1
|
Quan MC, Mai DJ. Biomolecular Actuators for Soft Robots. Chem Rev 2025. [PMID: 40331746 DOI: 10.1021/acs.chemrev.4c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Biomolecules present promising stimuli-responsive mechanisms to revolutionize soft actuators. Proteins, peptides, and nucleic acids foster specific intermolecular interactions, and their boundless sequence design spaces encode precise actuation capabilities. Drawing inspiration from nature, biomolecular actuators harness existing stimuli-responsive properties to meet the needs of diverse applications. This review features biomolecular actuators that respond to a wide variety of stimuli to drive both user-directed and autonomous actuation. We discuss how advances in biomaterial fabrication accelerate prototyping of precise, custom actuators, and we identify biomolecules with untapped actuation potential. Finally, we highlight opportunities for multifunctional and reconfigurable biomolecules to improve the versatility and sustainability of next-generation soft actuators.
Collapse
Affiliation(s)
- Michelle C Quan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Danielle J Mai
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Wang H, Du J, Mao Y. Hydrogel-Based Continuum Soft Robots. Gels 2025; 11:254. [PMID: 40277689 PMCID: PMC12026835 DOI: 10.3390/gels11040254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
This paper comprehensively reviews the latest advances in hydrogel-based continuum soft robots. Hydrogels exhibit exceptional flexibility and adaptability compared to traditional robots reliant on rigid structures, making them ideal as biomimetic robotic skins and platforms for constructing highly accurate, real-time responsive sensory interfaces. The article systematically summarizes recent research developments across several key dimensions, including application domains, fabrication methods, actuator technologies, and sensing mechanisms. From an application perspective, developments span healthcare, manufacturing, and agriculture. Regarding fabrication techniques, the paper extensively explores crosslinking methods, additive manufacturing, microfluidics, and other related processes. Additionally, the article categorizes and thoroughly discusses various hydrogel-based actuators responsive to solute/solvent variations, pH, chemical reactions, temperature, light, magnetic fields, electric fields, hydraulic/electro-osmotic stimuli, and humidity. It also details the strategies for designing and implementing diverse sensors, including strain, pressure, humidity, conductive, magnetic, thermal, gas, optical, and multimodal sensors. Finally, the paper offers an in-depth discussion of the prospective applications of hydrogel-based continuum soft robots, particularly emphasizing their potential in medical and industrial fields. Concluding remarks include a forward-looking outlook highlighting future challenges and promising research directions.
Collapse
Affiliation(s)
- Honghong Wang
- School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China
| | - Jingli Du
- School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China
| | - Yi Mao
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
3
|
Yi J, Yang S, Yue L, Lei IM. Digital light processing 3D printing of flexible devices: actuators, sensors and energy devices. MICROSYSTEMS & NANOENGINEERING 2025; 11:51. [PMID: 40108126 PMCID: PMC11923083 DOI: 10.1038/s41378-025-00885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/21/2024] [Accepted: 01/08/2025] [Indexed: 03/22/2025]
Abstract
Flexible devices are increasingly crucial in various aspects of our lives, including healthcare devices and human-machine interface systems, revolutionizing human life. As technology evolves rapidly, there is a high demand for innovative manufacturing methods that enable rapid prototyping of custom and multifunctional flexible devices with high quality. Recently, digital light processing (DLP) 3D printing has emerged as a promising manufacturing approach due to its capabilities of creating intricate customized structures, high fabrication speed, low-cost technology and widespread adoption. This review provides a state-of-the-art overview of the recent advances in the creation of flexible devices using DLP printing, with a focus on soft actuators, flexible sensors and flexible energy devices. We emphasize how DLP printing and the development of DLP printable materials enhance the structural design, sensitivity, mechanical performance, and overall functionality of these devices. Finally, we discuss the challenges and perspectives associated with DLP-printed flexible devices. We anticipate that the continued advancements in DLP printing will foster the development of smarter flexible devices, shortening the design-to-manufacturing cycles.
Collapse
Affiliation(s)
- Jiuhong Yi
- Department of Electromechanical Engineering, University of Macau, Macao, 999078, China
- Centre for Artificial Intelligence and Robotics, University of Macau, Macao, 999078, China
| | - Shuqi Yang
- Department of Electromechanical Engineering, University of Macau, Macao, 999078, China
- Centre for Artificial Intelligence and Robotics, University of Macau, Macao, 999078, China
| | - Liang Yue
- Smart Manufacturing Thrust, Hong Kong University of Science and Technology, Guangzhou, 511458, China
| | - Iek Man Lei
- Department of Electromechanical Engineering, University of Macau, Macao, 999078, China.
