1
|
Wang K, Yan B, Zhou B, Zhang Y, Lin GL, Zhang TS, Zhou M, Shen HM, Yang YF, Xia J, Li H, She Y. Acceleration of Photoinduced Electron Transfer by Modulating Electronegativity of Substituents in Stable Zr-Metal-Organic Frameworks to Boost Photocatalytic CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33601-33610. [PMID: 38889009 DOI: 10.1021/acsami.4c06191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Photoreduction of CO2 with water into chemical feedstocks of fuels provides a green way to help solve both the energy crisis and carbon emission issues. Metal-organic frameworks (MOFs) show great potential for CO2 photoreduction. However, poor water stability and sluggish charge transfer could limit their application. Herein, three water-stable MOFs functionalized with electron-donating methyl groups and/or electron-withdrawing trifluoromethyl groups are obtained for the CO2 photoreduction. Compared with UiO-67-o-CF3-CH3 and UiO-67-o-(CF3)2, UiO-67-o-(CH3)2 achieves excellent performance with an average CO generation rate of 178.0 μmol g-1 h-1 without using any organic solvent or sacrificial reagent. The superior photocatalytic activity of UiO-67-o-(CH3)2 is attributed to the fact that compared with trifluoromethyl groups, methyl groups could not only elevate CO2 adsorption capacity and reduction potential but also promote photoinduced charge separation and migration. These are evidenced by gas physisorption, photoluminescence, time-resolved photoluminescence, electrochemical impedance spectroscopy, transient photocurrent characteristics, and density functional theory calculations. The possible working mechanisms of electron-donating methyl groups are also proposed. Moreover, UiO-67-o-(CH3)2 demonstrates excellent reusability for the CO2 reduction. Based on these results, it could be affirmed that the strategy of modulating substituent electronegativity could provide guidance for designing highly efficient photocatalysts.
Collapse
Affiliation(s)
- Keke Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bin Yan
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bolin Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yi Zhang
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Guo-Liang Lin
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Teng-Shuo Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengmeng Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hai-Min Shen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yun-Fang Yang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiexiang Xia
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Huaming Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Lin Z, Wang Z, Xu Z, Xiao Z, Fang Z, Luo J, Li P, Chen P, Lv W, Liu G. Self-assembly construction of 1D carbon nitride nanotubes and cobalt-modified for superior photocatalytic degradation of sulfonamide antibiotics. CHEMOSPHERE 2023; 343:140299. [PMID: 37769924 DOI: 10.1016/j.chemosphere.2023.140299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/24/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
In the present work, a cobalt-doped carbon nitride nanotubes (Co-CNt) was synthesized via self-assembly process. Contributed to the narrow band gap, enlarged specific surface area and abundant active sites, Co-CNt has excellent photoelectric properties and superior performance than pristine CN in sulfisoxazole (SIZ) degradation under blue light irradiation, which achieved 100% removal within 40 min. Meanwhile, the system not only exhibited practical applicability by efficiently degrading SIZ, but also generating high levels of H2O2. Moreover, the Co-CNt/visible light system shows superior operability over a wide pH range, micro-concentration contaminants, various anions, water matrices and other sulfonamides with promising catalytic stability and applicability. The contribution of RSs in the degradation process were elucidated based on radical scavenging and spin-trapped tests, clarifying that O2·- and h+ majorly dominated the process. In addition, 4 probable degradation pathways of SIZ were provided and the generated intermediates' toxicity were evaluated. Overall, this study successfully synthesized a self-assembled 1D tubular photocatalyst with Co-doped and demonstrated the potential Co-CNt/visible light system for environmental remediation, providing a promising approach for the development of photocatalysis.
