1
|
Pham HQ, Dao TBN, Nguyen AQK, Huynh Q, Huynh TT. Nitrogen-doped 2D MXene-based catalysts: Synthesis, properties and applications for electrochemical hydrogen production. Adv Colloid Interface Sci 2025; 341:103493. [PMID: 40147212 DOI: 10.1016/j.cis.2025.103493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/25/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Designing advanced materials with a trade-off between overall electrocatalytic efficiency and economic cost for electrochemical hydrogen production is crucial to overcoming the current energy crisis and environmental issues. On the more 10-year journey since the discovery, transition-metal carbides/nitrides nanosheets (MXenes) have increasingly attracted attention as potential materials toward hydrogen/oxygen evolution reactions (HER/OER) because of their unique physical and chemical characteristics, but the layered restacking and low intrinsic electrochemical activity are dragging them out water-splitting technology. Doping MXenes with nitrogen atoms has recently been introduced as a facile but efficient strategy to accelerate the HER/OER efficiency by the optimization of electronic structure, surface terminations, and adsorption/desorption energies of intermediates on pristine MXenes. However, a comprehensive evaluation of the doping mechanism and content-structure-performance relationship of N-doped 2D MXene-related catalysts is still lacking. Thus, we herein systematically summarize synthetic strategies, theoretical calculations, properties, and applications of nitrogen-doped 2D MXenes for the HER and OER to give more fundamental insights into physicochemical characteristics of nitrogen-doped 2D MXenes to further design next-generation catalysts for the electrochemical hydrogen production and other applications.
Collapse
Affiliation(s)
- Hau Quoc Pham
- Future Materials & Devices Lab., Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 70000, Viet Nam; The Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 50000, Viet Nam; Ho Chi Minh City University of Natural Resources and Environment (HCMUNRE), Ho Chi Minh City 70000, Viet Nam.
| | - Thi-Bich-Ngoc Dao
- Future Materials & Devices Lab., Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 70000, Viet Nam; The Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 50000, Viet Nam
| | - Anh Quoc Khuong Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, ST, Viet Nam
| | - Quyen Huynh
- Ho Chi Minh City University of Natural Resources and Environment (HCMUNRE), Ho Chi Minh City 70000, Viet Nam
| | - Tai Thien Huynh
- Ho Chi Minh City University of Natural Resources and Environment (HCMUNRE), Ho Chi Minh City 70000, Viet Nam.
| |
Collapse
|
2
|
Luo Y, Yang H, Ying C, Wang R, Bo Z, Yan J, Cen K, Ostrikov KK. Plasma-Activated Solutions Regulate Surface-Terminating Groups Enhancing Pseudocapacitive Ti 3C 2T x Electrode Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305383. [PMID: 37661349 DOI: 10.1002/smll.202305383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Indexed: 09/05/2023]
Abstract
2D transition metal carbides and nitrides (MXenes) are actively pursued as pseudocapacitive materials for supercapacitors owing to their advantages in electronic conductivity and surface reactivity. Increasing the fraction of ─O terminal groups in Ti3C2Tx is a promising approach to improve the pseudocapacitive charge storage in H2SO4 electrolytes, but it suffers from a lack of effective functionalization methods and stability of the groups in practical operation. Here a low-temperature and environment-friendly approach via the interaction of nonequilibrium plasmas with Ti3C2Tx dispersion is demonstrated to generate abundant and stable surface-terminating O groups. The impact of the discharge environment (Ar, O2, and H2) on the structural characteristics and electrochemical performance of Ti3C2Tx nanosheets is studied. The Ti3C2Tx modified in Ar and H2 maintains their original morphology but a significantly lower F content. Consequently, an extraordinarily high content (78.5%) of surface-terminating O groups is revealed by the high-resolution X-ray photoelectron spectroscopy spectra for the Ti3C2Tx samples modified in H2 plasma-treated solutions. Additionally, the Ti3C2Tx treated using H2 plasmas exhibits the best capacitive performance of 418.3 F g-1 at 2 mV s-1, which can maintain 95.88% capacity after 10 000 cycles. These results contribute to the development of advanced nanostructured pseudocapacitive electrode materials for renewable energy storage applications.
