1
|
Zu F, Wang R, Frohloff L, Zorn-Morales N, Blumstengel S, List-Kratochvil E, Amsalem P, Koch N. Light-Induced Electronic Band Realignment at the Metal Halide Perovskite/Monolayer MoS 2 Heterojunction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:30251-30258. [PMID: 40354552 DOI: 10.1021/acsami.5c02989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
van der Waals (vdW) heterojunctions offer many routes for advanced interface engineering toward superior optoelectronic functionality. To this end, the combination of 2D transition metal dichalcogenides (TMDCs) with metal halide perovskites has shown great potential for applications in photovoltaics and photodetectors. The electronic energy level alignment at such heterojunctions, i.e., the relative alignment of valence and conduction bands of the two materials, is crucial for their functionality, but its experimental determination is notoriously challenging. In this contribution, we determine the energy level alignment for the vdW heterojunction composed of monolayer molybdenum disulfide (ML-MoS2) and a triple cation-mixed halide perovskite, enabled by surface cleaning by argon cluster sputtering. This effectively removes surface contaminants from the perovskite/ML-MoS2 stack without causing damage, enabling direct determination of the band alignment at the interface using ultraviolet and X-ray photoelectron spectroscopy. Our results reveal a type-II band alignment at the perovskite/ML-MoS2 interface. Importantly, the interfacial energy levels are not fixed once the heterojunction is formed, but the MoS2 energy levels shift relative to those of the perovskite under 1 sun illumination compared to the dark, by up to 0.25 eV. This energy level realignment, under conditions mimicking a photovoltaic device under operation, is attributed to photogenerated electron accumulation in the ML-MoS2. Microscopic photoluminescence (PL) measurements reveal significant quenching of the perovskite PL signal in the heterojunction, confirming efficient charge transfer and the establishment of a type-II heterojunction. These results demonstrate a "living" heterojunction energy landscape, opening up novel avenues for engineering perovskite/TMDCs vdW heterojunctions for optoelectronic devices.
Collapse
Affiliation(s)
- Fengshuo Zu
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Rongbin Wang
- Institut für Physik & Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Lennart Frohloff
- Institut für Physik & Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Nicolas Zorn-Morales
- Institut für Physik & Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Sylke Blumstengel
- Institut für Physik & Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Emil List-Kratochvil
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
- Institut für Physik & Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- Institut für Chemie & Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Patrick Amsalem
- Institut für Physik & Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Norbert Koch
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
- Institut für Physik & Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| |
Collapse
|
2
|
Ansari RM, Chamola S, Ahmad S. Ruddlesden-Popper 2D Perovskite-MoS 2 Hybrid Heterojunction Photocathodes for Efficient and Scalable Photo-Rechargeable Li-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401350. [PMID: 38822720 DOI: 10.1002/smll.202401350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Photo-rechargeable batteries (PRBs) can provide a compact solution to power autonomous smart devices located at remote sites that cannot be connected with the grid. The study reports the Ruddlesden-Popper (RP) metal halide perovskite (MHP) and molybdenum disulfide (MoS2) hybrid heterojunction-based photocathodes for Li-ion photo-rechargeable battery (Li-PRB) applications. Hybrid Lithium-ion batteries (LIBs) have demonstrated an average discharge specific capacity of 144.46 and 129.17 mAhg-1 for 50 cycles when operating at 176 and 294 mAg-1, respectively compared to the pristine LIBs which have shown specific capacity of 37.48 and 25.60 mAhg-1 under similar conditions. Hybrid Li-PRB has achieved an average dark discharge specific capacities of 128.66 mAhg-1 (capacity retention: 96.56%) which enhanced to 180.67 mAhg-1 under illumination (capacity retention: 97.39%; photo-enhancement: 40.42%) at 64 mAg-1. Excellent performance of hybrid Li-PRB is attributed to the formation of type-II heterojunction that leads to improved crystallinity and film morphology. The PRB has demonstrated a high photo conversion and storage efficiency (PC-SE) of 0.52% under standard 1 Sun illumination, which outperforms other previously reported MHP based LIBs and PRBs. This work provides a novel approach of harnessing the potential of MHPs for PRBs and offers new avenues for MHP photocathodes for various applications beyond PRBs.
