1
|
Li BS, Cao LH, Chen XY, Tian Y. Encryption application of a fast stimulus-responsive hydrogen-bonded organic framework based on FRET. Chem Commun (Camb) 2025; 61:5345-5348. [PMID: 40084829 DOI: 10.1039/d5cc00892a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
A photochromic ionic hydrogen-bonded organic framework (iHOF-51) was synthesized by reacting organic carboxylic acids with amidinium salts. Fast, reversible, and high-contrast stimulus-responsive behavior via anionic radical naphthalenediimide (NDI) is observed. iHOF-51exhibits time-dependent photochromism in the powder state and excellent photoluminescent properties based on the synergistic interaction of FRET and radical anions in the 1%-iHOF-51-PVA composite membrane.
Collapse
Affiliation(s)
- Bing-Sha Li
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Li-Hui Cao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Xu-Yong Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Yu Tian
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| |
Collapse
|
2
|
Lu X, Zhang P, Pan H, Yin P, Zhang P, Yang L, Suo X, Cui X, Xing H. Ionic porous materials: from synthetic strategies to applications in gas separation and catalysis. Chem Soc Rev 2025; 54:3061-3139. [PMID: 39963797 DOI: 10.1039/d3cs01163a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Ionic porous materials possess a unique combination of tunable pore sizes and task-specific interactions between guest molecules and the charged frameworks, which endow them with versatility across diverse domains in chemistry and materials science. Significant advancements in their applications for gas separation and catalysis have been achieved in recent years due to the incorporation of ionic functionalities and ultra-microporous structures that enable molecular-scale recognition of guest molecules. This review summarizes recent advancements in the synthetic strategies of ionic porous materials, establishing design guidelines for the incorporation of ionic moieties into the backbone to fine-tune pore sizes and chemistry. It highlights the synergistic interplay of task-specific interactions with custom-designed pore structures in key applications, including adsorption separation, membrane separation, and gas conversion. Additionally, it examines structure-property relationships, offering deeper insights into enhancing performance. The report also addresses the current challenges in the practical application of these materials. Finally, the review provides future perspectives on ionic porous materials from both scientific and industrial viewpoints. Overall, this review aims to provide insights into pore structure and chemistry, supporting the precise placement of ionic functionalities.
Collapse
Affiliation(s)
- Xiaofei Lu
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Penghui Zhang
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Hanqian Pan
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Pengyuan Yin
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Peixin Zhang
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Lifeng Yang
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xian Suo
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Xili Cui
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Huabin Xing
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| |
Collapse
|
3
|
Jiang S, Niu H, Gu X, Cai Y. Perfluoroalkyl Functionalized Superhydrophobic Covalent Organic Frameworks for Excellent Oil-Water Membrane Separation and Anhydrous Proton Conduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403772. [PMID: 39004855 DOI: 10.1002/smll.202403772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Rapid economic development has led to oil pollution and energy shortage. Membrane separation has attracted much attention due to its simplicity and efficiency in oil-water-separation. The development of membrane materials with enhanced separation properties is essential to improve the separation-efficiency. Proton exchange membrane fuel cells (PEMFCs) are expected to replace conventional engines due to their high-power-conversion rates and other favorable properties. Anhydrous-proton-conducting materials are vital components of PEMFCs. However, developing stable proton-conducting materials that exhibit high conductivity at varying temperatures remains challenging. Herein, two covalent organic frameworks (COFs) with long-side-chains are synthesized, and their corresponding COF@SSN membranes. Both membranes can effectively separate oil-water mixtures and water-in-oil emulsions. The TFPT-AF membrane achieves a maximum oil-flux of 6.05 × 105 g h-1 m-2 with an oil-water separation efficiency of above 99%, which is almost unchanged after 20 consecutive uses. COF@H3PO4 doped with different ratios of H3PO4 is prepared, the results show that the perfluorocarbon-chain system has excellent anhydrous proton conductivity , achieving an ultra-high proton-conductivity of 3.98 × 10-1 S cm-1 at 125 °C. This study lays the foundation for tailor-made-functionalization of COF through pre-engineering and surface-modification, highlighting the great potential of COFs for oil-water separation and anhydrous-proton-conductivity.
