food Safety, Jiangnan University, Wuxi 214122, China.
| | - Jianguo Xu
- Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China; International Joint Laboratory On Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
15
|
Wang Y, Li T, Lin L, Wang D, Feng L. Copper-doped cherry blossom carbon dots with peroxidase-like activity for antibacterial applications. RSC Adv 2024; 14:27873-27882. [PMID: 39224643 PMCID: PMC11367405 DOI: 10.1039/d4ra04614e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Safety concerns arising from bacteria present a significant threat to human health, underscoring the pressing need for the exploration of novel antimicrobial materials. Nanozymes, as a new type of nanoscale material, have attracted widespread attention for antibacterial applications owing to their ability to mimic the catalytic activity of natural enzymes. In this work, we have constructed copper-doped cherry blossom carbon dots (Cu-CDs) with excellent peroxidase-like (POD) activity using a one-pot hydrothermal method. The utilization of cherry blossom as a natural material precursor significantly enhances its biocompatibility. Furthermore, the incorporation of copper ions initiates Fenton-like reaction-triggered POD-like catalytic activity, effectively eradicating bacteria by converting hydrogen peroxide (H2O2) into hydroxyl radicals (·OH). The antibacterial test results demonstrate that Cu-CDs exhibit a bactericidal efficacy of over 90% against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). This study presents a novel environmentally friendly nanozyme material derived from natural sources, exhibiting significant antimicrobial properties and offering innovative insights for the advancement of antimicrobial materials.
Collapse
Affiliation(s)
- Yitong Wang
- QianWeichang College, Shanghai University Shanghai 200444 China
| | - Tianliang Li
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai Engineering Research Center of Organ Repair, Shanghai University Shanghai 200444 China
| | - Lixing Lin
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai Engineering Research Center of Organ Repair, Shanghai University Shanghai 200444 China
| | - Dong Wang
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai Engineering Research Center of Organ Repair, Shanghai University Shanghai 200444 China
| | - Lingyan Feng
- QianWeichang College, Shanghai University Shanghai 200444 China
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai Engineering Research Center of Organ Repair, Shanghai University Shanghai 200444 China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education Shanghai 200444 China
| |
Collapse
|
16
|
Hassanzadeh J, Al Lawati HAJ, Bagheri N. Bifunctional oxidase-peroxidase mimicking Fe-Ce MOF on paper-based analytical devices to intensify luminol chemiluminescence: Application for measuring different sugars with a smartphone readout. Talanta 2024; 276:126219. [PMID: 38733936 DOI: 10.1016/j.talanta.2024.126219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/03/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
This study presents a potent paper-based analytical device (PAD) for quantifying various sugars using an innovative bi-nanozyme made from a 2-dimensional Fe/Ce metal-organic framework (FeCe-BTC). The MOF showed excellent bifunctional peroxidase-oxidase activities, efficiently catalyzing luminol's chemiluminescence (CL) reaction. As a peroxidase-like nanozyme, FeCe-BTC could facilitate the dissociation of hydrogen peroxide (H2O2) into hydroxyl radicals, which then oxidize luminol. Additionally, it was also discovered that when reacting with H2O2, the MOF turns into a mixed-valence MOF, and acts as an oxidase nanozyme. This activity is caused by the generated Ce4+ ions in the structure of MOF that can directly oxidize luminol. The MOF was directly synthesized on the PAD and cascaded with specific natural enzymes to establish simple, rapid, and selective CL sensors for the measurement of different sugars. A cell phone was also used to record light intensities, which were then correlated to the analyte concentration. The designed PAD showed a wide linear range of 0.1-10 mM for glucose, fructose, and sucrose, with detection limits of 0.03, 0.04, and 0.04 mM, respectively. It showed satisfactory results in food and biological samples with recovery values ranging from 95.8 to 102.4 %, which makes it a promising candidate for point-of-care (POC) testing for food control and medicinal purposes.
Collapse
Affiliation(s)
- Javad Hassanzadeh
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod, 123, Oman
| | - Haider A J Al Lawati
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod, 123, Oman.
| | - Nafiseh Bagheri
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod, 123, Oman
| |
Collapse
|
17
|
Amin ML, Saeed A, Dinh LNM, Yan J, Wen H, Chang SLY, Yao Y, Zetterlund PB, Kumeria T, Agarwal V. On-demand activatable peroxidase-mimicking enzymatic polymer nanocomposite films. J Mater Chem B 2024; 12:7858-7869. [PMID: 39021116 DOI: 10.1039/d4tb00755g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Nanozymes continue to attract considerable attention to minimise the dependence on expensive enzymes in bioassays, particularly in medical diagnostics. While there has been considerable effort directed towards developing different nanozymes, there has been limited progress in fabricating composite materials based on such nanozymes. One of the biggest gaps in the field is the control, tuneability, and on-demand catalytic response. Herein, a nanocomposite nanozymatic film that enables precise tuning of catalytic activity through stretching is demonstrated. In a systematic study, we developed poly(styrene-stat-n-butyl acrylate)/iron oxide-embedded porous silica nanoparticle (FeSiNP) nanocomposite films with controlled, highly tuneable, and on-demand activatable peroxidase-like activity. The polymer/FeSiNP nanocomposite was designed to undergo film formation at ambient temperature yielding a highly flexible and stretchable film, responsible for enabling precise control over the peroxidase-like activity. The fabricated nanocomposite films exhibited a prolonged FeSiNP dose-dependent catalytic response. Interestingly, the optimised composite films with 10 wt% FeSiNP exhibited a drastic change in the enzymatic activity upon stretching, which provides the nanocomposite films with an on-demand performance activation characteristic. This is the first report showing control over the nanozyme activity using a nanocomposite film, which is expected to pave the way for further research in the field leading to the development of system-embedded activatable sensors for diagnostic, food spoilage, and environmental applications.
