1
|
Natarajamani GS, Kannan VP, Madanagurusamy S. Unveiling superior NH 3 sensing performance: ultrafast response and enhanced recovery kinetics in Ti 3C 2T x/ZnO nano-hybrid sensors with UV-induced Schottky junctions. NANOSCALE 2025; 17:12473-12490. [PMID: 40304589 DOI: 10.1039/d5nr00484e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Achieving high sensitivity and rapid response/recovery times at ambient temperatures remains a significant challenge in gas sensing. Ti3C2Tx MXenes have gained attention for their gas-sensing potential due to their high conductivity and active surface functional groups, but challenges such as limited sensitivity and slow response/recovery persist. In this study, we present an ultrafast, reversible Ti3C2Tx/ZnO hybrid composite sensor for NH3 detection at room temperature. We evaluated the sensor's performance under both ambient and UV illumination conditions. Under ambient conditions, the Ti3C2Tx/ZnO sensor exhibited a 50-fold enhancement in sensitivity compared to pristine ZnO, with response and recovery times of 49 s and 39 s, respectively, at 10 ppm NH3. Under UV illumination, the optimized Ti3C2Tx/ZnO configuration achieved a sensor response of 88 at 50 ppm NH3, with ultrafast response and recovery times of 10 s and 13 s, respectively, at 10 ppm NH3, and a limit of detection (LOD) of 0.1 ppm. These improvements are attributed to charge perturbation at the sensor surface facilitated by Ti3C2Tx/ZnO interactions and the formation of a Schottky barrier at their interface, accelerating adsorption-desorption kinetics. The sensor also demonstrated excellent selectivity for NH3 and high long-term stability and repeatability, making it highly suitable for environmental monitoring, industrial safety, and medical diagnostics.
Collapse
Affiliation(s)
- Gowri Shonali Natarajamani
- Functional Nanomaterials & Devices Lab, Centre for Nanotechnology & Advanced Biomaterials and School of Electrical & Electronics Engineering, SASTRA Deemed to be University, Thanjavur, 613 401, India.
| | - Veera Prabu Kannan
- Department of Metallurgical and Materials Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India
| | - Sridharan Madanagurusamy
- Functional Nanomaterials & Devices Lab, Centre for Nanotechnology & Advanced Biomaterials and School of Electrical & Electronics Engineering, SASTRA Deemed to be University, Thanjavur, 613 401, India.
- School of Arts, Sciences, Humanities & Education, SASTRA Deemed to be University, Thanjavur, 613 401, India
| |
Collapse
|
2
|
Li M, Xie F, Gao J, Li B, Li C, Zhu R, Zhang Y, Zhang Y. Optical Analysis System Based on Binary Differential Absorption Intensity Reconstruction Combined with Discretization Variability Analysis: Parallel Temperature and Concentration Detection of NH 3, NO Mixtures. Anal Chem 2025; 97:10064-10074. [PMID: 40300046 DOI: 10.1021/acs.analchem.5c01468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
In industrial combustion, parallel measurements of ammonia (NH3), nitric oxide (NO), and temperature are essential for analyzing and regulating the selective catalytic reduction (SCR) process. Although ultraviolet differential optical absorption spectroscopy (UV-DOAS) is regarded as an ideal measurement method, the simultaneous detection of NH3, NO, and temperature has not been achieved due to the analytical complexities arising from spectral overlap. Therefore, an optical analysis system is proposed based on binary differential absorption intensity reconstruction combined with discretization variability analysis. First, considering the complexity of the mixed spectra of NH3 and NO, we establish a spectral mapping transformation from the wavelength domain to the reconstructed domain, using NH3 and NO as standard spectra, respectively. With the known mutual interference between NH3 and NO, the absorption features of the two compounds are separated in the reconstructed domain by constructing specific Boolean screening matrices. Second, the law of temperature-induced discretization of the reconstructed spectra of NH3 and NO is clarified, and the relationship between temperature and discretization is established within the reconstruction domain. Finally, we construct three-dimensional field maps of temperature, concentration, and reconstructed optical parameter (ROP) to measure NH3, NO, and temperature simultaneously. The results indicate that the analysis system shows good parallel measurement accuracy, with Mean Relative Errors (MRE) of 3.9%, 3.5%, and 2.8% for NH3 (0-50.0 ppm), NO (0-50.0 ppm), and temperature (290.15-773.15 K), respectively. To the best of our knowledge, the study is the first report on simultaneous measurements of NH3, NO, and temperature using UV-DOAS.
Collapse
Affiliation(s)
- Mu Li
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Fei Xie
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jie Gao
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Bingqian Li
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Changyin Li
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Rui Zhu
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yu Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 15001, China
| | - Yungang Zhang
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
3
|
Xiong D, Luo M, He Q, Huang X, Cai S, Li S, Jia Z, Gao Z. Nb 2CT x/MoSe 2 composites for a highly sensitive NH 3 gas sensor at room temperature. Talanta 2025; 286:127446. [PMID: 39736204 DOI: 10.1016/j.talanta.2024.127446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025]
Abstract
The detection of ammonia (NH3)gas holds significant importance in both daily life and industrial production. In this study, the Nb2CTx/MoSe2 sensor was synthesized using a one-step hydrothermal method and applied for NH3 detection. The morphology and elemental composition of the composites were analyzed through a series of characterization techniques including XRD, TEM, SEM, and XPS, confirming the successful synthesis of Nb2CTx/MoSe2 composite with the optimal mass ratio. The sensing performance of the sensor for NH3 (0.1-100 ppm) was tested at room temperature (∼25 °C). The results showed that, compared to pure Nb2CTx, the sensor based on Nb2CTx/MoSe2 composite exhibited more stable baseline resistance, a 3.5-fold increase in response to 50 ppm NH3, and a reduction in response/recovery time by 56.4 s/32.1 s. Additionally, the sensor's response to NH3 (1 ppm, 50 ppm, 100 ppm) varied by less than 10 % over 90 days, demonstrating excellent stability. The sensing mechanism of NH3 by Nb2CTx/MoSe2 composite is attributed to the formation of a p-n heterojunction and surface charge transfer at the interface between p-type Nb2CTx and n-type MoSe2. Finally, the superior selectivity mechanism of the composite for NH3 was investigated using first-principles calculations. This work opens a new avenue for exploring the application potential of Nb2CTx MXene-based nanocomposites in NH3 detection.