Collapse
Affiliation(s)
- Zifeng Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhongquan Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zihong Xu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhenjun Xiao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zheng Fang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jin Luo
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ping Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ping Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Wenying Lv
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Lyu W, Liu Y, Zhou J, Chen D, Zhao X, Fang R, Wang F, Li Y. Modulating the Reaction Configuration by Breaking the Structural Symmetry of Active Sites for Efficient Photocatalytic Reduction of Low-concentration CO 2. Angew Chem Int Ed Engl 2023; 62:e202310733. [PMID: 37642552 DOI: 10.1002/anie.202310733] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Photocatalytic conversion of low-concentration CO2 is considered as a promising way to simultaneously mitigate the environmental and energy issues. However, the weak CO2 adsorption and tough CO2 activation process seriously compromise the CO production, due to the chemical inertness of CO2 molecule and the formed fragile metal-C/O bond. Herein, we designed and fabricated oxygen vacancy contained Co3 O4 hollow nanoparticles on ordered macroporous N-doped carbon framework (Vo-HCo3 O4 /OMNC) towards photoreduction of low-concentration CO2 . In situ spectra and ab initio molecular dynamics simulations reveal that the constructed oxygen vacancy is able to break the local structural symmetry of Co-O-Co sites. The formation of asymmetric active site switches the CO2 configuration from a single-site linear model to a multiple-sites bending one with a highly stable configuration, enhancing the binding and structural polarization of CO2 molecules. As a result, Vo-HCo3 O4 /OMNC shows unprecedent activity in the photocatalytic conversion of low-concentration CO2 (10 % CO2 /Ar) under laboratory light source or even natural sunlight, affording a syngas yield of 337.8 or 95.2 mmol g-1 h-1 , respectively, with an apparent quantum yield up to 4.2 %.
Collapse
Affiliation(s)
- Wenyuan Lyu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Jingyi Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Datong Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xin Zhao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Ruiqi Fang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Fengliang Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yingwei Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
4
|
Qi F, Pu Y, Wu D, Tang X, Huang Q. Recent Advances and Future Perspectives of Lead-Free Halide Perovskites for Photocatalytic CO 2 Reduction. CHEM REC 2023; 23:e202300078. [PMID: 37229755 DOI: 10.1002/tcr.202300078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/04/2023] [Indexed: 05/27/2023]
Abstract
It is still challenging to design and develop the state-of-the-art photocatalysts toward CO2 photoreduction. Enormous researchers have focused on the halide perovskites in the photocatalytic field for CO2 photoreduction, due to their excellent optical and physical properties. The toxicity of lead-based halide perovskites prevents their large-scale applications in photocatalytic fields. In consequence, lead-free halide perovskites (LFHPs) without the toxicity become the promising alternatives in the photocatalytic application for CO2 photoreduction. In recent years, the rapid advances of LFHPs have offer new chances for the photocatalytic CO2 reduction of LFHPs. In this review, we summarize not only the structures and properties of A2 BX6 , A2 B(I)B(III)X6 , and A3 B2 X9 -type LFHPs but also their recent progresses on the photocatalytic CO2 reduction. Furthermore, we also point out the opportunities and perspectives to research LFHPs photocatalysts for CO2 photoreduction in the future.
Collapse
Affiliation(s)
- Fei Qi
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Yayun Pu
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Daofu Wu
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Xiaosheng Tang
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Qiang Huang
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| |
Collapse
|
5
|
Guo RT, Wang J, Bi ZX, Chen X, Hu X, Pan WG. Recent Advances and Perspectives of Core-Shell Nanostructured Materials for Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206314. [PMID: 36515282 DOI: 10.1002/smll.202206314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Photocatalytic CO2 conversion into solar fuels is a promising technology to alleviate CO2 emissions and energy crises. The development of core-shell structured photocatalysts brings many benefits to the photocatalytic CO2 reduction process, such as high conversion efficiency, sufficient product selectivity, and endurable catalyst stability. Core-shell nanostructured materials with excellent physicochemical features take an irreplaceable position in the field of photocatalytic CO2 reduction. In this review, the recent development of core-shell materials applied for photocatalytic reduction of CO2 is introduced . First, the basic principle of photocatalytic CO2 reduction is introduced. In detail, the classification and synthesis techniques of core-shell catalysts are discussed. Furthermore, it is also emphasized that the excellent properties of the core-shell structure can greatly improve the activity, selectivity, and stability in the process of photocatalytic CO2 reduction. Hopefully, this paper can provide a favorable reference for the preparation of efficient photocatalysts for CO2 reduction.