Collapse
Affiliation(s)
- Md Lutful Amin
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Ayad Saeed
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
- Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Le N M Dinh
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Jiachen Yan
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Haotian Wen
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Shery L Y Chang
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yin Yao
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Tushar Kumeria
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
- Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW 2052, Australia
- School of Pharmacy, University of Queensland, Brisbane, QLD 4102, Australia
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
18
|
Luo SY, Zeng CM, Xu P, Ning Y, Dong ML, Zhang WH, Yu G. Thiazole Functionalization of Thiosemicarbazone for Cu(II) Complexation: Moving toward Highly Efficient Anticancer Drugs with Promising Oral Bioavailability. Molecules 2024; 29:3832. [PMID: 39202911 PMCID: PMC11357102 DOI: 10.3390/molecules29163832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
In this work, we report the synthesis of a new thiosemicarbazone-based drug of N'-(di(pyridin-2-yl)methylene)-4-(thiazol-2-yl)piperazine-1-carbothiohydrazide (HL) featuring a thiazole spectator for efficient coordination with Cu(II) to give [CuCl(L)]2 (1) and [Cu(NO3)(L)]2 (2). Both 1 and 2 exhibit dimeric structures ascribed to the presence of di-2-pyridylketone moieties that demonstrate dual functions of chelation and intermolecular bridging. HL, 1, and 2 are highly toxic against hepatocellular carcinoma cell lines Hep-G2, PLC/PRF/5, and HuH-7 with half maximal inhibitory concentration (IC50) values as low as 3.26 nmol/mL (HL), 2.18 nmol/mL (1), and 2.54 × 10-5 nmol/mL (2) for PLC/PRF/5. While the free ligand HL may elicit its anticancer effect via the sequestration of bio-relevant metal ions (i.e., Fe3+ and Cu2+), 1 and 2 are also capable of generating cytotoxic reactive oxygen species (ROS) to inhibit cancer cell proliferation. Our preliminary pharmacokinetic studies revealed that oral administration (per os, PO) of HL has a significantly longer half-life t1/2 of 21.61 ± 9.4 h, nearly doubled as compared with that of the intravenous (i.v.) administration of 11.88 ± 1.66 h, certifying HL as an effective chemotherapeutic drug via PO administration.
Collapse
Affiliation(s)
- Song-Yu Luo
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China; (S.-Y.L.); (C.-M.Z.); (Y.N.); (M.-L.D.)
| | - Chun-Mei Zeng
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China; (S.-Y.L.); (C.-M.Z.); (Y.N.); (M.-L.D.)
| | - Ping Xu
- Suzhou Degen Bio-Medical Co., Ltd., No. 1 Huayun Road, Suzhou Industrial Park, Suzhou 215000, China;
| | - Ye Ning
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China; (S.-Y.L.); (C.-M.Z.); (Y.N.); (M.-L.D.)
| | - Meng-Lin Dong
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China; (S.-Y.L.); (C.-M.Z.); (Y.N.); (M.-L.D.)
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China; (S.-Y.L.); (C.-M.Z.); (Y.N.); (M.-L.D.)
| | - Guangliang Yu
- Suzhou Degen Bio-Medical Co., Ltd., No. 1 Huayun Road, Suzhou Industrial Park, Suzhou 215000, China;
| |
Collapse
|
19
|
Cheng T, Wu X, Qiu Y, Yuan B, Zhao C, Chen JL, Peng YK. Spatially Decoupled H 2O 2 Activation Pathways and Multi-Enzyme Activities in Rod-Shaped CeO 2 with Implications for Facet Distribution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401032. [PMID: 38618652 DOI: 10.1002/smll.202401032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/23/2024] [Indexed: 04/16/2024]
Abstract
CeO2, particularly in the shape of rod, has recently gained considerable attention for its ability to mimic peroxidase (POD) and haloperoxidase (HPO). However, this multi-enzyme activities unavoidably compete for H2O2 affecting its performance in relevant applications. The lack of consensus on facet distribution in rod-shaped CeO2 further complicates the establishment of structure-activity correlations, presenting challenges for progress in the field. In this study, the HPO-like activity of rod-shaped CeO2 is successfully enhanced while maintaining its POD-like activity through a facile post-calcination method. By studying the spatial distribution of these two activities and their exclusive H2O2 activation pathways on CeO2 surfaces, this study finds that the increased HPO-like activity originated from the newly exposed (111) surface at the tip of the shortened rods after calcination, while the unchanged POD-like activity is attributed to the retained (110) surface in their lateral area. These findings not only address facet distribution discrepancies commonly reported in the literature for rod-shaped CeO2 but also offer a simple approach to enhance its antibacterial performance. This work is expected to provide atomic insights into catalytic correlations and guide the design of nanozymes with improved activity and reaction specificity.