Collapse
Affiliation(s)
- Deshou Xiong
- School of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China
| | - Manyu Luo
- School of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China
| | - Qing He
- School of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China
| | - Xingpeng Huang
- School of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China
| | - Sijin Cai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China.
| | - Zhenhong Jia
- School of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China.
| |
Collapse
|
4
|
Cheng W, Li X, Han C, Liu Y, Xue A, Dong H, Li X, Shao C, Liu Y. Room-Temperature Wearable Chemiresistor Based on a Flexible Inorganic Photoactive Anatase-Rutile TiO 2/Yttria-Stabilized Zirconia Nanofiber Network. ACS Sens 2025; 10:2125-2135. [PMID: 40063984 DOI: 10.1021/acssensors.4c03380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Wearable gas sensors offer remarkable advantages in terms of portability and real-time monitoring, rendering them highly promising for various applications such as environmental detection, health monitoring, and early disease diagnosis. However, the most widely used oxide semiconductor gas sensors encounter substantial challenges in achieving mechanical flexibility and room-temperature gas detection due to their inherent rigidity, brittleness, and reliance on high operating temperatures. Herein, an all-inorganic wearable oxide semiconductor gas sensor is fabricated by depositing the anatase/rutile TiO2 (TiO2-A/R) homojunction on a flexible yttria-stabilized zirconia (YSZ) nanofiber substrate using atomic layer deposition technology. The combination of the YSZ nanofiber and the ultrathin TiO2 sensing layer (∼13 nm) endows the wearable sensor with tiny linear strains (0.55%) when subjected to a radius of curvature of 25 μm. As a result, the wearable inorganic YSZ/TiO2-A/R sensor can be folded multiple times without fracturing and maintain a stable electrical connectivity during cyclic bending. Furthermore, the utilization of photoactive TiO2 homojunctions allows the sensor to be activated by UV light and operated at room temperature. The efficient separation efficiency of photogenerated carriers, which stems from the interfacial electric field of TiO2 homojunctions, significantly enhances the sensor's response, leading to a low detection limit of 0.15 ppm for acetone. In addition, the wearable sensor was anchored on a mask and successfully utilized for the detection of a simulated breathing gas of diabetics; the real-time and stable response signals demonstrate its potential for noninvasive diabetes diagnosis. This study provides a valuable reference for the advancement of wearable room-temperature inorganic semiconductor gas sensors, offering valuable insights into their potential applications in disease diagnosis.
Collapse
Affiliation(s)
- Wanying Cheng
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xiaowei Li
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Chaohan Han
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yu Liu
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Aoqun Xue
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Haipeng Dong
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xinghua Li
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Changlu Shao
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
5
|
Amani AM, Abbasi M, Najdian A, Mohamadpour F, Kasaee SR, Kamyab H, Chelliapan S, Shafiee M, Tayebi L, Vaez A, Najafian A, Vafa E, Mosleh-Shirazi S. MXene-based materials for enhanced water quality: Advances in remediation strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117817. [PMID: 39908870 DOI: 10.1016/j.ecoenv.2025.117817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/07/2025]
Abstract
Two-dimensional MXenes are promising candidates for water treatment because of their large surface area (e.g., exceeding 1000 m²/g for certain structures), high electrical conductivity (e.g., >1000 S/m), hydrophilicity, and chemical stability. Their strong sorption selectivity and effective reduction capacity, exemplified by heavy metal adsorption efficiencies exceeding 95 % in several studies, coupled with facile surface modification, make them suitable for removing diverse contaminants. Applications include the removal of heavy metals (e.g., achieving >90 % removal of Pb(II)), dye removal (e.g., demonstrating >80 % removal of methylene blue), and radioactive waste elimination. Furthermore, 3D MXene architecture exhibit enhanced performance in antibacterial activities (e.g., against bacteria), desalination rejection percentage, and photocatalytic degradation of organic contaminants. However, several challenges have remained, which necessitate further investigation into toxicity (e.g., assessing effects on aquatic organisms), scalability, and cost-effectiveness of large-scale production. This review summarizes recent advancements in 3D MXene-based functional materials for wastewater treatment and water remediation, critically analyzing their both potential and limitations.
Collapse
Affiliation(s)
- Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atena Najdian
- The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farzaneh Mohamadpour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Reza Kasaee
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesam Kamyab
- UTE University, Faculty of Architecture and Urbanism, Architecture Department, TCEMC Investigation Group, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India; The KU-KIST Graduate School of Energy and Environment, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Republic of Korea.
| | - Shreeshivadasan Chelliapan
- Department of Smart Engineering and Advanced Technology, Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia.
| | - Mostafa Shafiee
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Institute for Engineering in Medicine, Health & Human Performance (EnMed), Batten College of Engineering and Technology, Old Dominion University, Norfolk, VA 23529, USA
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Najafian
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Mosleh-Shirazi
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran
| |
Collapse
|
6
|
Song Y, Xia Y, Zhang W, Yu Y, Cui Y, Liu L, Zhang T, Liu S, Zhao H, Fei T. Humidity-Activated Ammonia Sensor Based on Carboxylic Functionalized Cross-Linked Hydrogel. SENSORS (BASEL, SWITZERLAND) 2024; 24:8154. [PMID: 39771889 PMCID: PMC11679150 DOI: 10.3390/s24248154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Owing to its extensive use and intrinsic toxicity, NH3 detection is very crucial. Moisture can cause significant interference in the performance of sensors, and detecting NH3 in high humidity is still a challenge. In this work, a humidity-activated NH3 sensor was prepared by urocanic acid (URA) modifying poly (ethylene glycol) diacrylate (PEGDA) via a thiol-ene click cross-linking reaction. The optimized sensor achieved a response of 70% to 50 ppm NH3 at 80% RH, with a response time of 105.6 s and a recovery time of 346.8 s. The sensor was improved for response and recovery speed. In addition, the prepared sensor showed excellent selectivity to NH3 in high-humidity environments, making it suitable for use in some areas with high humidity all the year round or in high-humidity areas such as the detection of respiratory gas. A detailed investigation of the humidity-activated NH3-sensing mechanism was conducted using complex impedance plot (CIP) measurements.
Collapse
Affiliation(s)
- Yaping Song
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (Y.S.); (Y.X.); (W.Z.); (Y.Y.); (Y.C.); (T.Z.); (S.L.)
| | - Yihan Xia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (Y.S.); (Y.X.); (W.Z.); (Y.Y.); (Y.C.); (T.Z.); (S.L.)
| | - Wei Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (Y.S.); (Y.X.); (W.Z.); (Y.Y.); (Y.C.); (T.Z.); (S.L.)
| | - Yunlong Yu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (Y.S.); (Y.X.); (W.Z.); (Y.Y.); (Y.C.); (T.Z.); (S.L.)
| | - Yanyu Cui
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (Y.S.); (Y.X.); (W.Z.); (Y.Y.); (Y.C.); (T.Z.); (S.L.)
| | - Lichao Liu
- College of Naval Architecture and Ocean Engineering, Naval University of Engineering, P.O. Box No. 076, Wuhan 430033, China;
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (Y.S.); (Y.X.); (W.Z.); (Y.Y.); (Y.C.); (T.Z.); (S.L.)
| | - Sen Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (Y.S.); (Y.X.); (W.Z.); (Y.Y.); (Y.C.); (T.Z.); (S.L.)