- Centre for Artificial Intelligence and Robotics, University of Macau, Macao, 999078, China.
| |
Collapse
|
4
|
He CF, Qiao TH, Ren XC, Xie M, Gao Q, Xie CQ, Wang P, Sun Y, Yang H, He Y. Printability in Multi-material Projection-Based 3-Dimensional Bioprinting. RESEARCH (WASHINGTON, D.C.) 2025; 8:0613. [PMID: 40041038 PMCID: PMC11876545 DOI: 10.34133/research.0613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 03/06/2025]
Abstract
Accurately reconstructing the intricate structure of natural organisms is the long-standing goal of 3-dimensional (3D) bioprinting. Projection-based 3D printing boasts the highest resolution-to-manufacturing time ratio among all 3D-printing technologies, rendering it a highly promising technique in this field. However, achieving standardized, high-fidelity, and high-resolution printing of composite structures using bioinks with diverse mechanical properties remains a marked challenge. The root of this challenge lies in the long-standing neglect of multi-material printability research. Multi-material printing is far from a simple physical assembly of different materials; rather, effective control of material interfaces is a crucial factor that governs print quality. The current research gap in this area substantively hinders the widespread application and rapid development of multi-material projection-based 3D bioprinting. To bridge this critical gap, we developed a multi-material projection-based 3D bioprinter capable of simultaneous printing with 6 materials. Building upon this, we established a fundamental framework for multi-material printability research, encompassing its core logic and essential process specifications. Furthermore, we clarified several critical issues, including the cross-linking behavior of multicomponent bioinks, mechanical mismatch and interface strength in soft-hard composite structures, the penetration behavior of viscous bioinks within hydrogel polymer networks, liquid entrapment and adsorption phenomena in porous heterogeneous structures, and error source analysis along with resolution evaluation in multi-material printing. This study offers a solid theoretical foundation and guidance for the quantitative assessment of multi-material projection-based 3D bioprinting, holding promise to advance the field toward higher precision and the reconstruction of more intricate biological structures.
Collapse
Affiliation(s)
- Chao-fan He
- State Key Laboratory of Fluid Power and Mechatronic Systems & Liangzhu Laboratory, School of Mechanical Engineering,
Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering,
Zhejiang University, Hangzhou 310027, China
| | - Tian-hong Qiao
- State Key Laboratory of Fluid Power and Mechatronic Systems & Liangzhu Laboratory, School of Mechanical Engineering,
Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering,
Zhejiang University, Hangzhou 310027, China
| | - Xu-chao Ren
- School of Computer Science,
Xi’an Shiyou University, Xi’an 710065, China
| | - Mingjun Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems & Liangzhu Laboratory, School of Mechanical Engineering,
Zhejiang University, Hangzhou 310027, China
| | - Qing Gao
- EFL-Tech,
Suzhou Yongqinquan Intelligent Equipment Co., Ltd, Suzhou 215101, China
| | - Chao-qi Xie
- EFL-Tech,
Suzhou Yongqinquan Intelligent Equipment Co., Ltd, Suzhou 215101, China
| | - Peng Wang
- EFL-Tech,
Suzhou Yongqinquan Intelligent Equipment Co., Ltd, Suzhou 215101, China
| | - Yuan Sun
- State Key Laboratory of Fluid Power and Mechatronic Systems & Liangzhu Laboratory, School of Mechanical Engineering,
Zhejiang University, Hangzhou 310027, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering,
Zhejiang University, Hangzhou 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems & Liangzhu Laboratory, School of Mechanical Engineering,
Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering,
Zhejiang University, Hangzhou 310027, China
- The Second Affiliated Hospital of Zhejiang University,
Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Jain N, Waidi YO. The Multifaceted Role of 3D Printed Conducting Polymers in Next-Generation Energy Devices: A Critical Perspective. JACS AU 2025; 5:411-425. [PMID: 40017762 PMCID: PMC11862948 DOI: 10.1021/jacsau.4c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 03/01/2025]
Abstract
The increasing human population is leading to growing consumption of energy sources which requires development in energy devices. The modern iterations of these devices fail to offer sustainable and environmentally friendly answers since they require costly equipment and produce a lot of waste. Three-dimensional (3D) printing has spurred incredible innovation over the years in a variety of fields and is clearly an attractive option because technology can create unique geometric items quickly, cheaply, and with little waste. Conducting polymers (CPs) are a significant family of functional materials that have garnered interest in the research community because of their high conductivity, outstanding sustainability, and economic significance. They have an extensive number of applications involving supercapacitors, power sources, electrochromic gadgets, electrostatic components, conducting pastes, sensors, and biological devices thanks to their special physical and electrical attributes, ease of synthesis, and appropriate frameworks for functional attachment. The use of three-dimensional printing has become popular as an exact way to enhance prepared networks. Rapid technological advancements are reproducing patterns and building structures that enable automated deposition of polymers for intricate structures. Different composites have been created using oxides of metals and carbon to improve the efficiency of the CPs. Such composites have been actively investigated as exceptional energy producers for low-power electronic techniques, and by increasing the range of applications, they have verified increasing surface area, electronic conductivity, and remarkable electrochemical behavior. The hybridization with such materials has produced a range of equipment, such as gathering energy, sensors, protective gadgets, and storage facilities. A few possible uses for these CPs such as sensors and energy storage devices are discussed in this perspective. We also provide an overview of the key strategies for scientific and industrial applications with an eye on potential improvements for a sustainable future.
