1
|
Liang S, Sun Y, Yang P, Su Q, Li G, Yang X, Zuo X. Constructing Mechanochromic Fluorescent Interphase via Core-Shell Microcapsules: A Route for Interface Reinforcing and Damage Self-Reporting of CFRP Composites. Macromol Rapid Commun 2024; 45:e2400430. [PMID: 39215623 DOI: 10.1002/marc.202400430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Perylenediimide-chitosan/γ-poly (glutamic acid) microcapsules sizing (PDI-CS/γ-PGA) core-shell microcapsule is designed and used to establish a novel interphase in carbon fiber/epoxy (CF/EP) composite, and the interfacial property, as well as the damage self-reporting of the composite, is compared with desized carbon fiber (CF-desized)/EP and commercial carbon fiber (CF-COM)/EP composite. The ruptured PDI-CS/γ-PGA microcapsule exhibits strong "turn-on" green fluorescence from the released PDI upon mechanical stimuli. The anchoring of PDI-CS/γ-PGA microcapsule on carbon fiber with PDI-CS/γ-PGA microcapsules sizing (CF@PDI-CS/γ-PGA) surface results in increased chemical activity and roughness, exhibiting a weak green fluorescence signal instead of non-fluorescence on CF-desized and CF-COM surface. The transverse fiber bundle tensile (TFBT) strength of CF@PDI-CS/γ-PGA composite is 80.97% and 31.09% higher than those of CF-desized/EP and CF-COM/EP composite, which is attributed to the mechanical interlocking and chemical bonding interaction between carbon fiber and epoxy matrix by introducing PDI-CS/γ-PGA microcapsule with spherular structure and active groups. After microdroplet testing, the strong "turn-on" green fluorescence signal of the released PDI from the microcapsules is detected in the interfacial debonding regions, realizing the microscopic damage self-reporting of CF@PDI-CS/γ-PGA composite.
Collapse
Affiliation(s)
- Siyun Liang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuhang Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peiwen Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingfu Su
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou, 213164, China
| | - Gang Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou, 213164, China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaobiao Zuo
- National Engineering Research Center of Functional Carbon Composite, Aerospace Research Institute of Materials & Processing Technology, Beijing, 100076, China
| |
Collapse
|
2
|
Dai S, Yang C, Yan F, Guo P, Song Y, Jin L, Shang L, Liu Y, Liu L, Ao Y. Constructing an interaction in plant polyphenol-modified carbon fiber with amylopectin-based waterborne polyurethane sizing agent via hydrogen bonding to improve the interfacial performance of carbon fiber/nylon 6 composites. Int J Biol Macromol 2024; 276:133877. [PMID: 39009255 DOI: 10.1016/j.ijbiomac.2024.133877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The adhesive strength between the sizing agent and carbon fiber (CF) plays a crucial role in improving the interfacial properties of composites, while such a vital aspect has been consistently disregarded. In this study, a hyperbranched waterborne polyurethane (HWPU) sizing agent was synthesized from biogenetically raw materials including gallic acid, l-Lysine diisocyanate and amylopectin. Concurrently, hydrogen-bonded cross-linked network structures were established utilizing a botanical polyphenol tannin as coupling agent to effectively connect CF with HWPU. This meticulous process yielded CF/nylon 6 composites with improved properties and their mechanical characteristics were systematically investigated. The findings showcased a noteworthy boost in flexural strength and interlaminar shear strength (ILSS), showing enhancements of 54.6 % and 61.4 %, respectively, surpassing those of untreated CF. Furthermore, the interfacial shear strength (IFSS) test indicated a remarkable 70.3 % improvement. This approach presents a highly promising concept aimed at developing sustainable green waterborne polyurethane sizing agent and improving the interfacial performance of CF composite materials.