Collapse
Affiliation(s)
- Rashid M Ansari
- Advanced Energy Materials Lab, Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342030, India
| | - Shubham Chamola
- Advanced Energy Materials Lab, Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342030, India
| | - Shahab Ahmad
- Advanced Energy Materials Lab, Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342030, India
| |
Collapse
|
3
|
Pramanik M, Bera A, Karmakar S, Sinha P, Singha A, Das K. High-Performance Broadband Self-Driven Photodetector Based on MoS 2/Cs 2CuBr 4 Heterojunction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38260-38268. [PMID: 39004815 DOI: 10.1021/acsami.4c06966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Few-layer transition metal dichalcogenides and perovskites are both promising materials in high-performance optoelectronic devices. Here, we developed a self-driven photodetector by creating a heterojunction between few-layer MoS2 and lead-free perovskite Cs2CuBr4. The detector shows a unique property of very high sensitivity in a broad spectral range of 400 to 800 nm with response speed in a millisecond order. Current-voltage characteristics of the heterojunction device show rectifying behavior, in contrast to the ohmic behavior of the MoS2-based device. The rectifying behavior is attributed to the type II band alignment of the MoS2/Cs2CuBr4 heterojunction. The device shows a broadband (400 to 800 nm) photodetection with very high responsivity reaching up to 2.8 × 104 A/W and detectivity of 1.6 × 1011 Jones at a bias voltage of 3 V. The detector can also operate in self-bias mode with sufficient response. The photocurrent, photoresponsivity, detectivity, and external quantum efficiency of the device are found to be dependent on the illumination power density. The response time of the device is found to be ∼32 and ∼79 ms during the rise and fall of the photocurrent. The work proposes a MoS2/Cs2CuBr4 heterostructure to be a promising candidate for cost-effective, high-performance photodetector.
Collapse
Affiliation(s)
- Mousumi Pramanik
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Anupam Bera
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Sreya Karmakar
- Department of Basic Science and Humanities, Calcutta Institute of Engineering and Management, Kolkata 700040, India
| | - Pritam Sinha
- Department of Physics, Bose Institute, Kolkata 700009, India
| | - Achintya Singha
- Department of Physics, Bose Institute, Kolkata 700009, India
| | - Kaustuv Das
- Department of Physics, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
4
|
Ahmed A, Zahir Iqbal M, Dahshan A, Aftab S, Hegazy HH, Yousef ES. Recent advances in 2D transition metal dichalcogenide-based photodetectors: a review. NANOSCALE 2024; 16:2097-2120. [PMID: 38204422 DOI: 10.1039/d3nr04994a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as a highly promising platform for the development of photodetectors (PDs) owing to their remarkable electronic and optoelectronic properties. Highly effective PDs can be obtained by making use of the exceptional properties of 2D materials, such as their high transparency, large charge carrier mobility, and tunable electronic structure. The photodetection mechanism in 2D TMD-based PDs is thoroughly discussed in this article, with special attention paid to the key characteristics that set them apart from PDs based on other integrated materials. This review examines how single TMDs, TMD-TMD heterostructures, TMD-graphene (Gr) hybrids, TMD-MXene composites, TMD-perovskite heterostructures, and TMD-quantum dot (QD) configurations show advanced photodetection. Additionally, a thorough analysis of the recent developments in 2D TMD-based PDs, highlighting their exceptional performance capabilities, including ultrafast photo response, ultrabroad detectivity, and ultrahigh photoresponsivity, attained through cutting-edge methods is provided. The article conclusion highlights the potential for ground-breaking discoveries in this fast developing field of research by outlining the challenges faced in the field of PDs today and providing an outlook on the prospects of 2D TMD-based PDs in the future.
Collapse
Affiliation(s)
- Anique Ahmed
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23640, Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Zahir Iqbal
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23640, Khyber Pakhtunkhwa, Pakistan.
| | - Alaa Dahshan
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, South Korea
| | - Hosameldin Helmy Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - El Sayed Yousef
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| |
Collapse
|
5
|
Qin C, Wang W, Song J, Jiao Z, Ma S, Zheng S, Zhang J, Jia G, Jiang Y, Zhou Z. Carrier transfer in quasi-2D perovskite/MoS 2 monolayer heterostructure. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:4495-4505. [PMID: 39634701 PMCID: PMC11501760 DOI: 10.1515/nanoph-2023-0570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2024]
Abstract
Two-dimensional layered semiconductors have attracted intense interest in recent years. The van der Waals coupling between the layers tolerates stacking various materials and establishing heterostructures with new characteristics for a wide range of optoelectronic applications. The interlayer exciton dynamics at the interface within the heterostructure are vitally important for the performance of the photodetector and photovoltaic device. Here, a heterostructure comprising two-dimensional organic-inorganic Ruddlesden-Popper perovskites and transition metal dichalcogenide monolayer was fabricated and its ultrafast charge separation processes were systematically studied by using femtosecond time-resolved transient absorption spectroscopy. Significant hole and electron transfer processes in the ps and fs magnitude at the interface of the heterostructure were observed by tuning pump wavelengths of the pump-probe geometries. The results emphasize the realization of the exciton devices based on semiconductor heterostructures of two-dimensional perovskite and transition metal dichalcogenide.