Collapse
Affiliation(s)
- Shaodong Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongyun Niu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
| | - Xiaoling Gu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| |
Collapse
|
4
|
Zou H, Huan Z, Wang N, Lu J, Liu H, Wang S, Li Y. Comparative Study on the Proton Conduction Behaviors of Two Acidic Amphiphilic and Hydrophilic Coordination Compounds in Nafion Composite Membranes. Inorg Chem 2024; 63:14402-14414. [PMID: 39041672 DOI: 10.1021/acs.inorgchem.4c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The acidic amphiphilic compound H[Co(H2L1)(HL1)(phen)]·3H2O (H4(Co-L1), H3L1 = 5-(3', 5'-dicarboxylphenyl)-pyridine-2-carboxylic, phen = phenanthroline) and the hydrophilic compound [Ni(HL2)(H2O)5]·H2O (H(Ni-L2), H3L2 = 5-(3',5'-dicarboxylphenyl)-pyridine-3-carboxylic) were synthesized via hydrothermal reactions at acidic conditions. The acidity of H4(Co-L1) is stronger than of H(Ni-L2); while the hydrogen bond continuity in H4(Co-L1) extended monodirectionally, which is smaller compared to the three-directional extension observed in H(Ni-L2). The proton conduction behaviors of these two compounds as fillers of Nafion composite membranes have been investigated. The results indicate that the optimal doping amounts of H4(Co-L1) and H(Ni-L2) are 2 and 1%, respectively; the proton conductivities of H4(Co-L1)/Nafion-2 and H(Ni-L2)/Nafion-1 composite membranes are 0.243 and 0.212 S·cm-1, respectively, which are approximately 50.2 and 30.6% higher than that of pure Nafion membrane, respectively. A higher doping amount of H4(Co-L1) can be attributed to its hydrophobic phen ligand, which promotes compatibility with Nafion membrane and reduces aggregation. Hydrogen bond continuity has a more significant effect on proton conductivity than acidity at relatively low doping amounts; conversely, this relationship reverses at relatively high doping amounts.
Collapse
Affiliation(s)
- Huiqi Zou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Zhipeng Huan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Na Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Jing Lu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Houting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| |
Collapse
|
5
|
Song YJ, Xie LX, Sang YL, Zhang YH, Li ZF, Li G. Ultrahigh proton conductivity of four ionic hydrogen-bonded organic frameworks based on functionalized terephthalates. J Colloid Interface Sci 2024; 674:1058-1070. [PMID: 39008942 DOI: 10.1016/j.jcis.2024.07.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Recently, the utilization of hydrogen-bonded organic frameworks (HOFs) with high crystallinity and inherent well-defined H-bonding networks in the field of proton conduction has received increasing attention, but obtaining HOFs with excellent water stability and prominent proton conductivity (σ) remains challenging. Herein, by employing functionalized terephthalic acids, 2,5-dihydroxyterephthalic acid, 2-hydroxyterephthalic acid, 2-nitro terephthalic acid, and terephthalic acid, respectively, four highly water-stable ionic HOFs (iHOFs), [(C8H5O6)(Me2NH2)]∙2H2O (iHOF 1), [(C8H5O5)(Me2NH2)] (iHOF 2), [(C8H4NO6)(Me2NH2)] (iHOF 3) and [(C8H5O4)(Me2NH2)] (iHOF 4) were efficiently prepared by a straightforward synthesis approach in DMF and H2O solutions. The alternating-current (AC) impedance testing in humid conditions revealed that all four iHOFs were temperature- and humidity-dependent σ, with the greatest value reaching 10-2 S·cm-1. As expected, the high density of free carboxylic acid groups, crystallization water, and protonated [Me2NH2]+ units offer adequate protons and hydrophilic environments for effective proton transport. Furthermore, the σ values of these iHOFs with different functional groups were compared. It was discovered that it dropped in the following order under 100 °C and 98 % relative humidity (RH): σ iHOF 1 (1.72 × 10-2 S·cm-1) > σ iHOF 2 (4.03 × 10-3 S·cm-1) > σ iHOF 3 (1.46 × 10-3 S·cm-1) > σ iHOF 4 (4.86 × 10-4 S·cm-1). Finally, we investigated the causes of the above differences and the proton transport mechanism inside the framework using crystal structure data, water contact angle tests, and activation energy values. This study provides new motivation to develop highly proton-conductive materials.