Collapse
Affiliation(s)
- Tianqi Cheng
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Xinyu Wu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Yuwei Qiu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Bo Yuan
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Chao Zhao
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Jian Lin Chen
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, Hong Kong
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, Hong Kong
- City University of Hong Kong Chengdu Research Institute, Chengdu, China
| |
Collapse
|
20
|
Qin J, Guo N, Yang J, Wei J. Recent advances in metal oxide nanozyme-based optical biosensors for food safety assays. Food Chem 2024; 447:139019. [PMID: 38520903 DOI: 10.1016/j.foodchem.2024.139019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
Metal oxide nanozymes are emerging as promising materials for food safety detection, offering several advantages over natural enzymes, including superior stability, cost-effectiveness, large-scale production capability, customisable functionality, design options, and ease of modification. Optical biosensors based on metal oxide nanozymes have significantly accelerated the advancement of analytical research, facilitating the rapid, effortless, efficient, and precise detection and characterisation of contaminants in food. However, few reviews have focused on the application of optical biosensors based on metal oxide nanozymes for food safety detection. In this review, the catalytic mechanisms of the catalase, oxidase, peroxidase, and superoxide dismutase activities of metal oxide nanozymes are characterized. Research developments in optical biosensors based on metal oxide nanozymes, including colorimetric, fluorescent, chemiluminescent, and surface-enhanced Raman scattering biosensors, are comprehensively summarized. The application of metal oxide nanozyme-based biosensors for the detection of nitrites, sulphites, metal ions, pesticides, antibiotics, antioxidants, foodborne pathogens, toxins, and other food contaminants has been highlighted. Furthermore, the challenges and future development prospects of metal oxide nanozymes for sensing applications are discussed. This review offers insights and inspiration for further investigations on optical biosensors based on metal oxide nanozymes for food safety detection.
Collapse
Affiliation(s)
- Jing Qin
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China.
| | - Ningning Guo
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China
| | - Jia Yang
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China
| | - Jing Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Analytical Chemistry and Instrument for Life Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
21
|
Feng K, Wang Z, Wang S, Wang G, Dong H, He H, Wu H, Ma M, Gao X, Zhang Y. Elucidating the catalytic mechanism of Prussian blue nanozymes with self-increasing catalytic activity. Nat Commun 2024; 15:5908. [PMID: 39003316 PMCID: PMC11246500 DOI: 10.1038/s41467-024-50344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Although Prussian blue nanozymes (PBNZ) are widely applied in various fields, their catalytic mechanisms remain elusive. Here, we investigate the long-term catalytic performance of PBNZ as peroxidase (POD) and catalase (CAT) mimetics to elucidate their lifespan and underlying mechanisms. Unlike our previously reported Fe3O4 nanozymes, which exhibit depletable POD-like activity, the POD and CAT-like activities of PBNZ not only persist but slightly enhance over prolonged catalysis. We demonstrate that the irreversible oxidation of PBNZ significantly promotes catalysis, leading to self-increasing catalytic activities. The catalytic process of the pre-oxidized PBNZ can be initiated through either the conduction band pathway or the valence band pathway. In summary, we reveal that PBNZ follows a dual-path electron transfer mechanism during the POD and CAT-like catalysis, offering the advantage of a long service life.
Collapse
Affiliation(s)
- Kaizheng Feng
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, China
| | - Zhenzhen Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Shi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, China
| | - Guancheng Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, China
| | - Haijiao Dong
- Nanjing Institute of Measurement and Testing Technology, Nanjing, China
| | - Hongliang He
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, China
| | - Haoan Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ming Ma
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, China.
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China.
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, China.
| |
Collapse
|
22
|
Devassy AMC, Wankhede KD, Kamalakshan A, Mandal S. A robust single compartment peroxide fuel cell using mesoporous antimony doped tin oxide as the cathode material. NANOSCALE 2024; 16:12060-12070. [PMID: 38813765 DOI: 10.1039/d4nr01375a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
To date, metal oxide catalysts have not been explored as cathode materials for robust and high-performance single-compartment H2O2 fuel cells due to significant non-electrochemical disproportionation losses of H2O2 on many metal oxide surfaces. Here, for the first time, we demonstrate an acidic peroxide fuel cell with antimony doped tin oxide as the cathode and widely used Ni foam as the anode material. Our constructed peroxide fuel cell records a superior open circuit potential of nearly 0.82 V and a maximum power density of 0.32 mW cm-2 with high operational stability. The fuel cell performance is further improved by increasing the ionic strength of the electrolyte with the addition of 1 M NaCl, resulting in an increased maximum power density value of 1.1 mW cm-2.
Collapse
Affiliation(s)
| | - Karuna Dagaji Wankhede
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India.
| | - Adithya Kamalakshan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India.
| | - Sarthak Mandal
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India.
| |
Collapse
|
23
|
Zhao H, Li K, Zou Y, Wang Y, Zhong Z, Xi Y, Xiao X. Enhanced peroxidase-like activity of Cu-Cu 2O composite film through PtPd immobilization for colorimetric glucose detection. Talanta 2024; 273:125964. [PMID: 38521022 DOI: 10.1016/j.talanta.2024.125964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/09/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
In this study, Cu-Cu2O/PtPd nanocomposites were synthesized and characterized for their peroxidase-like enzyme activity. X-ray diffraction and energy dispersive X-ray spectroscopy analyses confirmed the successful synthesis of the nanocomposites, which exhibited a flower-like morphology and a more uniform dispersion than Cu-Cu2O. The catalytic activity of Cu-Cu2O/PtPd was evaluated using the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB), finding that Cu-Cu2O/PtPd outperformed Cu-Cu2O. The optimal temperature and pH for the catalytic activity of Cu-Cu2O/PtPd were determined to be 40 °C and pH 4.0, respectively. A kinetic analysis revealed that Cu-Cu2O/PtPd followed Michaelis-Menten kinetics and exhibited a higher affinity toward TMB than the horseradish peroxidase enzyme. The catalytic mechanism of Cu-Cu2O/PtPd involved the generation of hydroxyl radicals, which facilitated the oxidation of TMB. Furthermore, the Cu-Cu2O/PtPd nanocomposite was successfully applied for the colorimetric detection of glucose, demonstrating a linear range of 8-90 μM, a detection limit of 2.389 μM, and high selectivity for glucose over other sugars.