Collapse
Affiliation(s)
- Yonghong Luo
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Huachao Yang
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chongyan Ying
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Rui Wang
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zheng Bo
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kefa Cen
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics & Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
3
|
Liu Y, Liu Y, Zhao X. MXene Composite Electromagnetic Shielding Materials: The Latest Research Status. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39066695 DOI: 10.1021/acsami.4c11189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
MXene emerges as a premier candidate for electromagnetic shielding owing to its unique properties as a novel two-dimensional material. Its exceptional electrical conductivity, chemical reactivity, surface tunability, and facile processing render it highly suitable for diverse electromagnetic shielding applications. The research status of MXene and MXene-based electromagnetic shielding materials is systematically discussed in this paper. First, the research status of MXene as a single-component electromagnetic shielding material is briefly introduced. Subsequently, the research status of composite structures constructed by MXene with polymers, carbon derivatives, and ferrites is introduced in detail. Furthermore, the research progress of MXene-based ternary and quaternary composite electromagnetic shielding materials is further focused. Finally, the application of MXene-based composite electromagnetic shielding materials is prospected. A deeper understanding of MXene's electromagnetic shielding properties is facilitated by this paper, providing the direction for the future development of two-dimensional materials in the design and processing of electromagnetic shielding materials.
Collapse
Affiliation(s)
- Yi Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yuanjun Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Tianjin Key Laboratory of Advanced Textile Composites, Tiangong University, Tianjin 300387, China
- Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin 300387, China
| | - Xiaoming Zhao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Tianjin Key Laboratory of Advanced Textile Composites, Tiangong University, Tianjin 300387, China
- Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin 300387, China
| |
Collapse
|
4
|
Liang L, Yang X, Li C, Yu R, Zhang B, Yang Y, Ji G. MXene-Enabled Pneumatic Multiscale Shape Morphing for Adaptive, Programmable and Multimodal Radar-infrared Compatible Camouflage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313939. [PMID: 38578586 DOI: 10.1002/adma.202313939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Achieving radar-infrared compatible camouflage with dynamic adaptability has been a long-sought goal, but faces significant challenges owing to the limited dispersion relations of conventional material systems operating in different wavelength ranges. Here, this work proposes the concept of pneumatic multiscale shape morphing and design a periodically arranged pneumatic unit consisting of MXene-based morphable conductors and intake platforms. During gas actuation, the morphable conductor transforms centimeter-scale 2D flat sheets into 3D balloon shapes to enhance microwave absorption behavior, and also reconfigures micrometer-scale MXene wrinkles into smooth planes in combination with cavity-induced low heat transfer to minimize infrared (IR) signatures. Through theory-guided reverse engineering, the final pneumatic matrix shows remarkable frequency tunability (2.64-18.0 GHz), moderate IR emissivity regulation (0.14 at 7-16.5 µm), rapid responsiveness (≈30 ms), wide-angle operation (>45°), and excellent environmental tolerance. Additionally, the multiplexed pneumatic matrix enables over 14 programmable coding sequences that independently alter thermal radiation without compromising radar stealth, and allows multimodal camouflage switching between three distinct compatible states. The approach may facilitate the evolution of camouflage techniques and electromagnetic functional materials toward multispectral, adaptability and intelligence.