Collapse
Affiliation(s)
- Nipun Jain
- Department
of Materials Engineering, Indian Institute
of Science, C.V Raman Avenue, Bangalore 560012, India
| | - Yusuf Olatunji Waidi
- Department
of Materials Engineering, Indian Institute
of Science, C.V Raman Avenue, Bangalore 560012, India
| |
Collapse
|
6
|
Guan T, Li H, Liu J, Zhang W, Wang S, Ye W, Bian B, Yi X, Wu Y, Liu Y, Du J, Shang J, Li RW. Preparation of Ion Composite Photosensitive Resin and Its Application in 3D-Printing Highly Sensitive Pressure Sensor. SENSORS (BASEL, SWITZERLAND) 2025; 25:1348. [PMID: 40096106 PMCID: PMC11902503 DOI: 10.3390/s25051348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
Flexible pressure sensors play an extremely important role in the fields of intelligent medical treatment, humanoid robots, and so on. However, the low sensitivity and the small initial capacitance still limit its application and development. At present, the method of constructing the microstructure of the dielectric layer is commonly used to improve the sensitivity of the sensor, but there are some problems, such as the complex process and inaccurate control of the microstructure. In this work, an ion composite photosensitive resin based on polyurethane acrylate and ionic liquids (ILs) was prepared. The high compatibility of the photosensitive resin and ILs was achieved by adding a chitooligosaccharide (COS) chain extender. The microstructure of the dielectric layer was optimized by digital light processing (DLP) 3D-printing. Due to the introduction of ILs to construct an electric double layer (EDL), the flexible pressure sensor exhibits a high sensitivity of 32.62 kPa-1, which is 12.2 times higher than that without ILs. It also has a wide range of 100 kPa and a fast response time of 51 ms. It has a good pressure response under different pressures and can realize the demonstration application of human health.
Collapse
Grants
- U22A20248, U24A6001, 52127803, U24A20228, U22A2075, 62174165, 52301256, 52401257, 52201236, M-0152 National Natural Science Foundation of China
- 2024YFB3814100, 2023YFC3603500 National Key R&D Program of China
- 181GJHZ2024138GC International Partnership Program of Chinese Academy of Sciences
- 2018334 Chinese Academy of Sciences Youth Innovation Promotion Association
- CASSHB-QNPD-2023-022 Talent Plan of Shanghai Branch, Chinese Academy of Sciences
- 2022A-007-C Project of Zhejiang Province(2022R52004), Ningbo Technology Project
- 2022J288, 2023J049, 2023J345 Ningbo Natural Science Foundations
- 2023Z097, 2024Z148, 2024Z143, 2024Z199, 2024Z171 Ningbo Key Research and Development Program
- 2023S067 Ningbo Public Welfare Program
Collapse
Affiliation(s)
- Tong Guan
- School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China;
| | - Huayang Li
- Yongjiang Laboratory, Ningbo 315201, China;
| | - Jinyun Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (J.L.); (W.Z.); (S.W.); (W.Y.); (B.B.); (X.Y.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wuxu Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (J.L.); (W.Z.); (S.W.); (W.Y.); (B.B.); (X.Y.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siying Wang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (J.L.); (W.Z.); (S.W.); (W.Y.); (B.B.); (X.Y.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wentao Ye
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (J.L.); (W.Z.); (S.W.); (W.Y.); (B.B.); (X.Y.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoru Bian
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (J.L.); (W.Z.); (S.W.); (W.Y.); (B.B.); (X.Y.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaohui Yi
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (J.L.); (W.Z.); (S.W.); (W.Y.); (B.B.); (X.Y.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (J.L.); (W.Z.); (S.W.); (W.Y.); (B.B.); (X.Y.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (J.L.); (W.Z.); (S.W.); (W.Y.); (B.B.); (X.Y.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Juan Du
- School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China;
| | - Jie Shang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (J.L.); (W.Z.); (S.W.); (W.Y.); (B.B.); (X.Y.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (J.L.); (W.Z.); (S.W.); (W.Y.); (B.B.); (X.Y.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
7
|
Wan R, Liu S, Li Z, Li G, Li H, Li J, Xu J, Liu X. 3D printing of highly conductive and strongly adhesive PEDOT:PSS hydrogel-based bioelectronic interface for accurate electromyography monitoring. J Colloid Interface Sci 2025; 677:198-207. [PMID: 38816323 DOI: 10.1016/j.jcis.2024.05.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
PEDOT PSS hydrogel-based bioelectronic interfaces have gained significant attention in various fields including biomedical devices, wearable devices, and epidermal electronics. However, the development of high-performance bioelectronic interfaces that integrate excellent conductivity, strong adhesion, and advanced processing compatibility remains a challenge. Herein, we develop a high-performance bioelectronic interface by 3D printing of a novel poly(vinyl alcohol-formaldehyde) (PVAF)-PEDOT:PSS composite ink. Such a PEDOT:PSS-PVAF ink exhibits favorable rheological properties for direct-ink-writing 3D printing, enabling the fabrication of high-resolution patterns and three-dimensional structures with high aspect ratios. Hydrogel bioelectronic interface printed by such PEDOT:PSS-PVAF ink simultaneously achieves high conductivity (over 100 S m-1), strong adhesion (31.44 ± 7.07 kPa), as well as stable electrochemical performance (charge injection capacity of 13.72 mC cm-2 and charge storage capacity of 18.80 mC cm-2). We further integrate PEDOT:PSS-PVAF hydrogel bioelectronic interface to fabricate adhesive skin electrodes for electromyography (EMG) signal recording. The resultant EMG skin electrodes demonstrate superior performance and stability compared to commercial products, maintaining high signal-to-noise ratio of > 10 dB under varying weights and repetitive motions. These advantageous performance of PEDOT:PSS-PVAF based hydrogel bioelectronic interfaces may be helpful for diverse bioelectronic applications like healthcare monitoring and epidermal bioelectronics.