Collapse
Affiliation(s)
- Yong-Jie Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Li-Xia Xie
- College of Science, Henan Agricultural University, Zhengzhou 450002, Henan, PR China
| | - Ya-Li Sang
- College of Chemistry and Life Science, Chifeng University, Chifeng 024000, PR China; Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng 024000, PR China
| | - Yu-Hong Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, PR China.
| | - Zi-Feng Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, PR China.
| | - Gang Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, PR China.
| |
Collapse
|
6
|
Zhou Y, Wang B, Ling Z, Liu Q, Fu X, Zhang Y, Zhang R, Hu S, Zhao F, Li X, Bao X, Yang J. Advances in ionogels for proton-exchange membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171099. [PMID: 38387588 DOI: 10.1016/j.scitotenv.2024.171099] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
To ensure the long-term performance of proton-exchange membrane fuel cells (PEMFCs), proton-exchange membranes (PEMs) have stringent requirements at high temperatures and humidities, as they may lose proton carriers. This issue poses a serious challenge to maintaining their proton conductivity and mechanical performance throughout their service life. Ionogels are ionic liquids (ILs) hybridized with another component (such as organic, inorganic, or organic-inorganic hybrid skeleton). This design is used to maintain the desirable properties of ILs (negligible vapor pressure, thermal stability, and non-flammability), as well as a high ionic conductivity and wide electrochemical stability window with low outflow. Ionogels have opened new routes for designing solid-electrolyte membranes, especially PEMs. This paper reviews recent research progress of ionogels in proton-exchange membranes, focusing on their electrochemical properties and proton transport mechanisms.
Collapse
Affiliation(s)
- Yilin Zhou
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Bei Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Zhiwei Ling
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Qingting Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Xudong Fu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yanhua Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Rong Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shengfei Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Feng Zhao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; Wuhan Troowin Power System Technology Co., Ltd., Wuhan 430079, China
| | - Xiao Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; Wuhan Troowin Power System Technology Co., Ltd., Wuhan 430079, China
| | - Xujin Bao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; Department of Materials, Loughborough University, Leicestershire LE11 3NW, UK.
| | - Jun Yang
- Zhuzhou Times New Material Technology Co., Ltd, Zhuzhou, Hunan 412007, China.
| |
Collapse
|
7
|
Chen XY, Cao LH, Bai XT, Cao XJ. Charge-Assisted Ionic Hydrogen-Bonded Organic Frameworks: Designable and Stabilized Multifunctional Materials. Chemistry 2024; 30:e202303580. [PMID: 38179818 DOI: 10.1002/chem.202303580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high crystallinity, mild reaction conditions, good solution processability, and reproducibility. Coupled with the reversibility and flexibility of hydrogen bonds, HOFs can be assembled into a wide diversity of crystalline structures. Since the bonding energy of hydrogen bonds is lower than that of ligand and covalent bonds, the framework of HOFs is prone to collapse after desolventisation and the stability is not high, which limits the development and application of HOFs. In recent years, numerous stable and functional HOFs have been developed by π-π stacking, highly interpenetrated networks, charge-assisted, ligand-bond-assisted, molecular weaving, and covalent cross-linking. Charge-assisted ionic HOFs introduce electrostatic attraction into HOFs to improve stability while enriching structural diversity and functionality. In this paper, we review the development, the principles of rational design and assembly of charge-assisted ionic HOFs, and introduces the different building block construction modes of charge-assisted ionic HOFs. Highlight the applications of charge-assisted ionic HOFs in gas adsorption and separation, proton conduction, biological applications, etc., and prospects for the diverse design of charge-assisted ionic HOFs structures and multifunctional applications.