Collapse
Affiliation(s)
- Leilei Liang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Xiuyue Yang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Chen Li
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Ruoling Yu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Baoshan Zhang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Yi Yang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Guangbin Ji
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| |
Collapse
|
5
|
Rahmati R, Salari M, Ashouri-Sanjani M, Salehi A, Hamidinejad M, Park CB. Comparative Effects of Hydrazine and Thermal Reduction Methods on Electromagnetic Interference Shielding Characteristics in Foamed Titanium Carbonitride MXene Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308320. [PMID: 38105422 DOI: 10.1002/smll.202308320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/01/2023] [Indexed: 12/19/2023]
Abstract
The urgent need for the development of micro-thin shields against electromagnetic interference (EMI) has sparked interest in MXene materials owing to their metallic electrical conductivity and ease of film processing. Meanwhile, postprocessing treatments can potentially exert profound impacts on their shielding effectiveness (SE). This work comprehensively compares two reduction methods, hydrazine versus thermal, to fabricate foamed titanium carbonitride (Ti3CNTx) MXene films for efficient EMI shielding. Upon treatment of ≈ 100 µm-thick MXene films, gaseous transformations of oxygen-containing surface groups induce highly porous structures (up to ≈ 74.0% porosity). The controlled application of hydrazine and heat allows precise regulation of the reduction processes, enabling tailored control over the morphology, thickness, chemistry, and electrical properties of the MXene films. Accordingly, the EMI SE values are theoretically and experimentally determined. The treated MXene films exhibit significantly enhanced SE values compared to the pristine MXene film (≈ 52.2 dB), with ≈ 38% and ≈ 83% maximum improvements for the hydrazine and heat-treated samples, respectively. Particularly, heat treatment is more effective in terms of this enhancement such that an SE of 118.4 dB is achieved at 14.3 GHz, unprecedented for synthetic materials. Overall, the findings of this work hold significant practical implications for advancing high-performance, non-metallic EMI shielding materials.
Collapse
Affiliation(s)
- Reza Rahmati
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Meysam Salari
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Mehran Ashouri-Sanjani
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Amirmehdi Salehi
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Mahdi Hamidinejad
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta, T6G1H9, Canada
| | - Chul B Park
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| |
Collapse
|
6
|
Purbayanto MAK, Arramel, Koh SW, Maddalena F, Moszczyńska D, Manopo J, Darma Y, Kowal D, Li H, Birowosuto MD, Jastrzębska AM. Interfacial interactions of doped-Ti 3C 2 MXene/MAPbI 3 heterostructures: surfaces and the theoretical approach. Phys Chem Chem Phys 2023. [PMID: 38037878 DOI: 10.1039/d3cp04018f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The work function (WF) of perovskite materials is essential for developing optoelectronic devices enabling efficient charge transfer at their interfaces. Perovskite's WF can be tuned by MXenes, a new class of two-dimensional (2D) early transition metal carbides, nitrides, and carbonitrides. Their variable surface terminations or the possibility of introducing elemental dopants could advance perovskites. However, the influence of doped-MXenes on perovskite materials is still not fully understood and elaborated. This study provides mechanistic insight into verifying the tunability of MAPbI3 WF by hybridizing with fluorine-terminated Ti3C2Tx (F-MXene) and nitrogen-doped Ti3C2Tx (N-MXene). We first reveal the interfacial interaction between MAPbI3 and MXenes via X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and photoluminescence spectroscopy (PL). UPS supported by density functional theory (DFT) calculations allowed the description of the influence of F and N on MXene's WF. Furthermore, we developed MAPbI3/MXene heterostructures using F- and N-MXenes. The F-MXenes extended the most WF of MAPbI3 from 4.50 eV up to 3.00 eV, compared to only a small shift for N-MXene. The underlying mechanism was charge transfer from low WF F-MXene to MAPbI3, as demonstrated by PL quenching in MAPbI3/F-MXene heterostructures. Altogether, this work showcases the potential of fluorine-doped MXenes over nitrogen-doped MXenes in advancing perovskite heterostructures, thus opening a door for efficient optoelectronic devices.
Collapse
Affiliation(s)
| | - Arramel
- Nano Center Indonesia, Jalan Raya PUSPIPTEK, South Tangerang, Banten 15314, Indonesia.
| | - See Wee Koh
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 637553, Singapore
| | | | - Dorota Moszczyńska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland.
| | - Jessie Manopo
- Department of Physics, Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung 40132, Indonesia.
| | - Yudi Darma
- Department of Physics, Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung 40132, Indonesia.