Collapse
Affiliation(s)
- Rongtai Wan
- Jiangxi Province Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang 330013, Jiangxi, PR China
| | - Shuhan Liu
- Jiangxi Province Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang 330013, Jiangxi, PR China
| | - Zheng Li
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang 330013, Jiangxi, PR China
| | - Gen Li
- Jiangxi Province Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang 330013, Jiangxi, PR China
| | - Hai Li
- Jiangxi Province Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang 330013, Jiangxi, PR China
| | - Jianhong Li
- The Institute of Metaverse, Jiangxi Science and Technology Normal University, Nanchang 330038, Jiangxi, PR China.
| | - Jingkun Xu
- Jiangxi Province Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang 330013, Jiangxi, PR China; School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang 330013, Jiangxi, PR China.
| | - Ximei Liu
- Jiangxi Province Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang 330013, Jiangxi, PR China.
| |
Collapse
|
8
|
Kumi M, Wang T, Ejeromedoghene O, Wang J, Li P, Huang W. Exploring the Potentials of Chitin and Chitosan-Based Bioinks for 3D-Printing of Flexible Electronics: The Future of Sustainable Bioelectronics. SMALL METHODS 2024; 8:e2301341. [PMID: 38403854 DOI: 10.1002/smtd.202301341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 02/27/2024]
Abstract
Chitin and chitosan-based bioink for 3D-printed flexible electronics have tremendous potential for innovation in healthcare, agriculture, the environment, and industry. This biomaterial is suitable for 3D printing because it is highly stretchable, super-flexible, affordable, ultrathin, and lightweight. Owing to its ease of use, on-demand manufacturing, accurate and regulated deposition, and versatility with flexible and soft functional materials, 3D printing has revolutionized free-form construction and end-user customization. This study examined the potential of employing chitin and chitosan-based bioinks to build 3D-printed flexible electronic devices and optimize bioink formulation, printing parameters, and postprocessing processes to improve mechanical and electrical properties. The exploration of 3D-printed chitin and chitosan-based flexible bioelectronics will open new avenues for new flexible materials for numerous industrial applications.
Collapse
Affiliation(s)
- Moses Kumi
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Onome Ejeromedoghene
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Junjie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
9
|
Li Y, Veronica A, Ma J, Nyein HYY. Materials, Structure, and Interface of Stretchable Interconnects for Wearable Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408456. [PMID: 39139019 DOI: 10.1002/adma.202408456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Since wearable technologies for telemedicine have emerged to tackle global health concerns, the demand for well-attested wearable healthcare devices with high user comfort also arises. Skin-wearables for health monitoring require mechanical flexibility and stretchability for not only high compatibility with the skin's dynamic nature but also a robust collection of fine health signals from within. Stretchable electrical interconnects, which determine the device's overall integrity, are one of the fundamental units being understated in wearable bioelectronics. In this review, a broad class of materials and engineering methodologies recently researched and developed are presented, and their respective attributes, limitations, and opportunities in designing stretchable interconnects for wearable bioelectronics are offered. Specifically, the electrical and mechanical characteristics of various materials (metals, polymers, carbons, and their composites) are highlighted, along with their compatibility with diverse geometric configurations. Detailed insights into fabrication techniques that are compatible with soft substrates are also provided. Importantly, successful examples of establishing reliable interfacial connections between soft and rigid elements using novel interconnects are reviewed. Lastly, some perspectives and prospects of remaining research challenges and potential pathways for practical utilization of interconnects in wearables are laid out.
Collapse
Affiliation(s)
- Yue Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, 00000, China
| | - Asmita Veronica
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, 00000, China
| | - Jiahao Ma
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, 00000, China
| | - Hnin Yin Yin Nyein
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, 00000, China
| |
Collapse
|
10
|
Wu H, Luo R, Li Z, Tian Y, Yuan J, Su B, Zhou K, Yan C, Shi Y. Additively Manufactured Flexible Liquid Metal-Coated Self-Powered Magnetoelectric Sensors with High Design Freedom. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307546. [PMID: 38145802 DOI: 10.1002/adma.202307546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Although additive manufacturing enables controllable structural design and customized performance for magnetoelectric sensors, their design and fabrication still require careful matching of the size and modulus between the magnetic and conductive components. Achieving magnetoelectric integration remains challenging, and the rigid coils limit the flexibility of the sensors. To overcome these obstacles, this study proposes a composite process combining selective laser sintering (SLS) and 3D transfer printing for fabricating flexible liquid metal-coated magnetoelectric sensors. The liquid metal forms a conformal conductive network on the SLS-printed magnetic lattice structure. Deformation of the structure alters the magnetic flux passing through it, thereby generating voltage. A reverse model segmentation and summation method is established to calculate the theoretical magnetic flux. The impact of the volume fraction, unit size, and height of the sensors on the voltage is studied, and optimization of these factors yields a maximum voltage of 45.6 µV. The sensor has excellent sensing performance with a sensitivity of 10.9 kPa-1 and a minimum detection pressure of 0.1 kPa. The voltage can be generated through various external forces. This work presents a significant advancement in fabricating liquid metal-based magnetoelectric sensors by improving their structural flexibility, magnetoelectric integration, and design freedom.