Collapse
Affiliation(s)
- Hong Zhao
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Research Institute, Lianyungang, 222005, China.
| | - Kui Li
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Research Institute, Lianyungang, 222005, China
| | - Yiming Zou
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Research Institute, Lianyungang, 222005, China
| | - Yaoting Wang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Research Institute, Lianyungang, 222005, China
| | - Zimei Zhong
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Research Institute, Lianyungang, 222005, China
| | - Yu Xi
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Research Institute, Lianyungang, 222005, China
| | - Xin Xiao
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Research Institute, Lianyungang, 222005, China
| |
Collapse
|
24
|
Zhang C, Li D, Zhang X, Dai R, Kang W, Li Y, Liu Q, Gao M, Zheng Z, Zhang R, Wen Z. Dual regulation of osteosarcoma hypoxia microenvironment by a bioinspired oxygen nanogenerator for precise single-laser synergistic photodynamic/photothermal/induced antitumor immunity therapy. Mater Today Bio 2024; 26:101054. [PMID: 38633865 PMCID: PMC11021954 DOI: 10.1016/j.mtbio.2024.101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
The hypoxic tumor microenvironment (TME) of osteosarcoma (OS) is the Achilles' heel of oxygen-dependent photodynamic therapy (PDT), and tremendous challenges are confronted to reverse the hypoxia. Herein, we proposed a "reducing expenditure of O2 and broadening sources" dual-strategy and constructed ultrasmall IrO2@BSA-ATO nanogenerators (NGs) for decreasing the O2-consumption and elevating the O2-supply simultaneously. As O2 NGs, the intrinsic catalase (CAT) activity could precisely decompose the overexpressed H2O2 to produce O2 in situ, enabling exogenous O2 infusion. Moreover, the cell respiration inhibitor atovaquone (ATO) would be at the tumor sites, effectively inhibiting cell respiration and elevating oxygen content for endogenous O2 conservation. As a result, IrO2@BSA-ATO NGs systematically increase tumor oxygenation in dual ways and significantly enhance the antitumor efficacy of PDT. Moreover, the extraordinary photothermal conversion efficiency allows the implementation of precise photothermal therapy (PTT) under photoacoustic guidance. Upon a single laser irradiation, this synergistic PDT, PTT, and the following immunosuppression regulation performance of IrO2@BSA-ATO NGs achieved a superior tumor cooperative eradicating capability both in vitro and in vivo. Taken together, this study proposes an innovative dual-strategy to address the serious hypoxia problem, and this microenvironment-regulable IrO2@BSA-ATO NGs as a multifunctional theranostics platform shows great potential for OS therapy.
Collapse
Affiliation(s)
- Chongqing Zhang
- Department of Neurology, Brain Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Medical Imaging Department, Shanxi Province Cancer Hospital (Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University), Taiyuan, 030001, China
| | - Dongsheng Li
- Department of Radiology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Xin Zhang
- Medical Imaging Department, Shanxi Province Cancer Hospital (Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University), Taiyuan, 030001, China
| | - Rong Dai
- Department of Radiology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Weiwei Kang
- Department of Radiology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Yao Li
- Department of Radiology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Qin Liu
- Department of Radiology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Mengting Gao
- Department of Radiology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Ziliang Zheng
- Department of Radiology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Ruiping Zhang
- Department of Radiology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Zhaohui Wen
- Department of Neurology, Brain Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| |
Collapse
|
25
|
Wang X, Feng JH, Zeng CM, Zhang ZS, Cao FL, Zhang WH, Chen JX, Young DJ. [Fe IIICl(TMPPH 2)][Fe IIICl 4] 2: A Stand-Alone Molecular Nanomedicine That Induces High Cytotoxicity by Ferroptosis. Molecules 2024; 29:2495. [PMID: 38893373 PMCID: PMC11173869 DOI: 10.3390/molecules29112495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Developing clinically meaningful nanomedicines for cancer therapy requires the drugs to be effective, safe, simple, cheap, and easy to store. In the present work, we report that a simple cationic Fe(III)-rich salt of [FeIIICl(TMPPH2)][FeIIICl4]2 (Fe-TMPP) exhibits a superior anticancer performance on a broad spectrum of cancer cell lines, including breast, colorectal cancer, liver, pancreatic, prostate, and gastric cancers, with half maximal inhibitory concentration (IC50) values in the range of 0.098-3.97 μM (0.066-2.68 μg mL-1), comparable to the best-reported medicines. Fe-TMPP can form stand-alone nanoparticles in water without the need for extra surface modification or organic-solvent-assisted antisolvent precipitation. Critically, Fe-TMPP is TME-responsive (TME = tumor microenvironment), and can only elicit its function in the TME with overexpressed H2O2, converting H2O2 to the cytotoxic •OH to oxidize the phospholipid of the cancer cell membrane, causing ferroptosis, a programmed cell death process of cancer cells.
Collapse
Affiliation(s)
- Xiao Wang
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China; (X.W.); (C.-M.Z.); (Z.-S.Z.); (F.-L.C.)
| | - Jia-Hao Feng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China;
| | - Chun-Mei Zeng
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China; (X.W.); (C.-M.Z.); (Z.-S.Z.); (F.-L.C.)
| | - Ze-Sheng Zhang
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China; (X.W.); (C.-M.Z.); (Z.-S.Z.); (F.-L.C.)
| | - Feng-Lin Cao
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China; (X.W.); (C.-M.Z.); (Z.-S.Z.); (F.-L.C.)
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China; (X.W.); (C.-M.Z.); (Z.-S.Z.); (F.-L.C.)