| | - Hongran Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (Y.S.); (Y.X.); (W.Z.); (Y.Y.); (Y.C.); (T.Z.); (S.L.)
| | - Teng Fei
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (Y.S.); (Y.X.); (W.Z.); (Y.Y.); (Y.C.); (T.Z.); (S.L.)
| |
Collapse
|
7
|
Zhao Z, Su Z, Lv Z, Shi P, Jin G, Wu L. Room temperature gas sensors for NH 3 detection based on the heterojunction of 2D Ti 3C 2T x MXenes and Bi 2S 3. Mikrochim Acta 2024; 191:687. [PMID: 39433554 DOI: 10.1007/s00604-024-06750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
Bi2S3/Ti3C2Tx nanomaterials were successfully prepared through a simple hydrothermal method. Various methods were used for their characterization, including XRD, XPS, SEM, EDS, and BET, along with testing their gas-sensing properties. The results showed that the response value to 100 ppm ammonia at room temperature reached 107%, which was 14.1 times higher than that of pure few-layer MXene. After undergoing anti-humidity interference testing, we observed that Bi2S3/Ti3C2Tx exhibited a higher response value in real-time monitoring of ammonia as humidity increased. Specifically, under 90% humidity conditions, its response value reached 1.32 times that of normal humidity conditions. This exceptional moisture resistance ensures that the sensor can maintain stability, and even exhibit superior performance, in harsh environments. Therefore, it possesses excellent selectivity, high-moisture-resistance, and long-term stability, making it significant in the field of medical and health monitoring.
Collapse
Affiliation(s)
- Zhihua Zhao
- College of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450052, China.
| | - Zijie Su
- College of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450052, China
| | - Zhenli Lv
- College of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450052, China
| | - Pu Shi
- College of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450052, China
| | - Guixin Jin
- Hanwei Electronics Group Corporation, Zhengzhou, 450052, China
| | - Lan Wu
- College of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450052, China.
| |
Collapse
|
8
|
Thayil R, Parne SR. Biofunctionalized magnetic nanoparticles incorporated MoS 2 nanocomposite for enhanced n-butanol sensing at room temperature. Sci Rep 2024; 14:24508. [PMID: 39424968 PMCID: PMC11489410 DOI: 10.1038/s41598-024-76106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
N-butanol is well known to be a flammable and harmful liquid that is a potential threat to human health and property. Therefore, it is important to monitor the concentration of n-butanol in the surroundings. The need for highly efficient toxic gas detection is urgent and has been driving the research on gas sensors for practical applications. Molybdenum disulfide (MoS2) has been attracting significant interest for gas detection at room temperature. Herein, we report biofunctionalized magnetic nanoparticles incorporated MoS2 for sensing n-butanol. The biosynthesized magnetite nanoparticles (CT-Fe3O4) were synthesized by the addition of Cinnamomum Tamala (CT) leaf extract, and subsequently, the nanocomposite was synthesized using a hydrothermal method. Highly sensitive sensors based on MoS2-CT-Fe3O4 were fabricated and tested for sensing different concentrations of n-butanol. The nanocomposites showed a good sensing performance ( Δ R/Rair %) of 72% towards 20 ppm of n-butanol, indicating the potential use of MoS2-CT-Fe3O4 nanocomposite for sensing n-butanol at room temperature.
Collapse
Affiliation(s)
- Ruchika Thayil
- Department of Applied Sciences, National Institute of Technology Goa, Cuncolim- Goa 403703, India
| | - Saidi Reddy Parne
- Department of Applied Sciences, National Institute of Technology Goa, Cuncolim- Goa 403703, India.
| |
Collapse
|
9
|
Ma Y, Li W, Zhang W, Kong L, Yu C, Tang C, Zhu Z, Chen Y, Jiang L. Bioinspired multi-scale interface design for wet gas sensing based on rational water management. MATERIALS HORIZONS 2024; 11:3996-4014. [PMID: 38938180 DOI: 10.1039/d4mh00538d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Natural organisms have evolved multi-scale wet gas sensing interfaces with optimized mass transport pathways in biological fluid environments, which sheds light on developing artificial counterparts with improved wet gas sensing abilities and practical applications. Herein, we highlighted current advances in wet gas sensing taking advantage of optimized mass transport pathways endowed by multi-scale interface design. Common moisture resistance (e.g., employing moisture resistant sensing materials, post-modifying moisture resistant coatings, physical heating for moisture resistance, and self-removing hydroxyl groups) and moisture absorption (e.g., employing moisture absorption sensing materials and post-modifying moisture absorption coatings) strategies for wet gas sensing were discussed. Then, the design principles of bioinspired multi-scale wet gas sensing interfaces were provided, including macro-level condensation mediation, micro/nano-level transport pathway adjustment and molecular level moisture-proof design. Finally, perspectives on constructing bioinspired multi-scale wet gas sensing interfaces were presented, which will not only deepen our understanding of the underlying principles, but also promote practical applications.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weifeng Li
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China
| | - Weifang Zhang
- College of Environmental and Resource Sciences, Fujian Normal University, Fujian 350117, China
| | - Lei Kong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| | - Chengyue Yu
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
- College of Chemistry and Material Science, Shandong Agriculture University, Tai'an 271018, China
| | - Cen Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongpeng Zhu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| |
Collapse
|
10
|
Wu P, Li Y, Yang A, Tan X, Chu J, Zhang Y, Yan Y, Tang J, Yuan H, Zhang X, Xiao S. Advances in 2D Materials Based Gas Sensors for Industrial Machine Olfactory Applications. ACS Sens 2024; 9:2728-2776. [PMID: 38828988 DOI: 10.1021/acssensors.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The escalating development and improvement of gas sensing ability in industrial equipment, or "machine olfactory", propels the evolution of gas sensors toward enhanced sensitivity, selectivity, stability, power efficiency, cost-effectiveness, and longevity. Two-dimensional (2D) materials, distinguished by their atomic-thin profile, expansive specific surface area, remarkable mechanical strength, and surface tunability, hold significant potential for addressing the intricate challenges in gas sensing. However, a comprehensive review of 2D materials-based gas sensors for specific industrial applications is absent. This review delves into the recent advances in this field and highlights the potential applications in industrial machine olfaction. The main content encompasses industrial scenario characteristics, fundamental classification, enhancement methods, underlying mechanisms, and diverse gas sensing applications. Additionally, the challenges associated with transitioning 2D material gas sensors from laboratory development to industrialization and commercialization are addressed, and future-looking viewpoints on the evolution of next-generation intelligent gas sensory systems in the industrial sector are prospected.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Yi Li
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Aijun Yang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong, No 28 XianNing West Road, Xi'an, Shanxi 710049, China