Collapse
Affiliation(s)
- Hongzhi Wu
- State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ruiying Luo
- State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Zhuofan Li
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yujia Tian
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiayi Yuan
- State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Bin Su
- State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Kun Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chunze Yan
- State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yusheng Shi
- State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
11
|
Dominguez‐Alfaro A, Mitoudi‐Vagourdi E, Dimov I, Picchio ML, Lopez‐Larrea N, de Lacalle JL, Tao X, Serrano RR, Gallastegui A, Vassardanis N, Mecerreyes D, Malliaras GG. Light-Based 3D Multi-Material Printing of Micro-Structured Bio-Shaped, Conducting and Dry Adhesive Electrodes for Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306424. [PMID: 38251224 PMCID: PMC11251555 DOI: 10.1002/advs.202306424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/20/2023] [Indexed: 01/23/2024]
Abstract
In this work, a new method of multi-material printing in one-go using a commercially available 3D printer is presented. The approach is simple and versatile, allowing the manufacturing of multi-material layered or multi-material printing in the same layer. To the best of the knowledge, it is the first time that 3D printed Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) micro-patterns combining different materials are reported, overcoming mechanical stability issues. Moreover, the conducting ink is engineered to obtain stable in-time materials while retaining sub-100 µm resolution. Micro-structured bio-shaped protuberances are designed and 3D printed as electrodes for electrophysiology. Moreover, these microstructures are combined with polymerizable deep eutectic solvents (polyDES) as functional additives, gaining adhesion and ionic conductivity. As a result of the novel electrodes, low skin impedance values showed suitable performance for electromyography recording on the forearm. Finally, this concluded that the use of polyDES conferred stability over time, allowing the usability of the electrode 90 days after fabrication without losing its performance. All in all, this demonstrated a very easy-to-make procedure that allows printing PEDOT:PSS on soft, hard, and/or flexible functional substrates, opening up a new paradigm in the manufacturing of conducting multi-functional materials for the field of bioelectronics and wearables.
Collapse
Affiliation(s)
- Antonio Dominguez‐Alfaro
- Electrical Engineering DivisionDepartment of EngineeringUniversity of Cambridge9 JJ Thomson AveCambridgeCB3 0FAUK
- POLYMATUniversity of the Basque Country UPV/EHUAvenida Tolosa 72Donostia‐San SebastiánGipuzkoa20018Spain
| | - Eleni Mitoudi‐Vagourdi
- Electrical Engineering DivisionDepartment of EngineeringUniversity of Cambridge9 JJ Thomson AveCambridgeCB3 0FAUK
| | - Ivan Dimov
- Electrical Engineering DivisionDepartment of EngineeringUniversity of Cambridge9 JJ Thomson AveCambridgeCB3 0FAUK
| | - Matias L. Picchio
- POLYMATUniversity of the Basque Country UPV/EHUAvenida Tolosa 72Donostia‐San SebastiánGipuzkoa20018Spain
| | - Naroa Lopez‐Larrea
- POLYMATUniversity of the Basque Country UPV/EHUAvenida Tolosa 72Donostia‐San SebastiánGipuzkoa20018Spain
| | - Jon Lopez de Lacalle
- POLYMATUniversity of the Basque Country UPV/EHUAvenida Tolosa 72Donostia‐San SebastiánGipuzkoa20018Spain
| | - Xudong Tao
- Electrical Engineering DivisionDepartment of EngineeringUniversity of Cambridge9 JJ Thomson AveCambridgeCB3 0FAUK
| | - Ruben Ruiz‐Mateos Serrano
- Electrical Engineering DivisionDepartment of EngineeringUniversity of Cambridge9 JJ Thomson AveCambridgeCB3 0FAUK
| | - Antonela Gallastegui
- POLYMATUniversity of the Basque Country UPV/EHUAvenida Tolosa 72Donostia‐San SebastiánGipuzkoa20018Spain
| | | | - David Mecerreyes
- POLYMATUniversity of the Basque Country UPV/EHUAvenida Tolosa 72Donostia‐San SebastiánGipuzkoa20018Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48009Spain
| | - George G. Malliaras
- Electrical Engineering DivisionDepartment of EngineeringUniversity of Cambridge9 JJ Thomson AveCambridgeCB3 0FAUK
| |
Collapse
|
12
|
Lee CP, Hashimoto M. Prediction of textural properties of 3D-printed food using response surface methodology. Heliyon 2024; 10:e27658. [PMID: 38560226 PMCID: PMC10980939 DOI: 10.1016/j.heliyon.2024.e27658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
3D printing has enabled modifying internal structures of the food affecting textural properties, but predicting desired texture remains challenging. To overcome this challenge, the use of response surface methodology (RSM) was demonstrated to develop empirical models relating 3D printing parameters to textural properties using aqueous inks containing cricket powders as a model system. Regression models were established for our key textural properties (i.e., hardness (H), adhesiveness (A), cohesiveness (C), and springiness (S)) in response to three 3D printing parameters: infill percentage (i), layer height (h), and print speed (s). Our developed model successfully predicted the 3D printing parameters to achieve the intended textural properties using a multi-objective optimization framework. The predicted limits for H, A, C, and S were 0.66-5.39 N, 0.01-12.43 mJ, 0.01-1.05, and 0-19.20 mm, respectively. To validate our models, we simulated the texture of other food using our model ink and achieved high accuracy for H (99%), C (82%), and S (87%). This work highlights a simple way to 3D-print foods with spatially different textures and materials, unlocking the full potential of 3D printing technology for manufacturing a range of customized foods.