Collapse
Affiliation(s)
- Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, China
| | - Juan Wang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
| | - Zhe-Xu Bi
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
| | - Xin Chen
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
| | - Xing Hu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, China
| |
Collapse
|
6
|
Wang Y, Ban C, Meng J, Ma J, Zou H, Feng Y, Ding J, Duan Y, Gan L, Zhou X. Charge Localization Induced by Fe Doping in Porous Bi5O7I Micro-flower for Enhanced Photoreduction of CO2 to CO. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Wu C, Xing Z, Yang S, Li Z, Zhou W. Nanoreactors for photocatalysis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Piezoelectric-enhanced photocatalytic performance of porous carbon nitride nanosheets. J Colloid Interface Sci 2023; 630:191-203. [DOI: 10.1016/j.jcis.2022.09.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
|
9
|
Shinde SK, Jalak MB, Karade SS, Majumder S, Tamboli MS, Truong NTN, Maile NC, Kim DY, Jagadale AD, Yadav HM. A Novel Synthesized 1D Nanobelt-like Cobalt Phosphate Electrode Material for Excellent Supercapacitor Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15228235. [PMID: 36431719 PMCID: PMC9698180 DOI: 10.3390/ma15228235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 05/27/2023]
Abstract
In the present report, we synthesized highly porous 1D nanobelt-like cobalt phosphate (Co2P2O7) materials using a hydrothermal method for supercapacitor (SC) applications. The physicochemical and electrochemical properties of the synthesized 1D nanobelt-like Co2P2O7 were investigated using X-ray diffraction (XRD), X-ray photoelectron (XPS) spectroscopy, and scanning electron microscopy (SEM). The surface morphology results indicated that the deposition temperatures affected the growth of the 1D nanobelts. The SEM revealed a significant change in morphological results of Co2P2O7 material prepared at 150 °C deposition temperature. The 1D Co2P2O7 nanobelt-like nanostructures provided higher electrochemical properties, because the resulting empty space promotes faster ion transfer and improves cycling stability. Moreover, the electrochemical performance indicates that the 1D nanobelt-like Co2P2O7 electrode deposited at 150 °C deposition temperature shows the maximum specific capacitance (Cs). The Co2P2O7 electrode prepared at a deposition temperature 150 °C provided maximum Cs of 1766 F g-1 at a lower scan rate of 5 mV s-1 in a 1 M KOH electrolyte. In addition, an asymmetric hybrid Co2P2O7//AC supercapacitor device exhibited the highest Cs of 266 F g-1, with an excellent energy density of 83.16 Wh kg-1, and a power density of 9.35 kW kg-1. Additionally, cycling stability results indicate that the 1D nanobelt-like Co2P2O7 material is a better option for the electrochemical energy storage application.