| | - Xiangyu Tan
- Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming, Yunnan 650217, China
| | - Jifeng Chu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong, No 28 XianNing West Road, Xi'an, Shanxi 710049, China
| | - Yifan Zhang
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Yongxu Yan
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Ju Tang
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Xiaoxing Zhang
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Song Xiao
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
11
|
Li X, Zhang Z, Chen L, Zhang J, Chen W, Feng R, Wang X. Multifunctional MnFe 2O 4/TiO 2/Ti 3C 2T x composites based on in-situ grown TiO 2 for efficient microwave absorption, high hydrophobicity, and heat dissipation properties. J Colloid Interface Sci 2024; 654:96-106. [PMID: 37837855 DOI: 10.1016/j.jcis.2023.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
Despite the fact that the 2D structure Ti3C2Tx with abundant defects and functional groups contributes to the high microwave absorption (MA) performance, it is difficulty to improve the strength and bandwidth by pursuing higher conductivity or loading more groups due to the limitation of intrinsic properties. Therefore, it is important to ingeniously design efficient Ti3C2Tx based MA composites assembling the features of abundant surface groups, good dispersibility, multiple composition, and precise structure. Inspired by the fact that Ti3C2Tx contains thermodynamically metastable marginal Ti atoms, TiO2 nanoparticles can be grown in-situ on Ti3C2Tx nanosheets uniformly and increase the spacing of Ti3C2Tx layers, and then MnFe2O4 nanoparticles are introduced into the layers of Ti3C2Tx by electrostatic self-assembly method for optimized impedance matching. This designed hierarchical MnFe2O4/TiO2/Ti3C2Tx composites shows excellent MA performance, and the minimum reflection loss (RLmin) reaches -46.91 dB with a thickness of 2.5 mm at frequency of 10.4 GHz. The high MA performance mainly comes from the enhanced interfacial polarization induced by edges location and interface region among TiO2, MnFe2O4, and Ti3C2Tx. In addition, the conduction loss existed in the interior untreated Ti3C2Tx, the dielectric loss generated by multiple composition, the multiple scattering from improved large surface specific area all contribute to the excellent MA performance. Meanwhile, the simple preparation process and good stability storage at room temperature under air atmosphere of the MnFe2O4/TiO2/Ti3C2Tx composites promote its exploration on practical use, and the lab-gown cloth coated with MnFe2O4/TiO2/Ti3C2Tx composites shows better electromagnetic shielding properties, hydrophobicity, and heat transfer ability than pure fabric, showing the potential for practical application.
Collapse
Affiliation(s)
- Xing Li
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Zhaozuo Zhang
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Lin Chen
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Jinming Zhang
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Wansong Chen
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Ru Feng
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Xiaoxia Wang
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
12
|
Ravikumar T, Thirumalaisamy L, Madanagurusamy S, Kalainathan S. Manganese doped two-dimensional zinc ferrite thin films as chemiresistive trimethylamine gas sensors. Phys Chem Chem Phys 2023; 25:32216-32233. [PMID: 37987656 DOI: 10.1039/d3cp03867j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Trimethylamine (TMA) is highly toxic and can have lethal effects on living organisms. Detecting the presence of TMA in air is very important because, if the TMA level exceeds the OSHA (Occupational Safety and Health Administration) limit, it may harm the environment and endanger human life. Doping is an appropriate flexible way to change the electrical structures of metal oxide semiconductors (MOSs) and improve their ability to detect toxic gases. In this work, Mn-doped zinc ferrite thin film nanorods with agglomerated morphology were fabricated by a spray pyrolysis technique. For the first time, a comprehensive investigation was done on the gas sensing capabilities of Mn-doped ZnFe2O4 thin films. The findings showed that ZFM1 had the best gas sensing characteristics, with high sensitivity (S = 6.24), good selectivity, and quick recovery, towards 10 ppm TMA at ambient temperature. The alternate Mn-ZF sites are responsible for the rapid recovery because they can significantly increase the concentration of oxygen vacancies in the ZF crystal. 0.1 Mn doped ZnFe2O4 (ZFM1) thin film exhibits greatly enhanced gas sensing properties towards TMA, because of its high surface-to-volume ratio and rough surface with a small nanorod structure. The sensor's response to 10 ppm TMA was measured 13 weeks later for stability testing. The stability test results show that the coated ZFM1 film works well as a TMA gas sensor. This work shows that ZF thin films are effective in detecting TMA in the atmosphere.
Collapse
Affiliation(s)
- Thangavel Ravikumar
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, India.
- School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| | - Logu Thirumalaisamy
- Dept. Of Physics, G. T. N. Arts College (Affiliated to Madurai Kamaraj University), Dindigul, India
| | - Sridharan Madanagurusamy
- Functional Nanomaterials & Devices Lab, Centre for Nanotechnology & Advanced Biomaterials and School of Electrical & Electronics Engineering, SASTRA Deemed to be University, Thanjavur, India
| | | |
Collapse
|
13
|
Atkare S, Kaushik SD, Jagtap S, Rout CS. Room-temperature chemiresistive ammonia sensors based on 2D MXenes and their hybrids: recent developments and future prospects. Dalton Trans 2023; 52:13831-13851. [PMID: 37724340 DOI: 10.1039/d3dt02401f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Detection of ammonia (NH3) gas at room temperature is essential in a variety of sectors, including pollution monitoring, commercial safety and medical services, etc. Two-dimensional (2D) materials have emerged as fascinating candidates for gas-sensing applications due to their distinct properties. MXenes, a type of 2D transition metal carbides/nitrides/carbonotrides, have drawn the interest of researchers due to their high conductivity, large surface area, and changing surface chemistry. The review begins by describing the NH3 gas-detecting methods of 2D materials and then concentrates on MXene-based sensors, emphasising the benefits that MXenes provide in this context. The study also explains the prime factors involved in evaluating sensor performance, which include sensor response, sensitivity, selectivity, stability, charge transfer values, adsorption energy and response/recovery times. Subsequently, the review covers two main categories: pristine/intercalated MXenes and MXene-based hybrid materials. The review investigates the approaches for improving the sensing characteristics of pristine and intercalated MXenes by introducing MXene hybrids like MXene-metal oxide hybrids, MXene-transition metal dichalcogenides hybrid, MXene-other 2D materials hybrid, MXene-polymers and other hybrids and other MXene-derived materials. In summary, this review offers a thorough overview of current advancements and potential applications for room-temperature ammonia sensors based on 2D MXenes and their hybrids. In order to pave the way for future improvements in MXene-based gas-sensing technology for room temperature ammonia detection, the study concludes by outlining potential future scope and conclusions.