Collapse
Affiliation(s)
- Xu-Yong Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Li-Hui Cao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xiang-Tian Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xiao-Jie Cao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
8
|
Chen C, Shen L, Lin H, Zhao D, Li B, Chen B. Hydrogen-bonded organic frameworks for membrane separation. Chem Soc Rev 2024; 53:2738-2760. [PMID: 38333989 DOI: 10.1039/d3cs00866e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a new class of crystalline porous materials that are formed through the interconnection of organic or metal-organic building units via intermolecular hydrogen bonds. The remarkable flexibility and reversibility of hydrogen bonds, coupled with the customizable nature of organic units, endow HOFs with mild synthesis conditions, high crystallinity, solvent processability, and facile self-healing and regeneration properties. Consequently, these features have garnered significant attention across various fields, particularly in the realm of membrane separation. Herein, we present an overview of the recent advances in HOF-based membranes, including their advanced fabrication strategies and fascinating applications in membrane separation. To attain the desired HOF-based membranes, careful consideration is dedicated to crucial factors such as pore size, stability, hydrophilicity/hydrophobicity, and surface charge of the HOFs. Additionally, diverse preparation methods for HOF-based membranes, including blending, in situ growth, solution-processing, and electrophoretic deposition, have been analyzed. Furthermore, applications of HOF-based membranes in gas separation, water treatment, fuel cells, and other emerging application areas are presented. Finally, the challenges and prospects of HOF-based membranes are critically pointed out.
Collapse
Affiliation(s)
- Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Dieling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Banglin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, China
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China.
| |
Collapse
|
9
|
Chen XY, Cao LH, Bai XT, Cao XJ, Yang D, Gao YD. Superprotonic Conductivity of Guanidinium Organosulfonate Hydrogen-Bonded Organic Frameworks with Nanotube-Shaped Proton Transport Channels. PRECISION CHEMISTRY 2023; 1:608-615. [PMID: 39473576 PMCID: PMC11504640 DOI: 10.1021/prechem.3c00094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/17/2024]
Abstract
Grasping proton transport pathways and mechanisms is vital for the application of fuel cell technology. Herein, we screened four guanidinium organosulfonate charge-assisted hydrogen-bonded organic frameworks (HOFs), namely, GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB, which possess high hydrogen-bonded density proton transport networks shaped like nanotubes. These materials were prepared by self-assembly through charge-assisted interactions between guanidinium cations and organosulfonate anions, as well as by host-guest regulation. At 80 °C and 93% RH, the proton conductivity of GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB can reach 4.56 × 10-2, 2.55 × 10-2, 4.01 × 10-2, and 1.2 × 10-1 S cm-1, respectively, with superprotonic conductivity. Doping G 6 HSPB into the Nafion matrix prepared composite membranes for testing the performance of fuel cells. At 80 °C and 98% RH, the proton conductivity of 9%-G 6 HSPB@Nafion reached a maximum value of 1.14 × 10-1 S cm-1, which is 2.8 times higher than recast Nafion. The results showed that charge-assisted HOFs with high proton channel density have better proton transport properties, providing a reference for the design of highly proton-conducting materials.
Collapse
Affiliation(s)
- Xu-Yong Chen
- Shaanxi Key Laboratory of
Chemical Additives for Industry, College of Chemistry and Chemical
Engineering, Shaanxi University of Science
and Technology, Xi’an, 710021, P. R.
China
| | - Li-Hui Cao
- Shaanxi Key Laboratory of
Chemical Additives for Industry, College of Chemistry and Chemical
Engineering, Shaanxi University of Science
and Technology, Xi’an, 710021, P. R.
China
| | - Xiang-Tian Bai
- Shaanxi Key Laboratory of
Chemical Additives for Industry, College of Chemistry and Chemical
Engineering, Shaanxi University of Science
and Technology, Xi’an, 710021, P. R.
China
| | - Xiao-Jie Cao
- Shaanxi Key Laboratory of
Chemical Additives for Industry, College of Chemistry and Chemical
Engineering, Shaanxi University of Science
and Technology, Xi’an, 710021, P. R.
China
| | - Dan Yang
- Shaanxi Key Laboratory of
Chemical Additives for Industry, College of Chemistry and Chemical
Engineering, Shaanxi University of Science
and Technology, Xi’an, 710021, P. R.