Collapse
Affiliation(s)
- Chaochao Qin
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, and School of Physics, Henan Normal University, Xinxiang453007, China
| | - Wenjing Wang
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, and School of Physics, Henan Normal University, Xinxiang453007, China
| | - Jian Song
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, and School of Physics, Henan Normal University, Xinxiang453007, China
| | - Zhaoyong Jiao
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, and School of Physics, Henan Normal University, Xinxiang453007, China
| | - Shuhong Ma
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, and School of Physics, Henan Normal University, Xinxiang453007, China
| | - Shuwen Zheng
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, and School of Physics, Henan Normal University, Xinxiang453007, China
| | - Jicai Zhang
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, and School of Physics, Henan Normal University, Xinxiang453007, China
| | - Guangrui Jia
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, and School of Physics, Henan Normal University, Xinxiang453007, China
| | - Yuhai Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Zhongpo Zhou
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, and School of Physics, Henan Normal University, Xinxiang453007, China
| |
Collapse
|
6
|
Park JH, Kim HR, Kim MJ, Song Z, Kang MJ, Son DH, Pyun JC. Defect-Passivated Photosensor Based on Cesium Lead Bromide (CsPbBr 3) Perovskite Quantum Dots for Microbial Detection. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38019055 DOI: 10.1021/acsami.3c12001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
A defect-passivated photosensor based on cesium lead bromide (CsPbBr3) perovskite quantum dots (QD) was fabricated using parylene films, and the photosensor was applied for the microbial detection. The CsPbBr3 perovskite QDs were synthesized to be homogeneous in size under thermodynamic control, and the perovskite QD-based photosensor was fabricated using MoS2 flakes as the electron transfer layer. In this work, a parylene film with functional groups was deposited on a photosensor for physical protection (waterproof) and defect (halide vacancy) passivation of the perovskite QD. As the first effect of the parylene film, the physical protection of the perovskite QD from water was estimated by comparing the photosensor performance after incubation in water. As the second effect of the parylene, the interaction between the functional groups of the parylene film and the halide vacancies of the perovskite QDs was investigated through the bandgap, crystal structure, and trap-state density analysis. Additionally, density functional theory analysis on Mulliken charges, lattice parameters, and Gibbs free energy demonstrated the effect of the defect passivation by parylene films. Finally, the parylene-passivated QD-based photosensor was applied to the detection of two kinds of food-poisoning and gastroduodenal disease bacteria (Listeria monocytogenes and Helicobacter pylori).
Collapse
Affiliation(s)
- Jun-Hee Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hong-Rae Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Moon-Ju Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Zhiquan Song
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil,, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Dong Hee Son
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Dutta R, Bala A, Sen A, Spinazze MR, Park H, Choi W, Yoon Y, Kim S. Optical Enhancement of Indirect Bandgap 2D Transition Metal Dichalcogenides for Multi-Functional Optoelectronic Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303272. [PMID: 37453927 DOI: 10.1002/adma.202303272] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
The unique electrical and optical properties of transition metal dichalcogenides (TMDs) make them attractive nanomaterials for optoelectronic applications, especially optical sensors. However, the optical characteristics of these materials are dependent on the number of layers. Monolayer TMDs have a direct bandgap that provides higher photoresponsivity compared to multilayer TMDs with an indirect bandgap. Nevertheless, multilayer TMDs are more appropriate for various photodetection applications due to their high carrier density, broad spectral response from UV to near-infrared, and ease of large-scale synthesis. Therefore, this review focuses on the modification of the optical properties of devices based on indirect bandgap TMDs and their emerging applications. Several successful developments in optical devices are examined, including band structure engineering, device structure optimization, and heterostructures. Furthermore, it introduces cutting-edge techniques and future directions for optoelectronic devices based on multilayer TMDs.