Collapse
Affiliation(s)
- Sayali Atkare
- Department of Physics, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Som Datta Kaushik
- UGC-DAE Consortium for Scientific Research Mumbai Centre, R-5 Shed, BARC, Mumbai 400085, India
| | - Shweta Jagtap
- Department of Electronic and Instrumentation Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India.
| | - Chandra Sekhar Rout
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura Road, Bangalore - 562112, Karnataka, India.
| |
Collapse
|
14
|
Simonenko EP, Nagornov IA, Mokrushin AS, Kashevsky SV, Gorban YM, Simonenko TL, Simonenko NP, Kuznetsov NT. Low Temperature Chemoresistive Oxygen Sensors Based on Titanium-Containing Ti 2CT x and Ti 3C 2T x MXenes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4506. [PMID: 37444820 DOI: 10.3390/ma16134506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
The chemoresistive properties of multilayer titanium-containing Ti2CTx and Ti3C2Tx MXenes, synthesized by etching the corresponding MAX phases with NaF solution in hydrochloric acid, and the composites based on them, obtained by partial oxidation directly in a sensor cell in an air flow at 150 °C, were studied. Significant differences were observed for the initial MXenes, both in microstructure and in the composition of surface functional groups, as well as in gas sensitivity. For single Ti2CTx and Ti3C2Tx MXenes, significant responses to oxygen and ammonia were observed. For their partial oxidation at a moderate temperature of 150 °C, a high humidity sensitivity (T, RH = 55%) is observed for Ti2CTx and a high and selective response to oxygen for Ti3C2Tx at 125 °C (RH = 0%). Overall, these titanium-containing MXenes and composites based on them are considered promising as receptor materials for low temperature oxygen sensors.
Collapse
Affiliation(s)
- Elizaveta P Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, 119991 Moscow, Russia
| | - Ilya A Nagornov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, 119991 Moscow, Russia
| | - Artem S Mokrushin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, 119991 Moscow, Russia
| | - Sergey V Kashevsky
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, 119991 Moscow, Russia
- Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Yulia M Gorban
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, 119991 Moscow, Russia
- Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Tatiana L Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, 119991 Moscow, Russia
| | - Nikolay P Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, 119991 Moscow, Russia
| | - Nikolay T Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, 119991 Moscow, Russia
| |
Collapse
|
15
|
Khort A, Haiduk Y, Taratyn I, Moskovskikh D, Podbolotov K, Usenka A, Lapchuk N, Pankov V. High-performance selective NO 2 gas sensor based on In 2O 3-graphene-Cu nanocomposites. Sci Rep 2023; 13:7834. [PMID: 37188838 DOI: 10.1038/s41598-023-34697-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023] Open
Abstract
The control of atmosphere content and concentration of specific gases are important tasks in many industrial processes, agriculture, environmental and medical applications. Thus there is a high demand to develop new advanced materials with enhanced gas sensing characteristics including high gas selectivity. Herein we report the result of a study on the synthesis, characterization, and investigation of gas sensing properties of In2O3-graphene-Cu composite nanomaterials for sensing elements of single-electrode semiconductor gas sensors. The nanocomposite has a closely interconnected and highly defective structure, which is characterized by high sensitivity to various oxidizing and reducing gases and selectivity to NO2. The In2O3-based materials were obtained by sol-gel method, by adding 0-6 wt% of pre-synthesized graphene-Cu powder into In-containing gel before xerogel formation. The graphene-Cu flakes played the role of centers for In2O3 nucleation and then crystal growth terminators. This led to the formation of structural defects, influencing the surface energy state and concentration of free electrons. The concentration of defects increases with the increase of graphene-Cu content from 1 to 4 wt%, which also affects the gas-sensing properties of the nanocomposites. The sensors show a high sensing response to both oxidizing (NO2) and reducing (acetone, ethanol, methane) gases at an optimal working heating current of 91-161 mA (280-510 °C). The sensor with nanocomposite with 4 wt% of graphene-Cu additive showed the highest sensitivity to NO2 (46 ppm) in comparison with other tested gases with an absolute value of sensing response of (- ) 225 mV at a heating current of 131 mA (430 °C) and linear dependence of sensing response to NO2 concentration.
Collapse
Affiliation(s)
- Alexander Khort
- KTH Royal Institute of Technology, Teknikringen, 29, 114 28, Stockholm, Sweden.
| | - Yulyan Haiduk
- Belarusian State University, Niezaleznasti av. 4, 220030, Minsk, Belarus.
| | - Igor Taratyn
- Belarusian National Technical University, Prospekt Nezavisimosti, 65, 220013, Minsk, Belarus
| | - Dmitry Moskovskikh
- Center of Functional Nano-Ceramics, National University of Science and Technology MISIS, Lenin av. 4, 119049, Moscow, Russia
| | - Kirill Podbolotov
- Physical-Technical Institute, National Academy of Sciences of Belarus, Kuprevicha 10, 220141, Minsk, Belarus
| | - Alexandra Usenka
- Belarusian State University, Niezaleznasti av. 4, 220030, Minsk, Belarus
| | - Natalia Lapchuk
- Belarusian State University, Niezaleznasti av. 4, 220030, Minsk, Belarus
| | - Vladimir Pankov
- Belarusian State University, Niezaleznasti av. 4, 220030, Minsk, Belarus
| |
Collapse
|
16
|
Zhao H, Wang Y, Zhou Y. Accelerating the Gas-Solid Interactions for Conductometric Gas Sensors: Impacting Factors and Improvement Strategies. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3249. [PMID: 37110096 PMCID: PMC10146907 DOI: 10.3390/ma16083249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
Metal oxide-based conductometric gas sensors (CGS) have showcased a vast application potential in the fields of environmental protection and medical diagnosis due to their unique advantages of high cost-effectiveness, expedient miniaturization, and noninvasive and convenient operation. Of multiple parameters to assess the sensor performance, the reaction speeds, including response and recovery times during the gas-solid interactions, are directly correlated to a timely recognition of the target molecule prior to scheduling the relevant processing solutions and an instant restoration aimed for subsequent repeated exposure tests. In this review, we first take metal oxide semiconductors (MOSs) as the case study and conclude the impact of the semiconducting type as well as the grain size and morphology of MOSs on the reaction speeds of related gas sensors. Second, various improvement strategies, primarily including external stimulus (heat and photons), morphological and structural regulation, element doping, and composite engineering, are successively introduced in detail. Finally, challenges and perspectives are proposed so as to provide the design references for future high-performance CGS featuring swift detection and regeneration.
Collapse
|
17
|
Hwang JY, Lee Y, Lee GH, Lee SY, Kim HS, Kim SI, Park HJ, Kim SJ, Lee BZ, Choi MS, Jin C, Lee KH. Room-temperature ammonia gas sensing via Au nanoparticle-decorated TiO 2 nanosheets. DISCOVER NANO 2023; 18:47. [PMID: 37382702 DOI: 10.1186/s11671-023-03798-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/09/2023] [Indexed: 06/30/2023]
Abstract
A high-performance gas sensor operating at room temperature is always favourable since it simplifies the device fabrication and lowers the operating power by eliminating a heater. Herein, we fabricated the ammonia (NH3) gas sensor by using Au nanoparticle-decorated TiO2 nanosheets, which were synthesized via two distinct processes: (1) preparation of monolayer TiO2 nanosheets through flux growth and a subsequent chemical exfoliation and (2) decoration of Au nanoparticles on the TiO2 nanosheets via hydrothermal method. Based on the morphological, compositional, crystallographic, and surface characteristics of this low-dimensional nano-heterostructured material, its temperature- and concentration-dependent NH3 gas-sensing properties were investigated. A high response of ~ 2.8 was obtained at room temperature under 20 ppm NH3 gas concentration by decorating Au nanoparticles onto the surface of TiO2 nanosheets, which generated oxygen defects and induced spillover effect as well.