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China;
| | - David J. Young
- Glasgow College UESTC, University of Electronic Science and Technology of China, Chengdu 611731, China;
| |
Collapse
|
26
|
Huang XL. Unveiling the role of inorganic nanoparticles in Earth's biochemical evolution through electron transfer dynamics. iScience 2024; 27:109555. [PMID: 38638571 PMCID: PMC11024932 DOI: 10.1016/j.isci.2024.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
This article explores the intricate interplay between inorganic nanoparticles and Earth's biochemical history, with a focus on their electron transfer properties. It reveals how iron oxide and sulfide nanoparticles, as examples of inorganic nanoparticles, exhibit oxidoreductase activity similar to proteins. Termed "life fossil oxidoreductases," these inorganic enzymes influence redox reactions, detoxification processes, and nutrient cycling in early Earth environments. By emphasizing the structural configuration of nanoparticles and their electron conformation, including oxygen defects and metal vacancies, especially electron hopping, the article provides a foundation for understanding inorganic enzyme mechanisms. This approach, rooted in physics, underscores that life's origin and evolution are governed by electron transfer principles within the framework of chemical equilibrium. Today, these nanoparticles serve as vital biocatalysts in natural ecosystems, participating in critical reactions for ecosystem health. The research highlights their enduring impact on Earth's history, shaping ecosystems and interacting with protein metal centers through shared electron transfer dynamics, offering insights into early life processes and adaptations.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-6044, USA
| |
Collapse
|
27
|
Zeng CM, Luo SY, Wang X, Cao FL, Zhang ZS, Zhang WH, Dai CL, Young DJ. A Porphyrin-Based 3D Metal-Organic Framework Featuring [Cu 8Cl 6] 10+ Cluster Secondary Building Units: Synthesis, Structure Elucidation, Anion Exchange, and Peroxidase-Like Activity. Chem Asian J 2024; 19:e202400237. [PMID: 38563626 DOI: 10.1002/asia.202400237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Herein, we report a rare example of cationic three-dimensional (3D) metal-organic framework (MOF) of [Cu5Cl3(TMPP)]Cl5 ⋅ xSol (denoted as Cu-TMPP; H2TMPP=meso-tetrakis (6-methylpyridin-3-yl) porphyrin; xSol=encapsulated solvates) supported by [Cu8Cl6]10+ cluster secondary building units (SBUs) wherein the eight faces of the Cl--based octahedron are capped by eight Cu2+. Surface-area analysis indicated that Cu-TMPP features a mesoporous structure and its solvate-like Cl- counterions can be exchanged by BF4 -, PF6 -, and NO3 -. The polyvinylpyrrolidone (PVP) coated Cu-TMPP (denoted as Cu-TMPP-PVP) demonstrated good ROS generating ability, producing ⋅OH in the absence of light (peroxidase-like activity) and 1O2 on light irradiation (650 nm; 25 mW cm-2). This work highlights the potential of Cu-TMPP as a functional carrier of anionic guests such as drugs, for the combination therapy of cancer and other diseases.
Collapse
Affiliation(s)
- Chun-Mei Zeng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Song-Yu Luo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng-Lin Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ze-Sheng Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Chun-Lei Dai
- Department of Cardiothoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - David J Young
- Glasgow College UESTC, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
28
|
Xin J, Pang H, Gómez-García CJ, Jin Z, Wang Y, Au CM, Ma H, Wang X, Yang G, Yu WY. Nitrogen doped 1 T/2H mixed phase MoS 2/CuS heterostructure nanosheets for enhanced peroxidase activity. J Colloid Interface Sci 2024; 659:312-319. [PMID: 38176240 DOI: 10.1016/j.jcis.2023.12.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/03/2023] [Accepted: 12/24/2023] [Indexed: 01/06/2024]
Abstract
Heteroatom doping and phase engineering are effective ways to promote the catalytic activity of nanoenzymes. Nitrogen-doped 1 T/2H mixed phase MoS2/CuS heterostructure nanosheets N-1 T/2H-MoS2/CuS are prepared by a simple hydrothermal approach using polyoxometalate (POM)-based metal-organic frameworks (MOFs) (NENU-5) as a precursor and urea as nitrogen doping reagent. The XPS spectroscopy (XPS) and Raman spectrum of N-1 T/2H-MoS2/CuS prove the successful N-doping. NENU-5 was used as the template to prepare 1 T/2H-MoS2/CuS with high content of 1 T phase by optimizing the reaction time. The use of urea as nitrogen dopant added to 1 T/2H-MoS2/CuS, resulted in N-1 T/2H-MoS2/CuS with an increase in the content of the 1 T phase from 80 % to 84 % and higher number of defects. N-1 T/2H-MoS2/CuS shows higher peroxidase activity than 1 T/2H-MoS2/CuS and a catalytic efficiency (Kcat/Km) for H2O2 twice as high as that of 1 T/2H-MoS2/CuS. The enhanced catalytic activity has probably been attributed to several reasons: (i) the insertion of urea during the hydrothermal process in the S-Mo-S layer of MoS2, causing an increase in the interlayer spacing and in 1 T phase content, (ii) the replacement of S atoms in MoS2 by N atoms from the urea decomposition, resulting in more defects and more active sites. As far as we know, N-1 T/2H-MoS2/CuS nanosheets have the lowest detection limit (0.16 µm) for the colorimetric detection of hydroquinone among molybdenum disulfide-based catalysts. This study affords a new approach for the fabrication of high-performance nanoenzyme catalysts.