Collapse
Affiliation(s)
- Shengtao Dai
- Jilin Provincial Laboratory of Carbon Fiber and Composites, Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Chang Yang
- Jilin Provincial Laboratory of Carbon Fiber and Composites, Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Fei Yan
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Peipei Guo
- Jilin Provincial Laboratory of Carbon Fiber and Composites, Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Yufeng Song
- Jilin Provincial Laboratory of Carbon Fiber and Composites, Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Lin Jin
- Jilin Provincial Laboratory of Carbon Fiber and Composites, Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Lei Shang
- Jilin Provincial Laboratory of Carbon Fiber and Composites, Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Yu Liu
- Jilin Provincial Laboratory of Carbon Fiber and Composites, Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Liu Liu
- Jilin Provincial Laboratory of Carbon Fiber and Composites, Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China; College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Yuhui Ao
- Jilin Provincial Laboratory of Carbon Fiber and Composites, Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China.
| |
Collapse
|
3
|
Gao J, Bi Y, Su J, Zhang Y, Wang Y, Zhang S. The rigid-flexible balanced molecular crosslinking network transition interface: An effective strategy for improving the performance of bamboo fibers/poly(butadiene succinate-co-butadiene adipate) biocomposites. Int J Biol Macromol 2024; 276:133786. [PMID: 38992551 DOI: 10.1016/j.ijbiomac.2024.133786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
The poor interfacial compatibility of natural fiber-reinforced polymer composites has become a major challenge in the development of industry-standard high-performance composites. To solve this problem, this study constructs a novel rigid-flexible balanced molecular crosslinked network transition interface in composites. The interface improves the interfacial compatibility of the composites by balancing the stiffness and strength of the fibers and the matrix, effectively improving the properties of the composites. The flexural strength and flexural modulus of the composites were enhanced by 38 % and 44 %, respectively. Water absorption decreased by 30 %. The initial and maximum thermal degradation temperatures increased by 20 °C and 16 °C, respectively. The maximum storage modulus increased by 316 %. Furthermore, the impact toughness was elevated by 41 %, attributed to the crosslinked network's efficacy in absorbing and dissipating externally applied energy. This innovative approach introduces a new theory of interfacial reinforcement compatibility, advancing the development of high-performance and sustainable biocomposites.
Collapse
Affiliation(s)
- Jian Gao
- Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yanbin Bi
- Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jixing Su
- Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yi Zhang
- Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yida Wang
- Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shuangbao Zhang
- Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
4
|
Qi Y, Jiang D, Ju S, Zhang J. Investigation of the nanostructure and nanomechanical properties of the interphase in carbon fiber reinforced polyamide-6 composite. Sci Rep 2024; 14:17276. [PMID: 39068292 PMCID: PMC11283473 DOI: 10.1038/s41598-024-68373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Carbon fiber reinforced polyamide-6 (CF/PA-6) composites have been widely applied in automobile, aerospace, and biomedical industries for their high mechanical properties, high thermal resistance and recyclability. On the purpose of finding ways to improve the interfacial properties, the investigation of the nanostructure and nanomechanical properties of the interphase in CF/PA-6 composites were essential. In this study, MD simulation was carried out to show the interfacial formation and nanostructure of the CF/PA-6 composite model directly at the atomic level and compute the radial distribution function, interfacial energy, total energy. Then the nanomechanical properties of the CF/PA-6 composite, such as interfacial thickness, interfacial modules, interfacial adhesion, were investigated by AFM PF-QNM model. The changes of the radical distribution function and energies over the MD simulation time indicated that the PA-6 chains adsorbed and then regularly folded on the CF surface, displaying the interfacial crystallization of the CF/PA-6 composite model. What stood out in the AFM PF-QNM tests were the abrupt decreasing of the interfacial modulus and the sharp increasing of the interfacial adhesion from those of the carbon fiber to those of the PA-6. The average interfacial thickness of the CF/PA-6 composite was 72 nm. Consistent with the simulation results, the interfacial properties were distinct from the properties of the carbon fiber and PA-6, owning to the adsorption and orderly folding of the PA-6 chains on the CF surface and the changes of the RDF and energies.
Collapse
Affiliation(s)
- Yixin Qi
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, China.