- Research Collaboration Center for Quantum Technology 2.0, Bandung 40132, Indonesia
| | - Dominik Kowal
- Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland.
| | - Hong Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 637553, Singapore
| | - Muhammad Danang Birowosuto
- Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland.
| | - Agnieszka Maria Jastrzębska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland.
| |
Collapse
|
7
|
Zeng X, Zhao C, Jiang X, Yu R, Che R. Functional Tailoring of Multi-Dimensional Pure MXene Nanostructures for Significantly Accelerated Electromagnetic Wave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303393. [PMID: 37291740 DOI: 10.1002/smll.202303393] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/21/2023] [Indexed: 06/10/2023]
Abstract
Transition metal carbide (Ti3 C2 Tx MXene), with a large specific surface area and abundant surface functional groups, is a promising candidate in the family of electromagnetic wave (EMW) absorption. However, the high conductivity of MXene limits its EMW absorption ability, so it remains a challenge to obtain outstanding EMW attenuation ability in pure MXene. Herein, by integrating HF etching, KOH shearing, and high-temperature molten salt strategies, layered MXene (L-MXene), network-like MXene nanoribbons (N-MXene NRs), porous MXene monolayer (P-MXene ML), and porous MXene layer (P-MXene L) are rationally constructed with favorable microstructures and surface states for EMW absorption. HF, KOH, and KCl/LiCl are used to functionalize MXene to tune its microstructure and surface state (F- , OH- , and Cl- terminals), thereby improving the EMW absorption capacity of MXene-based nanostructures. Impressively, with the unique structure, proper electrical conductivity, large specific surface area, and abundant porous defects, MXene-based nanostructures achieve good impedance matching, dipole polarization, and conduction loss, thus inheriting excellent EMW absorption performance. Consequently, L-MXene, N-MXene NRs, P-MXene ML, and P-MXene L enable a reflection loss (RL ) value of -43.14, -63.01, -60.45, and -56.50 dB with a matching thickness of 0.95, 1.51, 3.83, and 4.65 mm, respectively.
Collapse
Affiliation(s)
- Xiaojun Zeng
- Advanced Ceramic Materials Research Institute, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Chao Zhao
- Advanced Ceramic Materials Research Institute, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Xiao Jiang
- Advanced Ceramic Materials Research Institute, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Ronghai Yu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
8
|
Khannyra S, Gil MLA, Addou M, Mosquera MJ. Dye decomposition and air de-pollution performance of TiO 2/SiO 2 and N-TiO 2/SiO 2 photocatalysts coated on Portland cement mortar substates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63112-63125. [PMID: 35459995 PMCID: PMC9477917 DOI: 10.1007/s11356-022-20228-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
In this study, the newly synthesized TiO2 and N doped TiO2 clusters were added to silica sol to synthesize N-TiO2/SiO2 composites via the sol-gel method. Afterwards, the prepared sols were applied by brushing on portland cement. Doping with nitrogen significantly increased the absorption of TiO2 towards the visible region, thus, increasing the photocatalytic activity. SEM characterization of the treated samples showed that the clusters were distributed in form of aggregates on the samples' surface. The self-cleaning and air de-polluting performances were assessed through methylene blue degradation and the oxidation of nitrogen oxide, resulting in methylene blue (MB) removal of 85% and 78% after 60 min of irradiation for SN10TiO2 and STiO2, respectively. Regarding air de-pollution performance, the newly synthesized photocatalysts showed the ability of NOx reduction. However, their efficiency was somewhat lower, in which 23.81% of NO has been oxidized by the sample SN10TiO2, while SP25 showed a total NO conversion of 38.98%. The powdered xerogels of the newly synthesized nanoparticles revealed high photocatalytic efficiency concerning NO oxidation, resulting in a higher performance compared to those obtained by the xerogel containing P25.
Collapse
Affiliation(s)
- Souad Khannyra
- TEP-243 Nanomaterials Group, Department of Physical-Chemistry, Faculty of Sciences, University of Cadiz, 11510, Puerto Real, Spain
- Materials and Valorization of Natural Resource Laboratory, FST Tangier, Abdelmalek Essaadi University, Tétouan, Morocco
| | - Maria Luisa Almoraima Gil
- TEP-243 Nanomaterials Group, Department of Physical-Chemistry, Faculty of Sciences, University of Cadiz, 11510, Puerto Real, Spain.