Collapse
Affiliation(s)
- Cheng Pau Lee
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road Singapore, 487372, Singapore
- SUTD-MIT International Design Centre (IDC), Singapore University of Technology and Design, 8 Somapah Road Singapore, 487372, Singapore
| | - Michinao Hashimoto
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road Singapore, 487372, Singapore
- SUTD-MIT International Design Centre (IDC), Singapore University of Technology and Design, 8 Somapah Road Singapore, 487372, Singapore
| |
Collapse
|
13
|
Lu G, Tang R, Nie J, Zhu X. Photocuring 3D Printing of Hydrogels: Techniques, Materials, and Applications in Tissue Engineering and Flexible Devices. Macromol Rapid Commun 2024; 45:e2300661. [PMID: 38271638 DOI: 10.1002/marc.202300661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Photocuring 3D printing of hydrogels, with sophisticated, delicate structures and biocompatibility, attracts significant attention by researchers and possesses promising application in the fields of tissue engineering and flexible devices. After years of development, photocuring 3D printing technologies and hydrogel inks make great progress. Herein, the techniques of photocuring 3D printing of hydrogels, including direct ink writing (DIW), stereolithography (SLA), digital light processing (DLP), continuous liquid interface production (CLIP), volumetric additive manufacturing (VAM), and two photon polymerization (TPP) are reviewed. Further, the raw materials for hydrogel inks (photocurable polymers, monomers, photoinitiators, and additives) and applications in tissue engineering and flexible devices are also reviewed. At last, the current challenges and future perspectives of photocuring 3D printing of hydrogels are discussed.
Collapse
Affiliation(s)
- Guoqiang Lu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruifen Tang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jun Nie
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoqun Zhu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
14
|
Omidian H, Mfoafo K. Three-Dimensional Printing Strategies for Enhanced Hydrogel Applications. Gels 2024; 10:220. [PMID: 38667639 PMCID: PMC11049339 DOI: 10.3390/gels10040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
This study explores the dynamic field of 3D-printed hydrogels, emphasizing advancements and challenges in customization, fabrication, and functionalization for applications in biomedical engineering, soft robotics, and tissue engineering. It delves into the significance of tailored biomedical scaffolds for tissue regeneration, the enhancement in bioinks for realistic tissue replication, and the development of bioinspired actuators. Additionally, this paper addresses fabrication issues in soft robotics, aiming to mimic biological structures through high-resolution, multimaterial printing. In tissue engineering, it highlights efforts to create environments conducive to cell migration and functional tissue development. This research also extends to drug delivery systems, focusing on controlled release and biocompatibility, and examines the integration of hydrogels with electronic components for bioelectronic applications. The interdisciplinary nature of these efforts highlights a commitment to overcoming material limitations and optimizing fabrication techniques to realize the full potential of 3D-printed hydrogels in improving health and well-being.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA;
| | | |
Collapse
|
15
|
Jiang W, Lee S, Zan G, Zhao K, Park C. Alternating Current Electroluminescence for Human-Interactive Sensing Displays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304053. [PMID: 37696051 DOI: 10.1002/adma.202304053] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/04/2023] [Indexed: 09/13/2023]
Abstract
The development of stimuli-interactive displays based on alternating current (AC)-driven electroluminescence (EL) is of great interest, owing to their simple device architectures suitable for wearable applications requiring resilient mechanical flexibility and stretchability. AC-EL displays can serve as emerging platforms for various human-interactive sensing displays (HISDs) where human information is electrically detected and directly visualized using EL, promoting the development of the interaction of human-machine technologies. This review provides a holistic overview of the latest developments in AC-EL displays with an emphasis on their applications for HISDs. AC-EL displays based on exciton recombination or impact excitations of hot electrons are classified into four representative groups depending upon their device architecture: 1) displays without insulating layers, 2) displays with single insulating layers, 3) displays with double insulating layers, and 4) displays with EL materials embedded in an insulating matrix. State-of-the-art AC HISDs are discussed. Furthermore, emerging stimuli-interactive AC-EL displays are described, followed by a discussion of scientific and engineering challenges and perspectives for future stimuli-interactive AC-EL displays serving as photo-electronic human-machine interfaces.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seokyeong Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Guangtao Zan
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kaiying Zhao
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Spin Convergence Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02791, Republic of Korea
| |
Collapse
|
16
|
Kim SD, Kim K, Shin M. Recent advances in 3D printable conductive hydrogel inks for neural engineering. NANO CONVERGENCE 2023; 10:41. [PMID: 37679589 PMCID: PMC10484881 DOI: 10.1186/s40580-023-00389-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Recently, the 3D printing of conductive hydrogels has undergone remarkable advances in the fabrication of complex and functional structures. In the field of neural engineering, an increasing number of reports have been published on tissue engineering and bioelectronic approaches over the last few years. The convergence of 3D printing methods and electrically conducting hydrogels may create new clinical and therapeutic possibilities for precision regenerative medicine and implants. In this review, we summarize (i) advancements in preparation strategies for conductive materials, (ii) various printing techniques enabling the fabrication of electroconductive hydrogels, (iii) the required physicochemical properties of the printed constructs, (iv) their applications in bioelectronics and tissue regeneration for neural engineering, and (v) unconventional approaches and outlooks for the 3D printing of conductive hydrogels. This review provides technical insights into 3D printable conductive hydrogels and encompasses recent developments, specifically over the last few years of research in the neural engineering field.