Collapse
Affiliation(s)
- Jianjiao Xin
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China; Center of Teaching Experiment and Equipment Management, Qiqihar University, Qiqihar 161006, China
| | - Haijun Pang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China.
| | - Carlos J Gómez-García
- Departamento de Química Inorgánica, Universidad de Valencia, C/Dr. Moliner 50. 46100 Burjasot, Spain
| | - Zhongxin Jin
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Ying Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Chi-Ming Au
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Huiyuan Ma
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China.
| | - Xinming Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Guixin Yang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Wing-Yiu Yu
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
29
|
Zandieh M, Liu J. Nanozymes: Definition, Activity, and Mechanisms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211041. [PMID: 36799556 DOI: 10.1002/adma.202211041] [Citation(s) in RCA: 181] [Impact Index Per Article: 181.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/03/2023] [Indexed: 06/18/2023]
Abstract
"Nanozyme" is used to describe various catalysts from immobilized inorganic metal complexes, immobilized enzymes to inorganic nanoparticles. Here, the history of nanozymes is dvescribed in detail, and they can be largely separated into two types. Type 1 nanozymes refer to immobilized catalysts or enzymes on nanomaterials, which were dominant in the first decade since 2004. Type 2 nanozymes, which rely on the surface catalytic properties of inorganic nanomaterials, are the dominating type in the past decade. The definition of nanozymes is evolving, and a definition based on the same substrates and products as enzymes are able to cover most currently claimed nanozymes, although they may have different mechanisms compared to their enzyme counterparts. A broader definition can inspire application-based research to replace enzymes with nanomaterials for analytical, environmental, and biomedical applications. Comparison with enzymes also requires a clear definition of a nanozyme unit. Four ways of defining a nanozyme unit are described, with iron oxide and horseradish peroxidase activity comparison as examples in each definition. Growing work is devoted to understanding the catalytic mechanism of nanozymes, which provides a basis for further rational engineering of active sites. Finally, future perspective of the nanozyme field is discussed.
Collapse
Affiliation(s)
- Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
30
|
Wang H, Cheng C, Zhao J, Han F, Zhao G, Zhang Y, Wang Y. Advances in the Application of Transition-Metal Composite Nanozymes in the Field of Biomedicine. BIOSENSORS 2024; 14:40. [PMID: 38248417 PMCID: PMC10813372 DOI: 10.3390/bios14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Due to the limitation that natural peroxidase enzymes can only function in relatively mild environments, nanozymes have expanded the application of enzymology in the biological field by dint of their ability to maintain catalytic oxidative activity in relatively harsh environments. At the same time, the development of new and highly efficient composite nanozymes has been a challenge due to the limitations of monometallic particles in applications and the inherently poor enzyme-mimetic activity of composite nanozymes. The inherent enzyme-mimicking activity is due to Au, Ag, and Pt, along with other transition metals. Moreover, the nanomaterials exhibit excellent enzyme-mimicking activity when composited with other materials. Therefore, this paper focuses on composite nanozymes with simulated peroxidase activity that have been prepared using noble metals such as Au, Ag, and Pt and other transition metal nanoparticles in recent years. Their simulated enzymatic activity is utilized for biomedical applications such as glucose detection, cancer cell detection and tumor treatment, and antibacterial applications.
Collapse
Affiliation(s)
- Huixin Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (H.W.); (C.C.); (J.Z.); (F.H.)
| | - Chunfang Cheng
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (H.W.); (C.C.); (J.Z.); (F.H.)
| | - Jingyu Zhao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (H.W.); (C.C.); (J.Z.); (F.H.)
| | - Fangqin Han
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (H.W.); (C.C.); (J.Z.); (F.H.)
| | - Guanhui Zhao
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Yong Zhang
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China;
| | - Yaoguang Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (H.W.); (C.C.); (J.Z.); (F.H.)
| |
Collapse
|
31
|
Yang L, Dong S, Gai S, Yang D, Ding H, Feng L, Yang G, Rehman Z, Yang P. Deep Insight of Design, Mechanism, and Cancer Theranostic Strategy of Nanozymes. NANO-MICRO LETTERS 2023; 16:28. [PMID: 37989794 PMCID: PMC10663430 DOI: 10.1007/s40820-023-01224-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/23/2023] [Indexed: 11/23/2023]
Abstract
Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007, nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity, low cost, mild reaction conditions, good stability, and suitable for large-scale production. Recently, with the cross fusion of nanomedicine and nanocatalysis, nanozyme-based theranostic strategies attract great attention, since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects. Thus, various nanozymes have been developed and used for tumor therapy. In this review, more than 270 research articles are discussed systematically to present progress in the past five years. First, the discovery and development of nanozymes are summarized. Second, classification and catalytic mechanism of nanozymes are discussed. Third, activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory, machine learning, biomimetic and chemical design. Then, synergistic theranostic strategy of nanozymes are introduced. Finally, current challenges and future prospects of nanozymes used for tumor theranostic are outlined, including selectivity, biosafety, repeatability and stability, in-depth catalytic mechanism, predicting and evaluating activities.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, People's Republic of China.
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Guixin Yang
- Key Laboratory of Green Chemical Engineering and Technology of Heilongjiang Province, College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Ziaur Rehman
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, People's Republic of China.