Collapse
Affiliation(s)
- Riya Dutta
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Arindam Bala
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Anamika Sen
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Michael Ross Spinazze
- Waterloo Institute for Nanotechnology and the Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Heekyeong Park
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Woong Choi
- School of Materials Science & Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngki Yoon
- Waterloo Institute for Nanotechnology and the Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Sunkook Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
8
|
Kang YZ, An GH, Jeon MG, Shin SJ, Kim SJ, Choi M, Lee JB, Kim TY, Rahman IN, Seo HY, Oh S, Cho B, Choi J, Lee HS. Increased Mobility and Reduced Hysteresis of MoS 2 Field-Effect Transistors via Direct Surface Precipitation of CsPbBr 3-Nanoclusters for Charge Transfer Doping. NANO LETTERS 2023; 23:8914-8922. [PMID: 37722002 DOI: 10.1021/acs.nanolett.3c02293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Transition-metal dichalcogenides (TMDs) and metal halide perovskites (MHPs) have been investigated for various applications, owing to their unique physical properties and excellent optoelectronic functionalities. TMD monolayers synthesized via chemical vapor deposition (CVD), which are advantageous for large-area synthesis, exhibit low mobility and prominent hysteresis in the electrical signals of field-effect transistors (FETs) because of their native defects. In this study, we demonstrate an increase in electrical mobility by ∼170 times and reduced hysteresis in the current-bias curves of MoS2 FETs hybridized with CsPbBr3 for charge transfer doping, which is implemented via solution-based CsPbBr3-nanocluster precipitation on CVD-grown MoS2 monolayer FETs. Electrons injected from CsPbBr3 into MoS2 induce heavy n-doping and heal point defects in the MoS2 channel layer, thus significantly increasing mobility and reducing hysteresis in the hybrid FETs. Our results provide a foundation for improving the reliability and performance of TMD-based FETs by hybridizing them with solution-based perovskites.
Collapse
Affiliation(s)
- Yae Zy Kang
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| | - Gwang Hwi An
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| | - Min-Gi Jeon
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - So Jeong Shin
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| | - Su Jin Kim
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| | - Min Choi
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| | - Jae Baek Lee
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| | - Tae Yeon Kim
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| | - Ikhwan Nur Rahman
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| | - Hyun Young Seo
- Department of Advanced Material Engineering, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| | - Seyoung Oh
- Department of Advanced Material Engineering, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| | - Byungjin Cho
- Department of Advanced Material Engineering, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| | - Jihoon Choi
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Hyun Seok Lee
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| |
Collapse
|
9
|
Yang H, He J, Yan J, Li H, Bai Y, Wang Q, Yan H, Yin S. Highly Sensitive Self-Powered Humidity Sensor Based on a TaS 2/Cu 2S Heterostructure Driven by a Triboelectric Nanogenerator. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37385961 DOI: 10.1021/acsami.3c04162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Self-powered humidity sensors with high response and good stability have attracted extensive interest in environmental monitoring, medical and health care, and sentiment detection. Because of its high specific surface area and good conductivity, two-dimensional material has wide application in the field of humidity sensing. In this work, we proposed a novel self-powered high-performance TaS2/Cu2S heterostructure-based humidity sensor driven by a triboelectric nanogenerator (TENG) made with the same structure. The TaS2/Cu2S heterostructure was prepared via the chemical vapor deposition method, and then, electrolytic and ultrasound treatments were introduced to further increase the surface area. The fabricated humidity sensor showed ultrahigh sensitivity (S = 3.08 × 104), fast response (2 s), low hysteresis (3.5%), and great stability. First-principles calculation results demonstrated the existence of an electron transport channel with a low energy barrier (-0.156 eV) from the Cu2S to TaS2 layer in the heterostructure, which improves the surface charge transfer of the material. The TaS2/Cu2S heterojunction-based TENG can generate an output voltage of 30 V and an output current of 2.9 μA. Furthermore, the proposed self-powered humidity sensor verified the potential ability of detecting human respiratory frequency, skin humidity, and environmental humidity. This work provides a new and feasible path for research in the field of humidity sensors and promotes the application development of self-powered electronic devices.