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China.
| | - Dazhi Jiang
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
- School of Materials, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Su Ju
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Jianwei Zhang
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| |
Collapse
|
5
|
Huan X, Li H, Song Y, Luo J, Liu C, Xu K, Geng H, Guo X, Chen C, Zu L, Jia X, Zhou J, Zhang H, Yang X. Charge Dynamics Engineering Sparks Hetero-Interfacial Polarization for an Ultra-Efficient Microwave Absorber with Mechanical Robustness. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306104. [PMID: 37775948 DOI: 10.1002/smll.202306104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/13/2023] [Indexed: 10/01/2023]
Abstract
Microwave absorbers with high efficiency and mechanical robustness are urgently desired to cope with more complex and harsh application scenarios. However, manipulating the trade-off between microwave absorption performance and mechanical properties is seldom realized in microwave absorbers. Here, a chemistry-tailored charge dynamic engineering strategy is proposed for sparking hetero-interfacial polarization and thus coordinating microwave attenuation ability with the interfacial bonding, endowing polymer-based composites with microwave absorption efficiency and mechanical toughness. The absorber designed by this new conceptual approach exhibits remarkable Ku-band microwave absorption efficiency (-55.3 dB at a thickness of 1.5 mm) and satisfactory effective absorption bandwidth (5.0 GHz) as well as desirable interfacial shear strength (97.5 MPa). The calculated differential charge density depicts the uneven distribution of space charge and the intense hetero-interfacial polarization, clarifying the structure-performance relationship from a theoretical perspective. This work breaks through traditional single performance-oriented design methods and ushers a new direction for next-generation microwave absorbers.
Collapse
Affiliation(s)
- Xianhua Huan
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, 230009, P. R. China
- State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fibre and Functional Polymer, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hefeng Li
- State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fibre and Functional Polymer, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuxiao Song
- State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fibre and Functional Polymer, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jintao Luo
- Beijing Spacecraft Manufacturing Factory Co. Ltd., Beijing, 100094, P. R. China
| | - Cong Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fibre and Functional Polymer, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ke Xu
- Inner Mongolia Aerospace Hong Gang Machinery Corporation Limited, Inner Mongolia, 010076, P. R. China
| | - Hongbo Geng
- Inner Mongolia Aerospace Hong Gang Machinery Corporation Limited, Inner Mongolia, 010076, P. R. China
| | - Xiaodong Guo
- Inner Mongolia Aerospace Hong Gang Machinery Corporation Limited, Inner Mongolia, 010076, P. R. China
| | - Chen Chen
- Xi'an Institute of Aerospace Propulsion Technology, Xi'an, 710025, P. R. China
- The 41st Institute of the Fourth Academy of CSAC National Key Lab of Combustion, Flow and Thermo-structure, Xi'an, 710025, P. R. China
| | - Lei Zu
- School of Mechanical Engineering, Hefei University of Technology, Hefei, 230000, P. R. China
| | - Xiaolong Jia
- State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fibre and Functional Polymer, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jisheng Zhou
- State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fibre and Functional Polymer, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Haobin Zhang
- State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fibre and Functional Polymer, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fibre and Functional Polymer, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
6
|
Wang J, Wang M, Zhang X, Han Y, Wu Y, Wang D, Qin X, Lu Y, Zhang L. Quantification Characterization of Hierarchical Structure of Polyurethane by Advanced AFM and X-ray Techniques. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45388-45398. [PMID: 37705159 DOI: 10.1021/acsami.3c07860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Polyurethane (PU) with microphase separation has garnered significant attention due to its highly designable molecular structure and a wide range of adjustable properties. However, there is currently a lack of systematic approaches for quantifying PU's microphase separation. To address this research gap, we utilized an atomic force microscopy (AFM) nanomechanical mapping technique along with Gaussian fitting to recolor and quantitatively analyze the evolution of PU's microphase separation. By varying the ratios of the chain extender to cross-linking agent, we observed the changes in the hydrogen bonding between the soft and hard segments. As the ratio of the chain extender to cross-linking agent decreases, the strength of the hydrogen bonding weakens, resulting in a reduction in the quantity and phase percentage of hard segment (HS) domains. Consequently, the degree of microphase separation between the soft and hard segments decreases, leading to specific alterations in the material's mechanical properties and dynamic viscoelasticity. To further investigate the hierarchical structure of PU, we employed various techniques, such as X-ray analysis, transmission electron microscopy (TEM), and AFM-based infrared spectroscopy (AFM-IR). Our findings reveal a spherulite pattern composed of lamellae within the HS domains, with the cross-linking density gradually increasing from the center to the periphery. Overall, our comprehensive characterization of PU provides valuable insights into its hierarchical structure and establishes a quantitative framework to explore the intricate relationship between the structure and properties.