| |
Collapse
|
32
|
Yuan B, Tan Z, Guo Q, Shen X, Zhao C, Chen JL, Peng YK. Regulating the H 2O 2 Activation Pathway on a Well-Defined CeO 2 Nanozyme Allows the Entire Steering of Its Specificity between Associated Enzymatic Reactions. ACS NANO 2023; 17:17383-17393. [PMID: 37578491 DOI: 10.1021/acsnano.3c05409] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nanozymes are promising alternatives to natural enzymes, but their use remains limited owing to poor specificity. For example, CeO2 activates H2O2 and displays peroxidase (POD)-like, catalase (CAT)-like, and haloperoxidase (HPO)-like activities. Since they unavoidably compete for H2O2, affecting its utilization in the target application, the precise manipulation of reaction specificity is thus imperative. Herein, we showed that one can simply achieve this by manipulating the H2O2 activation pathway on pristine CeO2 in well-defined shapes. This is because the coordination and electronic structures of Ce sites vary with CeO2 surfaces, wherein the (100) and (111) surfaces display nearly 100% specificity toward POD-/CAT-like and HPO-like activities, respectively. The antibacterial results suggest that the latter surface can well-utilize H2O2 to kill bacteria (cf., the former), which is promising for anti-biofouling applications. This work provides atomic insights into the synthesis of nanozymes with improved activity, reaction specificity, and H2O2 utilization.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR
| | - Zicong Tan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR
| | - Qiang Guo
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, Hong Kong SAR
| | - Xiutong Shen
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR
| | - Chao Zhao
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR
| | - Jian Lin Chen
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, Hong Kong SAR
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR
| |
Collapse
|
33
|
Sun D, Liu K, Cheng Y, Sun J, Fang J, Tang Y, Wang F, Guo Y, Wang Y, Chen X. Modulation of two-dimensional palladium nanozyme activity to enhance chemodynamic/photothermal combined therapy for melanoma. J Mater Chem B 2023; 11:7942-7949. [PMID: 37539820 DOI: 10.1039/d3tb01019h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Nanozymes are artificial enzymes that mimic natural enzyme-like activities and exhibit tremendous potential for tumor chemodynamic therapy. However, the development of novel nanozymes with superior catalytic activities for nanotheranostics remains a formidable challenge. Herein, we report a facile synthesis of monodisperse palladium nanosheets (Pd nanosheets) and their assembly on graphene oxide (GO) that enhances the catalytic activities of Pd nanoparticles. Simultaneously, the obtained nanocomposites (rGO-Pd) could be applied as a smart near-infrared (NIR) light-responsive nanotheranostic for near infrared imaging-guided chemodynamic/photothermal combined therapy. Notably, rGO-Pd exhibited high peroxidase mimicking activities, which could catalyze the conversion of intratumoral H2O2 to ˙OH. Impressively, the reactive oxygen species (ROS) generation of rGO-Pd was further remarkably enhanced by the endogenous acidity of the tumor microenvironment and the exogenous NIR light-responsive photothermal effect. These collective properties of the rGO-Pd nanozyme enabled it to be a ROS generation accelerator for photothermally enhanced tumor chemodynamic therapy. Thus, the as-developed rGO-Pd may represent a promising new type of high-performance nanozyme for multifunctional nanotheranostics toward cancer.
Collapse
Affiliation(s)
- Duo Sun
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Kaijun Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi Cheng
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jinju Sun
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Jingqin Fang
- Department of Ultrasound, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi Tang
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Fangyang Wang
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Yu Guo
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi Wang
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.
- Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, 400042, China
| |
Collapse
|
34
|
Shen J, Chen G, Zhao L, Huang G, Liu H, Liu B, Miao Y, Li Y. Recent Advances in Nanoplatform Construction Strategy for Alleviating Tumor Hypoxia. Adv Healthc Mater 2023; 12:e2300089. [PMID: 37055912 DOI: 10.1002/adhm.202300089] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/13/2023] [Indexed: 04/15/2023]
Abstract
Hypoxia is a typical feature of most solid tumors and has important effects on tumor cells' proliferation, invasion, and metastasis. This is the key factor that leads to poor efficacy of different kinds of therapy including chemotherapy, radiotherapy, photodynamic therapy, etc. In recent years, the construction of hypoxia-relieving functional nanoplatforms through nanotechnology has become a new strategy to reverse the current situation of tumor microenvironment hypoxia and improve the effectiveness of tumor treatment. Here, the main strategies and recent progress in constructing nanoplatforms are focused on to directly carry oxygen, generate oxygen in situ, inhibit mitochondrial respiration, and enhance blood perfusion to alleviate tumor hypoxia. The advantages and disadvantages of these nanoplatforms are compared. Meanwhile, nanoplatforms based on organic and inorganic substances are also summarized and classified. Through the comprehensive overview, it is hoped that the summary of these nanoplatforms for alleviating hypoxia could provide new enlightenment and prospects for the construction of nanomaterials in this field.
Collapse
Affiliation(s)
- Jing Shen
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Guobo Chen
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Linghao Zhao
- Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Guoyang Huang
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Hui Liu
- Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
35
|
Fu R, Ma Z, Zhao H, Jin H, Tang Y, He T, Ding Y, Zhang J, Ye D. Research Progress in Iron-Based Nanozymes: Catalytic Mechanisms, Classification, and Biomedical Applications. Anal Chem 2023. [PMID: 37438259 DOI: 10.1021/acs.analchem.3c01005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Natural enzymes are crucial in biological systems and widely used in biology and medicine, but their disadvantages, such as insufficient stability and high-cost, have limited their wide application. Since Fe3O4 nanoparticles were found to show peroxidase-like activity, researchers have designed and developed a growing number of nanozymes that mimic the activity of natural enzymes. Nanozymes can compensate for the defects of natural enzymes and show higher stability with lower cost. Iron, a nontoxic and low-cost transition metal, has been used to synthesize a variety of iron-based nanozymes with unique structural and physicochemical properties to obtain different enzymes mimicking catalytic properties. In this perspective, catalytic mechanisms, activity modulation, and their recent research progress in sensing, tumor therapy, and antibacterial and anti-inflammatory applications are systematically presented. The challenges and perspectives on the development of iron-based nanozymes are also analyzed and discussed.