China
| | - Yi-Da Gao
- Shaanxi Key Laboratory of
Chemical Additives for Industry, College of Chemistry and Chemical
Engineering, Shaanxi University of Science
and Technology, Xi’an, 710021, P. R.
China
| |
Collapse
|
10
|
Application of Hydrogen-Bonded Organic Frameworks in Environmental Remediation: Recent Advances and Future Trends. SEPARATIONS 2023. [DOI: 10.3390/separations10030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The hydrogen-bonded organic frameworks (HOFs) are a class of porous materials with crystalline frame structures, which are self-assembled from organic structures by hydrogen bonding in non-covalent bonds π-π packing and van der Waals force interaction. HOFs are widely used in environmental remediation due to their high specific surface area, ordered pore structure, pore modifiability, and post-synthesis adjustability of various physical and chemical forms. This work summarizes some rules for constructing stable HOFs and the synthesis of HOF-based materials (synthesis of HOFs, metallized HOFs, and HOF-derived materials). In addition, the applications of HOF-based materials in the field of environmental remediation are introduced, including adsorption and separation (NH3, CO2/CH4 and CO2/N2, C2H2/C2He and CeH6, C2H2/CO2, Xe/Kr, etc.), heavy metal and radioactive metal adsorption, organic dye and pesticide adsorption, energy conversion (producing H2 and CO2 reduced to CO), organic dye degradation and pollutant sensing (metal ion, aniline, antibiotic, explosive steam, etc.). Finally, the current challenges and further studies of HOFs (such as functional modification, molecular simulation, application extension as remediation of contaminated soil, and cost assessment) are discussed. It is hoped that this work will help develop widespread applications for HOFs in removing a variety of pollutants from the environment.
Collapse
|
11
|
Liu Y, Chang G, Zheng F, Chen L, Yang Q, Ren Q, Bao Z. Hybrid Hydrogen-Bonded Organic Frameworks: Structures and Functional Applications. Chemistry 2023; 29:e202202655. [PMID: 36414543 DOI: 10.1002/chem.202202655] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
As a new class of porous crystalline materials, hydrogen-bonded organic frameworks (HOFs) assembled from building blocks by hydrogen bonds have gained increasing attention. HOFs benefit from advantages including mild synthesis, easy purification, and good recyclability. However, some HOFs transform into unstable frameworks after desolvation, which hinders their further applications. Nowadays, the main challenges of developing HOFs lie in stability improvement, porosity establishment, and functionalization. Recently, more and more stable and permanently porous HOFs have been reported. Of all these design strategies, stronger charge-assisted hydrogen bonds and coordination bonds have been proven to be effective for developing stable, porous, and functional solids called hybrid HOFs, including ionic and metallized HOFs. This Review discusses the rational design synthesis principles of hybrid HOFs and their cutting-edge applications in selective inclusion, proton conduction, gas separation, catalysis and so forth.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China
| | - Ganggang Chang
- State Key Laboratory of Advanced Technology for, Materials Synthesis and Processing, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei Province, 430070, P.R. China
| | - Fang Zheng
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Lihang Chen
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| |
Collapse
|
12
|
Jiang S, Wang H, Li L, Zhao C, Sheng J, Shi H. Improvement of proton conductivity and efficiency of SPEEK-based composite membrane influenced by dual-sulfonated flexible comb-like polymers for vanadium flow battery. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Lin ZJ, Mahammed SAR, Liu TF, Cao R. Multifunctional Porous Hydrogen-Bonded Organic Frameworks: Current Status and Future Perspectives. ACS CENTRAL SCIENCE 2022; 8:1589-1608. [PMID: 36589879 PMCID: PMC9801510 DOI: 10.1021/acscentsci.2c01196] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Indexed: 05/20/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs), self-assembled from organic or metalated organic building blocks (also termed as tectons) by hydrogen bonding, π-π stacking, and other intermolecular interactions, have become an emerging class of multifunctional porous materials. So far, a library of HOFs with high porosity has been synthesized based on versatile tectons and supramolecular synthons. Benefiting from the flexibility and reversibility of H-bonds, HOFs