Collapse
Affiliation(s)
- Jeong Yun Hwang
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Yerin Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Gyu Ho Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Seung Yong Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
- KIURI Institute, Yonsei University, Seoul, 03722, South Korea
| | - Hyun-Sik Kim
- Department of Materials Science and Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Sang-Il Kim
- Department of Materials Science and Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Hee Jung Park
- Department of Materials Science and Engineering, Dankook University, Cheonan, 31116, South Korea
| | - Sun-Jae Kim
- Chemland Co., Ltd., Gunpo, 15850, South Korea
| | - Beom Zoo Lee
- Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, South Korea
| | - Myung Sik Choi
- School of Nano, Materials Science and Engineering, Kyungpook National University, Sangju, 37224, South Korea.
| | - Changhyun Jin
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea.
| | - Kyu Hyoung Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
18
|
Two-dimensional black phosphorus/tin oxide heterojunctions for high-performance chemiresistive H 2S sensing. Anal Chim Acta 2023; 1245:340825. [PMID: 36737130 DOI: 10.1016/j.aca.2023.340825] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023]
Abstract
Hydrogen sulfide (H2S) emission from industrial fields and bacteria decomposing of sulfur-containing organic matter poses a significant impact on human health and atmospheric environment, thus necessitating the development of a H2S sensor with high sensitivity and exclusive selectivity especially at a very low dose. Chemiresistive sensors based on traditional metal oxides were readily limited by the elevated operating temperature and severe cross-sensitivity. To overcome these obstacles, we prepared two dimensional (2D) tin oxide (SnO2) nanosheets decorated with thin black phosphorus (BP) as the sensing layer of MEMS H2S sensors. Compared with pure SnO2 counterparts, BP-SnO2 sensors demonstrated lower optimal working temperature (130 °C vs. 160 °C), higher response (8.1 vs. 4.6) and faster response/recovery speeds (39.8 s/47.4 s vs. 79 s/140 s) toward 5 ppm H2S as well as larger sensitivity (1.3/ppm vs. 0.342/ppm). In addition, favorable repeatability, long-term stability, selectivity and humidity tolerance were exhibited. Thin BP not only served as an excellent conductivity platform within the composites, but enriched the adsorption sites by constructing p-n heterojunctions and introducing more oxygen vacancy, thus separately accelerating and strengthening the gas-solid interaction. This study showcased the application superiorities of BP nanosheets in the field of gas sensing, simultaneously providing a new strategy for trace H2S sensing via the 2D heterojunctions.
Collapse
|
19
|
Zhang H, Wang L, Zou Y, Li Y, Xuan J, Wang X, Jia F, Yin G, Sun M. Enhanced ammonia sensing response based on Pt-decorated Ti 3C 2T x/TiO 2composite at room temperature. NANOTECHNOLOGY 2023; 34:205501. [PMID: 36787630 DOI: 10.1088/1361-6528/acbbd2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Herein, we report a Pt-decorated Ti3C2Tx/TiO2gas sensor for the enhanced NH3sensing response at room temperature. Firstly, the TiO2nanosheets (NSs) arein situgrown onto the two-dimensional (2D) Ti3C2Txby hydrothermal treatment. Similar to Ti3C2Txsensor, the Ti3C2Tx/TiO2sensor has a positive resistance variation upon exposure to NH3, but with slight enhancement in response. However, after the loading of Pt nanoparticles (NPs), the Pt-Ti3C2Tx/TiO2sensor shows a negative response with significantly improved NH3sensing performance. The shift in response direction indicates that the dominant sensing mechanism has changed under the sensitization effect of Pt NPs. At room temperature, the response of Pt-Ti3C2Tx/TiO2gas sensor to 100 ppm NH3is about 45.5%, which is 13.8- and 10.8- times higher than those of Ti3C2Txand Ti3C2Tx/TiO2gas sensors, respectively. The experimental detection limit of the Pt-Ti3C2Tx/TiO2gas sensor to detect NH3is 10 ppm, and the corresponding response is 10.0%. In addition, the Pt-Ti3C2Tx/TiO2gas sensor shows the fast response/recovery speed (23/34 s to 100 ppm NH3), high selectivity and good stability. Considering both the response value and the response direction, the corresponding gas-sensing mechanism is also deeply discussed. This work is expected to shed a new light on the development of noble metals decorated MXene-metal oxide gas sensors.
Collapse
Affiliation(s)
- Haifeng Zhang
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Li Wang
- Shandong Dongyue Future Hydrogen Energy Material Co., Ltd, Zibo 256401, People's Republic of China
| | - Yecheng Zou
- Shandong Dongyue Future Hydrogen Energy Material Co., Ltd, Zibo 256401, People's Republic of China
| | - Yongzhe Li
- Shandong Dongyue Future Hydrogen Energy Material Co., Ltd, Zibo 256401, People's Republic of China
| | - Jingyue Xuan
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Xiaomei Wang
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Fuchao Jia
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Guangchao Yin
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Meiling Sun
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000, People's Republic of China
| |
Collapse
|
20
|
MXene Ti3C2Tx derived lamellar Ti3C2Tx-TiO2-CuO Heterojunction: Significantly Improved Ammonia Sensor Performance. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
21
|
Simonenko EP, Simonenko NP, Mokrushin AS, Simonenko TL, Gorobtsov PY, Nagornov IA, Korotcenkov G, Sysoev VV, Kuznetsov NT. Application of Titanium Carbide MXenes in Chemiresistive Gas Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:850. [PMID: 36903729 PMCID: PMC10004978 DOI: 10.3390/nano13050850] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 05/14/2023]
Abstract
The titanium carbide MXenes currently attract an extreme amount of interest from the material science community due to their promising functional properties arising from the two-dimensionality of these layered structures. In particular, the interaction between MXene and gaseous molecules, even at the physisorption level, yields a substantial shift in electrical parameters, which makes it possible to design gas sensors working at RT as a prerequisite to low-powered detection units. Herein, we consider to review such sensors, primarily based on Ti3C2Tx and Ti2CTx crystals as the most studied ones to date, delivering a chemiresistive type of signal. We analyze the ways reported in the literature to modify these 2D nanomaterials for (i) detecting various analyte gases, (ii) improving stability and sensitivity, (iii) reducing response/recovery times, and (iv) advancing a sensitivity to atmospheric humidity. The most powerful approach based on designing hetero-layers of MXenes with other crystals is discussed with regard to employing semiconductor metal oxides and chalcogenides, noble metal nanoparticles, carbon materials (graphene and nanotubes), and polymeric components. The current concepts on the detection mechanisms of MXenes and their hetero-composites are considered, and the background reasons for improving gas-sensing functionality in the hetero-composite when compared with pristine MXenes are classified. We formulate state-of-the-art advances and challenges in the field while proposing some possible solutions, in particular via employing a multisensor array paradigm.