Collapse
Affiliation(s)
- Ruixue Fu
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Zijian Ma
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Hongbin Zhao
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Huan Jin
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Ya Tang
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Ting He
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yaping Ding
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Jiujun Zhang
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Daixin Ye
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
36
|
Luo Q, Shao N, Zhang AC, Chen CF, Wang D, Luo LP, Xiao ZY. Smart Biomimetic Nanozymes for Precise Molecular Imaging: Application and Challenges. Pharmaceuticals (Basel) 2023; 16:249. [PMID: 37259396 PMCID: PMC9965384 DOI: 10.3390/ph16020249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 04/06/2024] Open
Abstract
New nanotechnologies for imaging molecules are widely being applied to visualize the expression of specific molecules (e.g., ions, biomarkers) for disease diagnosis. Among various nanoplatforms, nanozymes, which exhibit enzyme-like catalytic activities in vivo, have gained tremendously increasing attention in molecular imaging due to their unique properties such as diverse enzyme-mimicking activities, excellent biocompatibility, ease of surface tenability, and low cost. In addition, by integrating different nanoparticles with superparamagnetic, photoacoustic, fluorescence, and photothermal properties, the nanoenzymes are able to increase the imaging sensitivity and accuracy for better understanding the complexity and the biological process of disease. Moreover, these functions encourage the utilization of nanozymes as therapeutic agents to assist in treatment. In this review, we focus on the applications of nanozymes in molecular imaging and discuss the use of peroxidase (POD), oxidase (OXD), catalase (CAT), and superoxide dismutase (SOD) with different imaging modalities. Further, the applications of nanozymes for cancer treatment, bacterial infection, and inflammation image-guided therapy are discussed. Overall, this review aims to provide a complete reference for research in the interdisciplinary fields of nanotechnology and molecular imaging to promote the advancement and clinical translation of novel biomimetic nanozymes.
Collapse
Affiliation(s)
| | | | | | | | | | - Liang-Ping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Ze-Yu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
37
|
Moreno-Castilla C, Naranjo Á, Victoria López-Ramón M, Siles E, López-Peñalver JJ, de Almodóvar JMR. Influence of the hydrodynamic size and ζ potential of manganese ferrite nanozymes as peroxidase-mimicking catalysts at pH 4 in different buffers. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
38
|
Qiu Y, Yuan B, Mi H, Lee JH, Chou SW, Peng YK. An Atomic Insight into the Confusion on the Activity of Fe 3O 4 Nanoparticles as Peroxidase Mimetics and Their Comparison with Horseradish Peroxidase. J Phys Chem Lett 2022; 13:8872-8878. [PMID: 36125422 DOI: 10.1021/acs.jpclett.2c02331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Although Fe3O4 nanoparticles were early reported to outperform horseradish peroxidase (HRP), recent studies suggested that this material bears a very poor activity instead. Here, we resolve this disagreement by reviewing the definition of descriptors used and provide an atomic view into the origin of Fe3O4 nanoparticles as peroxidase mimetics. The redox between H2O2 and Fe(II) sites on the Fe3O4 surface was identified as the key step to producing OH radicals for the oxidation of colorimetric substrates. This mechanism involving free radicals is distinct from that of HRP oxidizing substrates with a radical retained on its Fe-porphyrin ring. Surprisingly, the distribution and chemical state of Fe species were found to be very different on single- and polycrystalline Fe3O4 nanoparticles with the latter bearing not only a higher Fe(II)/Fe(III) ratio but also a more reactive Fe(II) species at surface grain boundaries. This accounts for the unexpected gap in the catalytic constant (kcat) observed for this material in the literature.
Collapse
Affiliation(s)
- Yuwei Qiu
- Department of Chemistry, City University of Hong Kong, 0000 Hong Kong, Hong Kong SAR, China
| | - Bo Yuan
- Department of Chemistry, City University of Hong Kong, 0000 Hong Kong, Hong Kong SAR, China
| | - Hua Mi
- Department of Chemistry, City University of Hong Kong, 0000 Hong Kong, Hong Kong SAR, China
| | - Jung-Hoon Lee
- Department of Chemistry, Soonchunhyang University, Asan 31538, Korea
| | - Shang-Wei Chou
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, 0000 Hong Kong, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
39
|
Zhou K, Li Y, Zhuang S, Ren J, Tang F, Mu J, Wang P. A novel electrochemical sensor based on CuO-CeO2/MXene nanocomposite for quantitative and continuous detection of H2O2. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Bilalis P, Karagouni E, Toubanaki DK. Peroxidase‐like activity of Fe
3
O
4
nanoparticles and Fe
3
O
4
‐graphene oxide nanohybrids: Effect of the amino‐ and carboxyl‐surface modifications on H
2
O
2
sensing. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Panayiotis Bilalis
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology Thuwal Saudi Arabia
| | - Evdokia Karagouni
- Immunology of Infection Group, Department of Microbiology Hellenic Pasteur Institute Athens Greece EK
| | - Dimitra K. Toubanaki
- Immunology of Infection Group, Department of Microbiology Hellenic Pasteur Institute Athens Greece EK
| |
Collapse
|
41
|
Zandieh M, Liu J. Surface Science of Nanozymes and Defining a Nanozyme Unit. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3617-3622. [PMID: 35290071 DOI: 10.1021/acs.langmuir.2c00070] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The field of nanozyme aims to use nanomaterials to replace protein-based enzymes. Nanozymes have attracted extensive interest because of their stability, cost-effectiveness, and versatility. While the focus of the nanozyme field has mainly been the discovery of new nanozyme materials and the exploration of their analytical, biomedical, and environmental applications, the number of fundamental studies is growing. Nanozymes are related to two important fields: enzymology and heterogeneous catalysis. Although fitting nanozyme kinetic data to the Michaelis-Menten kinetics is a very common practice, using the surface science methods of heterogeneous catalysis can provide insights about their catalytic mechanisms. The definition of a nanozyme unit is critical to understanding and comparing nanozyme activities. In this perspective, we articulate the use of a surface science approach to study nanozymes and discuss the various application scenarios of using different nanozyme units.
Collapse
Affiliation(s)
- Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|