Collapse
Affiliation(s)
- Jiadong Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| | - Min Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| | - Xi Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yang Han
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| | - Yingxue Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| | - Dong Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| | - Xuan Qin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| | - Yonglai Lu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
- Institute of Emergent Elastomers, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| |
Collapse
|
7
|
Zhang T, Zhu CR, Liu SL, Long SR, Wei ZM, Yang JC, Zhang G, Wang XJ, Yang J. New Strategy for Improvement of Interfacial Interactions between Poly(arylene sulfide sulfone) and Carbon Fiber by Grafting Polymeric Chains via Thiol-Ene Click Chemistry. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19490-19503. [PMID: 37014192 DOI: 10.1021/acsami.3c02467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
A simple and efficient strategy for enhancing the interfacial interaction in carbon fiber-reinforced poly(arylene sulfide sulfone) (CF/PASS) composites by grafting polymeric chains via thiol-ene click chemistry is reported here. Simultaneously, three thiol compounds and carbon nanotubes were grafted on CFs to explore the reaction between the CF and thiol groups. X-ray photoelectron spectroscopy, Raman spectroscopy, and normalized temperature-dependent IR spectroscopy results confirm the successful grafting of three thiol compounds, carbon nanotubes, and polymer chains. Similarly, obvious changes on the CF surface can be seen before and after modification via scanning electron microscopy, such as grafted nanotubes and polymeric resin, and the increase in the modulus gradient and interfacial thickness of CF/PASS can be clearly seen via atomic force microscopy. All the results of micro and macro tests on mechanical properties indicate that connecting low molecular weight thiol-terminated PASS (HS-LPASS) onto CFs enhances the interfacial property and mechanical performance of CF/PASS to a greater extent. The interfacial shear strength, interlaminar shear strength, and tensile strength of CF@HS-LPASS-reinforced PASS (CF@HS-LPASS/PASS) increase significantly by 38.5, 43.6, and 24.4%, respectively. All the results demonstrate that thiol-ene click reactions can be used for CF modification; furthermore, in the presence of external stress, the grafted polymeric interphase can act as a "bridge layer" to improve the stress transfer efficiency.
Collapse
Affiliation(s)
- Tong Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610064, People's Republic of China
- Jiangsu JITRI Advanced Polymer Materials Research Institute Co., Ltd, Nanjing 210000, China
| | - Chuan-Ren Zhu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Sui-Lin Liu
- Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Sheng-Ru Long
- Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Zhi-Mei Wei
- Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
- Jiangsu JITRI Advanced Polymer Materials Research Institute Co., Ltd, Nanjing 210000, China
| | - Jia-Cao Yang
- Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Gang Zhang
- Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xiao-Jun Wang
- Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jie Yang
- Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
8
|
Tang X, Sun Y, Li G, Yang X. Synergistic enhancement of interfacial and anti-hydrothermal properties of HMCF reinforced Cyanate Ester composites by matrix stiffening and interphase optimization. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Cai T, He F, Li Y, Li Y, Jiang Z, Li J, Zhou Y, Chen Z, Yang W. Flexible and Mechanically Enhanced Polyurethane Composite for γ-ray Shielding and Thermal Regulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4690-4702. [PMID: 36634206 DOI: 10.1021/acsami.2c18252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microencapsulation of paraffin with lead tungstate shell (Pn@PWO) shows the drawbacks of low wettability and poor leakage-proof property and thermal reliability, restricting the application of phase change microcapsules. Herein, a novel paraffin@lead tungstate@silicon dioxide double-shelled microcapsule (Pn@PWO@SiO2) has been successfully constructed by the emulsion-templated interfacial polycondensation and applied in the waterborne polyurethane (WPU). The results indicated that a SiO2 layer with controlled thickness was formed on the PbWO4 shell. The Pn@PWO@SiO2 microcapsules have exhibited superior leakage-proof properties and thermal reliability through double-shelled protection, and the leakage rate decreased by at least 54.11% compared to that of Pn@PWO microcapsules. The SiO2 layer with abundant polar groups ameliorated the wettability of microcapsules and the interfacial compatibility between microcapsules and the WPU matrix. The tensile strength of WPU/Pn@PWO@SiO2-2 composites reached 10.98 MPa, which was over 7 times greater than that of WPU/Pn@PWO composites. In addition, WPU/Pn@PWO@SiO2-2 composites with a latent heat capacity of over 41 J/g exhibited efficient phase change stability and γ-ray shielding properties. Also, the mass attenuation coefficients reached 1.38 cm2/g at 105.3 keV and 1.12 cm2/g at 86.5 keV, respectively. These properties will greatly promote the application of WPU/Pn@PWO@SiO2 composites into γ-ray-shielding devices with thermal regulation.