Collapse
Affiliation(s)
- Elizaveta P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Nikolay P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Artem S. Mokrushin
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Tatiana L. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Philipp Yu. Gorobtsov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Ilya A. Nagornov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Ghenadii Korotcenkov
- Department of Physics and Engineering, Moldova State University, 2009 Chisinau, Moldova
| | - Victor V. Sysoev
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya str., 410054 Saratov, Russia
| | - Nikolay T. Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| |
Collapse
|
22
|
Yu J, Zhang H, Liu Resource Q, Yu Resource J, Zhu J, Li Y, Li R, Wang J. 2D/2D heterojunction of Ti3C2/porous few-layer g-C3N4 nanosheets for high-efficiency extraction of uranium(VI). Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
23
|
Wang Y, Zhou Y. Recent Progress on Anti-Humidity Strategies of Chemiresistive Gas Sensors. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15248728. [PMID: 36556531 PMCID: PMC9784667 DOI: 10.3390/ma15248728] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 05/14/2023]
Abstract
In recent decades, chemiresistive gas sensors (CGS) have been widely studied due to their unique advantages of expedient miniaturization, simple fabrication, easy operation, and low cost. As one ubiquitous interference factor, humidity dramatically affects the performance of CGS, which has been neglected for a long time. With the rapid development of technologies based on gas sensors, including the internet of things (IoT), healthcare, environment monitoring, and food quality assessing, the humidity interference on gas sensors has been attracting increasing attention. Inspiringly, various anti-humidity strategies have been proposed to alleviate the humidity interference in this field; however, comprehensive summaries of these strategies are rarely reported. Therefore, this review aims to summarize the latest research advances on humidity-independent CGS. First, we discussed the humidity interference mechanism on gas sensors. Then, the anti-humidity strategies mainly including surface engineering, physical isolation, working parameters modulation, humidity compensation, and developing novel gas-sensing materials were successively introduced in detail. Finally, challenges and perspectives of improving the humidity tolerance of gas sensors were proposed for future research.
Collapse
|
24
|
Singh S, Saggu IS, Chen K, Xuan Z, Swihart MT, Sharma S. Humidity-Tolerant Room-Temperature Selective Dual Sensing and Discrimination of NH 3 and NO Using a WS 2/MWCNT Composite. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40382-40395. [PMID: 36001381 DOI: 10.1021/acsami.2c09069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Continuous detection of toxic and hazardous gases like nitric oxide (NO) and ammonia (NH3) is needed for environmental management and noninvasive diagnosis of various diseases. However, to the best of our knowledge, dual detection of these two gases has not been previously reported. To address the challenge, we demonstrate the design and fabrication of low-cost NH3 and NO dual gas sensors using tungsten disulfide/multiwall carbon nanotube (WS2/MWCNT) nanocomposites as sensing channels which maintained their performance in a humid environment. The composite-based device has shown successful dual detection at temperatures down to 18 °C and relative humidity of 90%. For 0.1 ppm ammonia, it exhibited a p-type conduction with response and recovery times of 102 and 261 s, respectively; on the other hand, with NO (10 ppb, n-type), these times were 285 and 198 s, respectively. The device with 5 mg MWCNTs possesses a superior selectivity along with a relative response of ≈7% (5 ppb) and ≈5% (0.1 ppm) for NO and NH3, respectively, at 18 °C. The response is less affected by relative humidity, and this is attributed to the presence of MWCNTs that are hydrophobic in nature. Upon simultaneous exposure to NO (5-10 ppb) and NH3 (0.1-5 ppm), the response was dominated by NO, implying clear discrimination to the simultaneous presence of these two gases. We propose a sensing mechanism based on adsorption/desportion and accompanied charge transfer between the adsorbed gas molecules and sensing surface. The results suggest that an optimized weight ratio of WS2 and MWCNTs could govern favorable sensing conditions for a particular gas molecule.
Collapse
Affiliation(s)
- Sukhwinder Singh
- Department of Physics, Guru Nanak Dev University Amritsar, Punjab-143005, India
| | - Imtej Singh Saggu
- Department of Physics, Guru Nanak Dev University Amritsar, Punjab-143005, India
| | - Kaiwen Chen
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| | - Zhengxi Xuan
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| | - Sandeep Sharma
- Department of Physics, Guru Nanak Dev University Amritsar, Punjab-143005, India
| |
Collapse
|
25
|
Devaraj M, Rajendran S, Hoang TKA, Soto-Moscoso M. A review on MXene and its nanocomposites for the detection of toxic inorganic gases. CHEMOSPHERE 2022; 302:134933. [PMID: 35561780 DOI: 10.1016/j.chemosphere.2022.134933] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 05/07/2022] [Indexed: 05/27/2023]
Abstract
In the search of the viable candidate for the sensing of pollutant gases, two-dimensional (2D) material transition metal carbides (MXenes) have attracted immense attention due to their outstanding physical and chemical properties for sensing purposes. The formation of unique 2D layered structure with high conductivity, large mechanical strength, and high adsorption properties furnish their strong interactions with gaseous molecules, which holds a promising place for developing ideal gas sensing devices. This review looks at recent achievements in diversified MXenes, with a focus gaining on in-depth understanding of MXene-based materials in room temperature inorganic gas sensors through both theoretical and experimental studies. In the first part of the review, the properties and advantages of sensing material (MXene) in comparison with other 2D materials are discussed. In the second part, the unique advantages of chemiresistive based sensors and the demerits of other detection methods are summarized in detail. This section is followed by the unique structural design of MXene bases materials for improving the sensing performance towards detection of inorganic gases. The interaction between MXene and the adsorbed gases on its surface is discussed, with a possible sensing mechanism. Finally, an overview of the current progress and opportunities for the demand of MXene is emphasized and perspectives for future improvement of the design of MXene in gas sensors are highlighted. Therefore, this review highlights the opportunities and the advancement in 2D material-based gas sensors which could provide a new avenue for rapid detection of toxic gases in the environment.