Collapse
Affiliation(s)
- Sung Dong Kim
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Kyoungryong Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Mikyung Shin
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
17
|
Yang Q, Wang J, Luo J, Tan S, Wang CH, Wu Y. Polyacrylate- graft-polypyrrole Copolymer as Intrinsically Elastic Electrodes for Stretchable Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38878-38887. [PMID: 37534699 DOI: 10.1021/acsami.3c08623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Constructing elastic electrodes with high mechanical and electrochemical stability remains a challenge in developing flexible supercapacitors. Instability of elastic composite electrodes stems from detachment of noncovalently associated electroactive components from elastic substrates under cyclic deformations. Herein, a novel all-organic copolymer consisting of polypyrrole grafted from a polyacrylate elastomer is proposed as elastic electrodes for stretchable supercapacitors. The single copolymer is obtained by graft polymerization in the swollen state, characterized by a wrinkled polypyrrole coating covalently attached on an elastic core. The copolymer is intrinsically elastic and maintains structural integrity under bending, twisting, and stretching deformations to ensure stable electrochemical performance. In addition, the grafted polypyrrole aggregates densely under the constraint of the backbone and gives a competitive conductivity of 41.6 S cm-1. A stretchable supercapacitor is constructed using the copolymer as electrodes and an acid hydrogel as an electrolyte, resulting in a specific capacitance of 430 mF cm-2. The supercapacitor delivers a capacitance retention of 100% after 1000 stretching-releasing cycles, exhibiting mechanical and electrochemical reliability under elastic deformations.
Collapse
Affiliation(s)
- Qing Yang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Jun Wang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Jie Luo
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Shuai Tan
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Cai Hong Wang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yong Wu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
18
|
Li C, Cheng J, He Y, He X, Xu Z, Ge Q, Yang C. Polyelectrolyte elastomer-based ionotronic sensors with multi-mode sensing capabilities via multi-material 3D printing. Nat Commun 2023; 14:4853. [PMID: 37563150 PMCID: PMC10415297 DOI: 10.1038/s41467-023-40583-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/02/2023] [Indexed: 08/12/2023] Open
Abstract
Stretchable ionotronics have drawn increasing attention during the past decade, enabling myriad applications in engineering and biomedicine. However, existing ionotronic sensors suffer from limited sensing capabilities due to simple device structures and poor stability due to the leakage of ingredients. In this study, we rationally design and fabricate a plethora of architected leakage-free ionotronic sensors with multi-mode sensing capabilities, using DLP-based 3D printing and a polyelectrolyte elastomer. We synthesize a photo-polymerizable ionic monomer for the polyelectrolyte elastomer, which is stretchable, transparent, ionically conductive, thermally stable, and leakage-resistant. The printed sensors possess robust interfaces and extraordinary long-term stability. The multi-material 3D printing allows high flexibility in structural design, enabling the sensing of tension, compression, shear, and torsion, with on-demand tailorable sensitivities through elaborate programming of device architectures. Furthermore, we fabricate integrated ionotronic sensors that can perceive different mechanical stimuli simultaneously without mutual signal interferences. We demonstrate a sensing kit consisting of four shear sensors and one compressive sensor, and connect it to a remote-control system that is programmed to wirelessly control the flight of a drone. Multi-material 3D printing of leakage-free polyelectrolyte elastomers paves new avenues for manufacturing stretchable ionotronics by resolving the deficiencies of stability and functionalities simultaneously.
Collapse
Affiliation(s)
- Caicong Li
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
- Soft Mechanics Laboratory, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
| | - Jianxiang Cheng
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
| | - Yunfeng He
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
- Soft Mechanics Laboratory, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
| | - Xiangnan He
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
| | - Ziyi Xu
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
- Soft Mechanics Laboratory, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
| | - Qi Ge
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China.