feature high structural flexibility, mild synthetic reaction, excellent solution processability, facile healing, easy regeneration, and good recyclability. However, the flexible and reversible nature of H-bonds makes most HOFs suffer from poor structural designability and low framework stability. In this Outlook, we first describe the development and structural features of HOFs and summarize the design principles of HOFs and strategies to enhance their stability. Second, we highlight the state-of-the-art development of HOFs for diverse applications, including gas storage and separation, heterogeneous catalysis, biological applications, sensing, proton conduction, and other applications. Finally, current challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Zu-Jin Lin
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, P. R. China
- College
of Life Science, Fujian Agriculture and
Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Shaheer A. R. Mahammed
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, P. R. China
| | - Tian-Fu Liu
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, P. R. China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Rong Cao
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, P. R. China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
14
|
Ding L, Zou H, Lu J, Liu H, Wang S, Yan H, Li Y. Enhancing Proton Conductivity of Nafion Membrane by Incorporating Porous Tb-Metal-Organic Framework Modified with Nitro Groups. Inorg Chem 2022; 61:16185-16196. [PMID: 36173130 DOI: 10.1021/acs.inorgchem.2c02782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A rigid carboxylate ligand with a nitro functional group was selected to coordinate with Tb(III) cation, and Tb-MOF ({[Tb4(L)4(OH)4(H2O)3]·8H2O}n, H2L = 2-nitroterephthalic acid) with large porous and excellent hydrophilicity was obtained successfully. The obtained Tb-MOF was filled into the Nafion matrix to improve its proton conduction performance. The Tb-MOF/Nafion composite membrane was characterized by PXRD, IR, and thermogravimetry (TG) and for water uptake, area swelling, and proton conductivity. The activity energy, Ea, value of the composite membrane, which is a very important factor affecting the proton conduction performance of the membrane, was fitted and calculated. It was revealed that Tb-MOF can improve the proton conductivities of composite membranes, and the improvement degree and Ea value were both affected by Tb-MOF content. When Tb-MOF content was 5%, the proton conductivity of the composite membrane was 1.53 × 10-2 S·cm-1 at 100% RH and 80 °C, which is 1.81 times that of the pure Nafion membrane. A MOF containing a nitro functional group was first doped into Nafion in this study and exhibited excellent performance for improving composite membrane proton conductivity. This study will provide a valuable reference for designing different functionalized MOFs to promote the proton conductivities of proton exchange membranes.
Collapse
Affiliation(s)
- Li Ding
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Huiqi Zou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Jing Lu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Houting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Hui Yan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| |
Collapse
|
15
|
An Ultrasensitive Picric Acid Sensor Based on a Robust 3D Hydrogen-Bonded Organic Framework. BIOSENSORS 2022; 12:bios12090682. [PMID: 36140067 PMCID: PMC9496322 DOI: 10.3390/bios12090682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/03/2022]
Abstract
Hydrogen-bonded organic frameworks (HOFs), as a newly developed porous material, have been widely used in various fields. To date, several organic building units (OBUs) with tri-, tetra-, and hexa-carboxylic acid synthons have been applied to synthesize HOFs. To our knowledge, di-carboxylic acids have rarely been reported for the construction of HOFs, in particular, di-carboxylic acid-based HOFs with fluorescence sensing properties have not been reported. In this study, a rare example of a di-carboxylic acid-based, luminescent three-dimensional hydrogen-bonded organic framework has been successfully constructed and structurally characterized; it has a strong electron-rich property originated from its organic linker 9-phenylcarbazole-3,6-dicarboxylic acid. It represents the first example of HOF-based sensors for the highly selective and sensitive detection of PA (Picric acid) with reusability; the LOD is less than 60 nM. This work thus provides a new avenue for the fabrication of fluorescent HOFs sensing towards explosives.