| | - Mohammed Addou
- Materials and Valorization of Natural Resource Laboratory, FST Tangier, Abdelmalek Essaadi University, Tétouan, Morocco
| | - Maria Jesus Mosquera
- TEP-243 Nanomaterials Group, Department of Physical-Chemistry, Faculty of Sciences, University of Cadiz, 11510, Puerto Real, Spain
| |
Collapse
|
9
|
Wang X, Zhang F, Hu F, Li Y, Chen Y, Wang H, Min Z, Zhang R. N-Doped Honeycomb-like Ag@N-Ti 3C 2T x Foam for Electromagnetic Interference Shielding. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2967. [PMID: 36080005 PMCID: PMC9457588 DOI: 10.3390/nano12172967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
To solve the pollution problem of electromagnetic waves, new electromagnetic shielding materials should meet the requirements of being lightweight with high electrical conductivity. In this work, the combination of silver (Ag) nanoparticles and nitrogen doping (N-doping) was expected to tune the electromagnetic and physical properties of Ti3C2Tx MXene, and the Ag@N-Ti3C2Tx composites were fabricated through the hydrothermal reactions. The nitrogen doped (N-doped) Ag@Ti3C2Tx composites showed a hollow structure with a pore size of 5 μm. The influence of N-doped degrees on the electromagnetic interference (EMI) shielding performance was investigated over 8-18 GHz. Therefore, the controlled N-doping composites exhibited reflection-based EMI shielding performance due to the electrical conductivity and the special three-dimensional (3D) honeycomb-like structure. The achieved average EMI shielding values were 52.38 dB at the X-band and 72.72 dB at the Ku-band. Overall, the Ag@N-Ti3C2Tx foam, due to its special 3D honeycomb-like structure, not only meets the characteristics of light weight, but also exhibits ultra-high-efficiency EMI shielding performance, revealing great prospects in the application of electromagnetic wave shielding field.
Collapse
Affiliation(s)
- Xiaohan Wang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Fan Zhang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- Henan Vocational College of Information and Statistics, Zhengzhou 450008, China
| | - Feiyue Hu
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yaya Li
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yongqiang Chen
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hailong Wang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhiyu Min
- School of Material Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471026, China
| | - Rui Zhang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Material Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471026, China
| |
Collapse
|
10
|
Lu W, Mustafa B, Wang Z, Lian F, Yu G. PDMS-Encapsulated MXene@Polyester Fabric Strain Sensor for Multifunctional Sensing Applications. NANOMATERIALS 2022; 12:nano12050871. [PMID: 35269359 PMCID: PMC8912599 DOI: 10.3390/nano12050871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023]
Abstract
Flexible strain sensors based on 2D materials have been proven effective for wearable health monitoring devices, human motion detection, and fitness applications. These sensors are flexible, light, and user-friendly, but their sensitivity and detection range need to be enhanced. Among many 2D materials, MXene attracts much interest due to its remarkable properties, such as high electrical conductivity, excellent mechanical properties, flexibility, and good hydrophilicity. However, it is a challenge to fabricate strain sensors with extreme sensitivity and a wide sensing range. In this work, a multifunctional, cost-effective, and highly sensitive PDMS-encapsulated MXene@polyester fabric strain sensor was fabricated. Firstly, complete adsorption of MXene within the fabric formed conductive networks, and then PDMS was used to endow superhydrophobicity and corrosion resistance. The strain sensor demonstrated multifunctional applications and outstanding performance, such as long-term stability (over 500 cycles) and a wide sensing range (8%). The proposed sensor has promising potential for wearable electronic devices such as health monitoring systems and physiological sensing applications.
Collapse
Affiliation(s)
- Wengang Lu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China; (W.L.); (B.M.); (Z.W.); (F.L.)
| | - Beenish Mustafa
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China; (W.L.); (B.M.); (Z.W.); (F.L.)
| | - Zhiyuan Wang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China; (W.L.); (B.M.); (Z.W.); (F.L.)
| | - Fuzhuo Lian
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China; (W.L.); (B.M.); (Z.W.); (F.L.)
| | - Geliang Yu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China; (W.L.); (B.M.); (Z.W.); (F.L.)
- Collaborative Innovation Centre of Advanced Microsctructures, Nanjing University, Nanjing 210093, China
- Correspondence:
| |
Collapse
|