Collapse
Affiliation(s)
- S. K. Shinde
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University, Biomedical Campus, 32 Dongguk-ro, Ilsandong-gu, Siksa-dong, Goyang-si 10326, Republic of Korea
| | - Monali B. Jalak
- Department of Physics, Shivaji University, Kolhapur 416004, India
| | - Swapnil S. Karade
- Department of Green Technology, University of Southern Denma.+8/rk, Campusvej 55, DK-5230 Odense, Denmark
| | - Sutripto Majumder
- Department of Physics, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Mohaseen S. Tamboli
- Korea Institute of Energy Technology (KENTECH), 200 Hyeokshin-ro, Naju 58330, Republic of Korea
| | - Nguyen Tam Nguyen Truong
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Nagesh C. Maile
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Dae-Young Kim
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University, Biomedical Campus, 32 Dongguk-ro, Ilsandong-gu, Siksa-dong, Goyang-si 10326, Republic of Korea
| | - Ajay D. Jagadale
- Center for Energy Storage and Conversion, School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, India
| | - H. M. Yadav
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur 416004, India
| |
Collapse
|
10
|
Qian G, Lyu W, Zhao X, Zhou J, Fang R, Wang F, Li Y. Efficient Photoreduction of Diluted CO
2
to Tunable Syngas by Ni−Co Dual Sites through d‐band Center Manipulation. Angew Chem Int Ed Engl 2022; 61:e202210576. [DOI: 10.1002/anie.202210576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Gan Qian
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Wenyuan Lyu
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Xin Zhao
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Jingyi Zhou
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Ruiqi Fang
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Fengliang Wang
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Yingwei Li
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
11
|
Qian G, Lyu W, Zhao X, Zhou J, Fang R, Wang F, Li Y. Efficient Photoreduction of Diluted CO2 to Tunable Syngas by Ni‐Co Dual Sites through d‐band Center Manipulation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gan Qian
- South China University of Technology Chemistry and Chemical Engineering CHINA
| | - Wenyuan Lyu
- South China University of Technology Chemistry and Chemical Engineering CHINA
| | - Xin Zhao
- South China University of Technology Chemistry and Chemical Engineering CHINA
| | - Jingyi Zhou
- South China University of Technology Chemistry and Chemical Engineering CHINA
| | - Ruiqi Fang
- South China University of Technology Chemistry and Chemical Engineering CHINA
| | - Fengliang Wang
- South China University of Technology Chemistry and Chemical Engineering CHINA
| | - Yingwei Li
- South China University of Technology School of Chemistry and Chemical Engineering Wushan St. 510640 Guangzhou CHINA
| |
Collapse
|
12
|
Yang H, Dai K, Zhang J, Dawson G. Inorganic-organic hybrid photocatalysts: Syntheses, mechanisms, and applications. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64096-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Wu J, Zheng X, Wang Y, Liu H, Wu Y, Jin X, Chen P, Lv W, Liu G. Activation of peracetic acid via Co 3O 4 with double-layered hollow structures for the highly efficient removal of sulfonamides: Kinetics insights and assessment of practical applications. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128579. [PMID: 35247737 DOI: 10.1016/j.jhazmat.2022.128579] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Sulfonamides (SAs) have been of ecotoxicological concern for ambient ecosystems due to their widespread application in the veterinary industry. Herein, we developed a powerful advanced oxidation peracetic acid (PAA) activation process for the remediation of SAs by Co3O4 with double-layered hollow structures (Co3O4 DLHSs). Systematic characterization results revealed that the polyporous hollow hierarchical structure endows Co3O4 DLHSs with abundant active reaction sites and enhanced mass transfer rate, which were conducive for improving the PAA activation efficiency. Laser flash photolysis experiment and mechanism studies indicated that organic radical species were dominant reactive species for SAs removal. The present system is also highly effective under natural water matrices and trace SAs concentration (20 μg/L) condition. More importantly, the chlorella acute toxicity of the SAs solution was eliminated during mineralization process, supporting this catalytic system may be efficaciously applied for the remediation of SAs contamination in ambient waterways.
Collapse
Affiliation(s)
- Jianqing Wu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoshan Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingfei Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Haijin Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Xinxiang 453007, China
| | - Yuliang Wu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyu Jin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenying Lv
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guoguang Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
14
|
Cheng Y, Gong M, Xu T, Liu E, Fan J, Miao H, Hu X. Epitaxial Grown Sb 2Se 3@Sb 2S 3 Core-Shell Nanorod Radial-Axial Hierarchical Heterostructure with Enhanced Photoelectrochemical Water Splitting Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23785-23796. [PMID: 35579330 DOI: 10.1021/acsami.2c05551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antimony selenide (Sb2Se3) as a light-harvesting material has gradually attracted the attention of researchers in the field of photoelectrocatalysis. Uniquely, the crystal structure consists of one-dimensional (Sb4Se6)n ribbons, with an efficient carrier transport along the ribbon [001] direction. Herein, a novel Sb2Se3@Sb2S3 core-shell nanorod radial-axial hierarchical heterostructure was successfully fabricated by epitaxial growth strategy. Taking advantage of the isomorphous and anisotropic binding modes of (Sb4S(e)6)n ribbons for Sb2Se3 and Sb2S3, the epitaxially grown core-shell heterostructure forms a van der Waals heterojunction across the radial direction and covalently bonded heterojunction along the axial direction. A photocurrent of 1.37 mA cm-2 was achieved at 0 V vs RHE for the hierarchical Sb2Se3@Sb2S3 nanorod photoelectrode with [101] preferred orientation, up to 40 times higher than for pure Sb2Se3. Moreover, the FeOOH was introduced as a cocatalyst. The photoelectrode decorated with FeOOH shows better stability with a H2 generation rate of 18.9 μmol cm-2 h-1 under neutral conditions. This study provides a new insight into the design of antimony chalcogenide heterostructure photoelectrodes for photoelectrochemical water splitting.