Collapse
|
16
|
Song X, Wang Y, Wang C, Wang D, Zhuang G, Kirlikovali KO, Li P, Farha OK. Design Rules of Hydrogen-Bonded Organic Frameworks with High Chemical and Thermal Stabilities. J Am Chem Soc 2022; 144:10663-10687. [PMID: 35675383 DOI: 10.1021/jacs.2c02598] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs), self-assembled from strategically pre-designed molecular tectons with complementary hydrogen-bonding patterns, are rapidly evolving into a novel and important class of porous materials. In addition to their common features shared with other functionalized porous materials constructed from modular building blocks, the intrinsically flexible and reversible H-bonding connections endow HOFs with straightforward purification procedures, high crystallinity, solution processability, and recyclability. These unique advantages of HOFs have attracted considerable attention across a broad range of fields, including gas adsorption and separation, catalysis, chemical sensing, and electrical and optical materials. However, the relatively weak H-bonding interactions within HOFs can potentially limit their stability and potential use in further applications. To that end, this Perspective highlights recent advances in the development of chemically and thermally robust HOF materials and systematically discusses relevant design rules and synthesis strategies to access highly stable HOFs.
Collapse
Affiliation(s)
- Xiyu Song
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yao Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Chen Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Dong Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Guowei Zhuang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Kent O Kirlikovali
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Peng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Omar K Farha
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
17
|
Duc Viet N, Lee H, Im SJ, Jang A. Fate, elimination, and simulation of low-molecular-weight micropollutants in an integrated activated carbon-fertiliser drawn osmotic membrane bioreactor. BIORESOURCE TECHNOLOGY 2022; 351:126972. [PMID: 35276379 DOI: 10.1016/j.biortech.2022.126972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the behaviour and simulation of low-molecular-weight (low-MW) micropollutants (MPs) in a powdered activated carbon (PAC)-assisted fertiliser-drawn OMBR. 10% increase in water recovery and two times thinner fouling layer were observed in OMBR with addition of 100 mg-PAC/g-MLSS. This amount of PAC also boosted the richness and diversity in microbial community (Chao1 and Shannon index increased 1.5 times). Nearly 100% low-MW MPs were eliminated in PAC-OMBR, while 2-80% was achieved with traditional OMBR. This reduced the pathway of low-MW MPs into diluted fertiliser from 47% to < 1% of the total influent mass. Hydrophilicity played the crucial role in the removal of low-MW MPs, especially acetaminophen and nonylphenol. Neural network was suitable for the simulation of MP behaviour with high accuracy (R = 0.98, RMSE = 4.7%). The findings support safer and cleaner use of the diluted fertiliser and promote a cost-effective tool for real-time analysis of MP behaviour.
Collapse
Affiliation(s)
- Nguyen Duc Viet
- Dept. of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Hyeonho Lee
- Dept. of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sung-Ju Im
- Dept. of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea; Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Am Jang
- Dept. of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
18
|
di Nunzio MR, Suzuki Y, Hisaki I, Douhal A. HOFs Built from Hexatopic Carboxylic Acids: Structure, Porosity, Stability, and Photophysics. Int J Mol Sci 2022; 23:1929. [PMID: 35216044 PMCID: PMC8875020 DOI: 10.3390/ijms23041929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/05/2023] Open
Abstract
Hydrogen-bonded organic frameworks (HOFs) have attracted renewed attention as another type of promising candidates for functional porous materials. In most cases of HOF preparation, the applied molecular design principle is based on molecules with rigid π-conjugated skeleton together with more than three H-bonding groups to achieve 2D- or 3D-networked structures. However, the design principle does not always work, but results in formation of unexpected structures, where subtle structural factors of which we are not aware dictate the entire structure of HOFs. In this contribution, we assess recent advances in HOFs, focusing on those composed of hexatopic building block molecules, which can provide robust frameworks with a wide range of topologies and properties. The HOFs described in this work are classified into three types, depending on their H-bonded structural motifs. Here in, we focus on: (1) the chemical aspects that govern their unique fundamental chemistry and structures; and (2) their photophysics at the ensemble and single-crystal levels. The work addresses and discusses how these aspects affect and orient their photonic applicability. We trust that this contribution will provide a deep awareness and will help scientists to build up a systematic series of porous materials with the aim to control both their structural and photodynamical assets.
Collapse
Affiliation(s)
- Maria Rosaria di Nunzio
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain;
| | - Yuto Suzuki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka 565-0871, Japan;
| | - Ichiro Hisaki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka 565-0871, Japan;
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain;
| |
Collapse
|