Collapse
Affiliation(s)
- Tianyu Cai
- State Key Laboratory of Environmental-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Sichuan 621010, China
| | - Fangfang He
- State Key Laboratory of Environmental-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Sichuan 621010, China
| | - Yongsheng Li
- State Key Laboratory of Environmental-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Sichuan 621010, China
| | - Yingjun Li
- State Key Laboratory of Environmental-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Sichuan 621010, China
| | - Zhuoni Jiang
- State Key Laboratory of Environmental-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Sichuan 621010, China
| | - Jiale Li
- State Key Laboratory of Environmental-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Sichuan 621010, China
| | - Yuanlin Zhou
- State Key Laboratory of Environmental-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Sichuan 621010, China
| | - Zhengguo Chen
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Sichuan 621019, China
| | - Wenbin Yang
- State Key Laboratory of Environmental-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Sichuan 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Sichuan 621019, China
| |
Collapse
|
10
|
Enhanced thermo-oxidative aging properties of CFRP composites by construction of heat resistance interface and interphase through waterborne polyamic acid sizing. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Zhang T, Fu XB, Leng HS, Liu SL, Long SR, Yang JC, Zhang G, Wang XJ, Yang J. Improve the Interfacial Properties between Poly(arylene sulfide sulfone) and Carbon Fiber by Double Polymeric Grafted Layers Designed on a Carbon Fiber Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10975-10985. [PMID: 36047935 DOI: 10.1021/acs.langmuir.2c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Double polymeric grafted layer is constructed by two steps of chemical reaction, in which two polymers had been used, respectively polydopamine (PDA) film and modified PASS (NH2-PASS) resin containing amine group, as the interphase in carbon fiber reinforced poly(arylene sulfide sulfone) (PASS) composite (CF/PASS) to work on enhancing the interfacial property. All the test results of chemical components and chemical structures on the carbon fiber surface show that the double polymeric grafted layer was constructed successfully with PDA and NH2-PASS chains. And obvious characteristics of thin PDA film and a polymer layer can be clearly seen in the morphology of modified carbon fiber. In addition to this, the obvious interphase and change in the thickness of interphase have been observed in the modulus distribution images of CF/PASS. The final superb performance is achieved by PASS composites with a double polymeric grafted layer, 27.2% and 198.6% superior to the original PASS composite for IFSS and ILSS, respectively. Moreover, the result also indicates that constructing a double polymeric grafted layer on a carbon fiber surface is a promising technique to modify carbon fiber for processing high-performance advanced thermoplastic composites and is more environmental friendly as well as convenient.
Collapse
Affiliation(s)
- Tong Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610064, People's Republic of China
- Jiangsu JITRI Advanced Polymer Materials Research Institute Co., Ltd, Nanjing 210000, China
| | - Xiao-Bo Fu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Huai-Sen Leng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610064, People's Republic of China
- Jiangsu JITRI Advanced Polymer Materials Research Institute Co., Ltd, Nanjing 210000, China
| | - Sui-Lin Liu
- Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Sheng-Ru Long
- Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jia-Cao Yang
- Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Gang Zhang
- Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xiao-Jun Wang
- Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jie Yang
- Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|