Collapse
Affiliation(s)
- Yufei Cheng
- School of Physics, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Ming Gong
- School of Physics, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Tete Xu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Enzhou Liu
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Jun Fan
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Hui Miao
- School of Physics, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Xiaoyun Hu
- School of Physics, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| |
Collapse
|
15
|
Liang X, Ji S, Chen Y, Wang D. Synthetic strategies for MOF-based single-atom catalysts for photo- and electro-catalytic CO 2 reduction. iScience 2022; 25:104177. [PMID: 35434562 PMCID: PMC9010762 DOI: 10.1016/j.isci.2022.104177] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The excessive CO2 emission has resulted in climate changes, which has threatened human existence. Photocatalytic and electrocatalytic CO2 reduction, driven by wind electricity and solar energy, are feasible ways of tackling carbon dioxide emission, as both energies are clean and renewable. Single-atom catalyst (SAC) is a candidate owing to excellent electrocatalytic and photocatalytic performance. Methods for preparing an SAC by using metal-organic frameworks (MOFs) as support or precursors are summarized. Also, applications in energy conversion are exhibited. However, the real challenge is to improve the selectivity of catalytic reactions to yield higher value products, which is to be discussed.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shufang Ji
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S3H6, Canada
| | - Yuanjun Chen
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S3G4, Canada
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Wang F, Fang R, Zhao X, Kong XP, Hou T, Shen K, Li Y. Ultrathin Nanosheet Assembled Multishelled Superstructures for Photocatalytic CO 2 Reduction. ACS NANO 2022; 16:4517-4527. [PMID: 35245030 DOI: 10.1021/acsnano.1c10958] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solar-driven conversion of CO2 is considered an efficient way to tackle the energy and environmental crisis. However, the photocatalytic performance is severely restricted due to the insufficient accessible active sites and inhibited electron transfer efficiency. This work demonstrates a general in situ topological transformation strategy for the integration of uniform Co-based species to fabricate a series of multishelled superstructures (MSSs) for CO2 photocatalytic conversion. Thorough characterizations reveal the obtained MSSs feature ultrathin Co-based nanosheet assembled polyhedral structures with tunable shell numbers, inner cavity sizes, and compositions. The superstructures increase the spatial density of Co-based active sites while maintaining their high accessibility. Further, the ultrathin nanosheets also facilitate the transfer of photogenerated electrons. As a result, the ZnCo bimetallic hydroxide featuring an ultrathin nanosheet assembled quadruple-shell hollow structure (ZnCo-OH QUNH) exhibits high photocatalytic efficiency toward CO2 reduction with a CO evolution rate of 134.2 μmol h-1 and an apparent quantum yield of 6.76% at 450 nm. The quasi in situ spectra and theoretical calculations disclose that Co sites in ZnCo-OH QUNH act as highly active centers to stabilize the COOH* intermediate, while Zn species play the role of adsorption sites for the [Ru(bpy)3]2+ molecules.
Collapse
Affiliation(s)
- Fengliang Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ruiqi Fang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xin Zhao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiang-Peng Kong
- The School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Tingting Hou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kui Shen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yingwei Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China
| |
Collapse
|