Collapse
Affiliation(s)
- Huiqi Yang
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jinbo He
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jinjian Yan
- Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
- Jiujiang Research Institute of Xiamen University, Jiujiang 332000, P. R. China
| | - Heng Li
- Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
- Jiujiang Research Institute of Xiamen University, Jiujiang 332000, P. R. China
| | - Yanliu Bai
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Qingguo Wang
- GuoAng Zhuotai (Tianjin) Smart IOT Technology Co., Ltd, Tianjin 301700, P. R. China
| | - Hui Yan
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Shougen Yin
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
10
|
Zhang Y, Wang F, Zhao X, Feng X, Zhang N, Xia F, Ma Y, Li H, Zhai T. 2D Ruddlesden-Popper perovskite sensitized SnP 2S 6 ultraviolet photodetector enabling high responsivity and fast speed. NANOSCALE HORIZONS 2022; 8:108-117. [PMID: 36426643 DOI: 10.1039/d2nh00466f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As the newly developed wide-bandgap semiconductors, two-dimensional layered metal phosphorus chalcogenides (2D LMPCs) exhibit enormous potential applications in ultraviolet (UV) photodetection due to their superior optoelectronic performance. However, 2D LMPC-based UV photodetectors generally suffer from low responsivity and slow response speed, which hinder their practical applications. Here, we present an effective strategy of sensitizing 2D LMPC UV photodetectors with a 2D Ruddlesden-Popper (RP) perovskite to enable high responsivity and fast response speed. As a demonstration, a hybrid heterojunction composed of RP perovskite (PEA)2PbI4 and a 2D SnP2S6 flake is fabricated by spin-coating method. Benefitting from the strong optical absorption of (PEA)2PbI4 and the efficient interfacial charge transfer caused by the favorable type-II energy band alignment, the as-fabricated 2D SnP2S6/(PEA)2PbI4 hybrid heterojunction photodetectors show high responsivity (67.1 A W-1), large detectivity (2.8 × 1011 Jones), fast rise/delay time (30/120 μs) and excellent external quantum efficiency (22825%) at 365 nm. Under field-effect modulation, the responsivity of the heterojunction photodetector can reach up to 239.4 A W-1, which is attributed to the photogating mechanism and reduced Schottky barriers. Owing to the excellent photodetection performance, the heterojunction device further shows superior imaging capability. This work provides an effective strategy for designing high-performance UV photodetectors toward future applications.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Fakun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xuan Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Xin Feng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Na Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Fangfang Xia
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Ying Ma
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| |
Collapse
|
11
|
Shin J, Eo JS, Jeon T, Lee T, Wang G. Advances of Various Heterogeneous Structure Types in Molecular Junction Systems and Their Charge Transport Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202399. [PMID: 35975456 PMCID: PMC9596861 DOI: 10.1002/advs.202202399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/11/2022] [Indexed: 05/31/2023]
Abstract
Molecular electronics that can produce functional electronic circuits using a single molecule or molecular ensemble remains an attractive research field because it not only represents an essential step toward realizing ultimate electronic device scaling but may also expand our understanding of the intrinsic quantum transports at the molecular level. Recently, in order to overcome the difficulties inherent in the conventional approach to studying molecular electronics and developing functional device applications, this field has attempted to diversify the electrical characteristics and device architectures using various types of heterogeneous structures in molecular junctions. This review summarizes recent efforts devoted to functional devices with molecular heterostructures. Diverse molecules and materials can be combined and incorporated in such two- and three-terminal heterojunction structures, to achieve desirable electronic functionalities. The heterojunction structures, charge transport mechanisms, and possible strategies for implementing electronic functions using various hetero unit materials are presented sequentially. In addition, the applicability and merits of molecular heterojunction structures, as well as the anticipated challenges associated with their implementation in device applications are discussed and summarized. This review will contribute to a deeper understanding of charge transport through molecular heterojunction, and it may pave the way toward desirable electronic functionalities in molecular electronics applications.
Collapse
Affiliation(s)
- Jaeho Shin
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Korea
- Department of ChemistryRice University6100 Main StreetHoustonTexas77005United States
| | - Jung Sun Eo
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Korea
| | - Takgyeong Jeon
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Korea
| | - Takhee Lee
- Department of Physics and AstronomyInstitute of Applied PhysicsSeoul National UniversitySeoul08826Korea
| | - Gunuk Wang
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Korea
- Department of Integrative Energy EngineeringKorea UniversitySeoul02841Korea
- Center for Neuromorphic EngineeringKorea Institute of Science and TechnologySeoul02792Korea
| |
Collapse
|
12
|
Abstract
The past one and a half decades have witnessed the tremendous progress of two-dimensional (2D) crystals, including graphene, transition-metal dichalcogenides, black phosphorus, MXenes, hexagonal boron nitride, etc., in a variety of fields. The key to their success is their unique structural, electrical, mechanical and optical properties. Herein, this paper gives a comprehensive summary on the recent advances in 2D materials for optoelectronic approaches with the emphasis on the morphology and structure, optical properties, synthesis methods, as well as detailed optoelectronic applications. Additionally, the challenges and perspectives in the current development of 2D materials are also summarized and indicated. Therefore, this review can provide a reference for further explorations and innovations of 2D material-based optoelectronics devices.
Collapse
|