Collapse
Affiliation(s)
- Manoj Devaraj
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, boul. Lionel-Boulet, Varennes J3X 1S1, Canada
| | | |
Collapse
|
26
|
Marikutsa A, Khmelevsky N, Rumyantseva M. Synergistic Effect of Surface Acidity and PtO x Catalyst on the Sensitivity of Nanosized Metal-Oxide Semiconductors to Benzene. SENSORS (BASEL, SWITZERLAND) 2022; 22:6520. [PMID: 36080979 PMCID: PMC9460263 DOI: 10.3390/s22176520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Benzene is a potentially carcinogenic volatile organic compound (VOC) and its vapor must be strictly monitored in air. Metal-oxide semiconductors (MOS) functionalized by catalytic noble metals are promising materials for sensing VOC, but basic understanding of the relationships of materials composition and sensors behavior should be improved. In this work, the sensitivity to benzene was comparatively studied for nanocrystalline n-type MOS (ZnO, In2O3, SnO2, TiO2, and WO3) in pristine form and modified by catalytic PtOx nanoparticles. Active sites of materials were analyzed by X-ray photoelectron spectroscopy (XPS) and temperature-programmed techniques using probe molecules. The sensing mechanism was studied by in situ diffuse-reflectance infrared (DRIFT) spectroscopy. Distinct trends were observed in the sensitivity to benzene for pristine MOS and nanocomposites MOS/PtOx. The higher sensitivity of pristine SnO2, TiO2, and WO3 was observed. This was attributed to higher total concentrations of oxidation sites and acid sites favoring target molecules' adsorption and redox conversion at the surface of MOS. The sensitivity of PtOx-modified sensors increased with the surface acidity of MOS and were superior for WO3/PtOx. It was deduced that this was due to stabilization of reduced Pt sites which catalyze deep oxidation of benzene molecules to carbonyl species.
Collapse
Affiliation(s)
- Artem Marikutsa
- Chemistry Department, Moscow State University, Vorobyovy Gory 1-3, 119234 Moscow, Russia
| | - Nikolay Khmelevsky
- LISM, Moscow State Technological University Stankin, Vadkovsky Ln. 1, 127055 Moscow, Russia
| | - Marina Rumyantseva
- Chemistry Department, Moscow State University, Vorobyovy Gory 1-3, 119234 Moscow, Russia
| |
Collapse
|
27
|
Mesoporous cellulose nanofibers-interlaced PEDOT:PSS hybrids for chemiresistive ammonia detection. Mikrochim Acta 2022; 189:308. [PMID: 35916935 DOI: 10.1007/s00604-022-05414-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/08/2022] [Indexed: 10/16/2022]
Abstract
Chemiresistive ammonia (NH3) detection at room temperature is highly desired due to the unique merits of easy miniaturization, low cost, and minor energy consumption especially for portable and wearable electronics. In this regard, poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) has sparked considerable attention due to the benign room-temperature conductivity and environmental stability, but it is undesirably impeded by limited sensitivity and sluggish reaction kinetics. To overcome these, we incorporated cellulose nanofibers (CNF) into PEDOT:PSS via a facile blending. The constituent-optimized composite sensor displayed sensitive (sensitivity of ∼7.46%/ppm in the range of 0.2-3 ppm), selective, and stable NH3 sensing at 25 °C at 55% RH, with higher response and less baseline drift than pure PEDOT:PSS counterparts. Additionally, the response/recovery times (4.9 s/5.2 s toward 1 ppm NH3) ranked the best cases of conducting polymers based NH3 sensors. The humidity involved more than twofold response enhancement indicated a huge potential in exhaled breath monitoring. Furthermore, we observed an excellent flexible NH3-sensing performance with bending-tolerant features. This work provides an alternative strategy for trace NH3 sensing with low power consumption, superfast reaction, and high sensitivity.
Collapse
|
28
|
Plastic Waste Precursor-Derived Fluorescent Carbon and Construction of Ternary FCs@CuO@TiO2 Hybrid Photocatalyst for Hydrogen Production and Sensing Application. ENERGIES 2022. [DOI: 10.3390/en15051734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A sustainable nexus between renewable energy production and plastic abatement is imperative for overall sustainable development. In this regard, this study aims to develop a cheaper and environmentally friendly nexus between plastic waste management, wastewater treatment, and renewable hydrogen production. Fluorescent carbon (FCs) were synthesized from commonly used LDPE (low-density polyethylene) by a facile hydrothermal approach. Optical absorption study revealed an absorption edge around 300 nm and two emission bands at 430 and 470 nm. The morphological analysis showed two different patterns of FCs, a thin sheet with 2D morphology and elongated particles. The sheet-shaped particles are 0.5 μm in size, while as for elongated structures, the size varies from 0.5 to 1 μm. The as-synthesized FCs were used for the detection of metal ions (reference as Cu2+ ions) in water. The fluorescence intensity of FCs versus Cu2+ ions depicts its upright analytical ability with a limit of detection (LOD) reaching 86.5 nM, which is considerably lesser than earlier reported fluorescence probes derived from waste. After the sensing of Cu2+, the as-obtained FCs@Cu2+ was mixed with TiO2 to form a ternary FCs@CuO@TiO2 composite. This ternary composite was utilized for photocatalytic hydrogen production from water under 1.5 AM solar light irradiation. The H2 evolution rate was found to be ~1800 μmolg−1, which is many folds compared to the bare FCs. Moreover, the optimized FCs@CuO@TiO2 ternary composite showed a photocurrent density of ~2.40 mA/cm2 at 1 V vs. Ag/AgCl, in 1 M Na2SO4 solution under the illumination of simulated solar light. The achieved photocurrent density corresponds to the solar-to-hydrogen (STH) efficiency of ~0.95%. The efficiency is due to the fluorescence nature of FCs and the synergistic effect of CuO embedded in TiO2, which enhances the optical absorption of the composite by reaching the bandgap of 2.44 eV, apparently reducing the recombination rate, which was confirmed by optoelectronic, structural, and spectroscopic characterizations.
Collapse
|
29
|
High-Sensitivity Metal Oxide Sensors Duplex for On-the-Field Detection of Acetic Acid Arising from the Degradation of Cellulose Acetate-Based Cinematographic and Photographic Films. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this work, a system consisting of two resistive sensors working in tandem to detect and quantify the acetic acid released during the degradation of cellulose acetate-based ancient cinematographic and photographic films is presented. Acetic acid must be constantly monitored to prevent reaching concentrations at which autocatalytic degradation processes begin. The sensors are constituted by a thin layer of metal oxide (tungsten oxide and tin oxide) deposited over an interdigitated electrode capable of being heated, chosen to maximize the array response towards acetic acid vapors. The signals obtained from the sensor array are mathematically processed to reduce the background signal due to interferent gases produced during degradation of ancient cinematographic films. The sensor array reported a LOD of 30 ppb for acetic acid, with a linearity range up to 30 ppm. Finally, the sensor array was tested with different cinematographic and photographic film samples made of cellulose acetate, whose degradation state and acetic acid production was validated using the conventional technique (A-D strips). The presented array is suitable for remote monitoring large number of films in collections since, compared to the official technique, it has a lower detection limit (30 ppb vs. 500 ppb) and is much quicker in providing accurate acetic acid concentration in the film boxes (15 min vs. 24 h).
Collapse
|