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China.
| | - Canhui Yang
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China.
- Soft Mechanics Laboratory, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China.
| |
Collapse
|
19
|
Xie X, Xu Z, Yu X, Jiang H, Li H, Feng W. Liquid-in-liquid printing of 3D and mechanically tunable conductive hydrogels. Nat Commun 2023; 14:4289. [PMID: 37463898 DOI: 10.1038/s41467-023-40004-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Conductive hydrogels require tunable mechanical properties, high conductivity and complicated 3D structures for advanced functionality in (bio)applications. Here, we report a straightforward strategy to construct 3D conductive hydrogels by programable printing of aqueous inks rich in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) inside of oil. In this liquid-in-liquid printing method, assemblies of PEDOT:PSS colloidal particles originating from the aqueous phase and polydimethylsiloxane surfactants from the other form an elastic film at the liquid-liquid interface, allowing trapping of the hydrogel precursor inks in the designed 3D nonequilibrium shapes for subsequent gelation and/or chemical cross-linking. Conductivities up to 301 S m-1 are achieved for a low PEDOT:PSS content of 9 mg mL-1 in two interpenetrating hydrogel networks. The effortless printability enables us to tune the hydrogels' components and mechanical properties, thus facilitating the use of these conductive hydrogels as electromicrofluidic devices and to customize near-field communication (NFC) implantable biochips in the future.
Collapse
Affiliation(s)
- Xinjian Xie
- College of Polymer Science and Engineering, Sichuan University, 610065, Chengdu, China
| | - Zhonggang Xu
- College of Polymer Science and Engineering, Sichuan University, 610065, Chengdu, China
| | - Xin Yu
- Department of Pancreatic Surgery, Department of Biotherapy, West China Hospital, Sichuan University, 610065, Chengdu, China
| | - Hong Jiang
- Department of Pancreatic Surgery, Department of Biotherapy, West China Hospital, Sichuan University, 610065, Chengdu, China
| | - Hongjiao Li
- College of Chemical Engineering, Sichuan University, 610065, Chengdu, China.
| | - Wenqian Feng
- College of Polymer Science and Engineering, Sichuan University, 610065, Chengdu, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China.
| |
Collapse
|
20
|
Tadesse MG, Lübben JF. Recent Progress in Self-Healable Hydrogel-Based Electroluminescent Devices: A Comprehensive Review. Gels 2023; 9:gels9030250. [PMID: 36975699 PMCID: PMC10048157 DOI: 10.3390/gels9030250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Flexible electronics have gained significant research attention in recent years due to their potential applications as smart and functional materials. Typically, electroluminescence devices produced by hydrogel-based materials are among the most notable flexible electronics. With their excellent flexibility and their remarkable electrical, adaptable mechanical and self-healing properties, functional hydrogels offer a wealth of insights and opportunities for the fabrication of electroluminescent devices that can be easily integrated into wearable electronics for various applications. Various strategies have been developed and adapted to obtain functional hydrogels, and at the same time, high-performance electroluminescent devices have been fabricated based on these functional hydrogels. This review provides a comprehensive overview of various functional hydrogels that have been used for the development of electroluminescent devices. It also highlights some challenges and future research prospects for hydrogel-based electroluminescent devices.
Collapse
Affiliation(s)
- Melkie Getnet Tadesse
- Sustainable Engineering (STE), Albstadt-Sigmaringen University, 72458 Albstadt, Germany
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar 1037, Ethiopia
| | - Jörn Felix Lübben
- Sustainable Engineering (STE), Albstadt-Sigmaringen University, 72458 Albstadt, Germany
| |
Collapse
|
21
|
Nie L, Wei Q, Li J, Deng Y, He X, Gao X, Ma X, Liu S, Sun Y, Jiang G, Okoro OV, Shavandi A, Jing S. Fabrication and desired properties of conductive hydrogel dressings for wound healing. RSC Adv 2023; 13:8502-8522. [PMID: 36926300 PMCID: PMC10012873 DOI: 10.1039/d2ra07195a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Conductive hydrogels are platforms recognized as constituting promising materials for tissue engineering applications. This is because such conductive hydrogels are characterized by the inherent conductivity properties while retaining favorable biocompatibility and mechanical properties. These conductive hydrogels can be particularly useful in enhancing wound healing since their favorable conductivity can promote the transport of essential ions for wound healing via the imposition of a so-called transepithelial potential. Other valuable properties of these conductive hydrogels, such as wound monitoring, stimuli-response etc., are also discussed in this study. Crucially, the properties of conductive hydrogels, such as 3D printability and monitoring properties, suggest the possibility of its use as an alternative wound dressing to traditional dressings such as bandages. This review, therefore, seeks to comprehensively explore the functionality of conductive hydrogels in wound healing, types of conductive hydrogels and their preparation strategies and crucial properties of hydrogels. This review will also assess the limitations of conductive hydrogels and future perspectives, with an emphasis on the development trend for conductive hydrogel uses in wound dressing fabrication for subsequent clinical applications.
Collapse
Affiliation(s)
- Lei Nie
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt 50 - CP 165/61 1050 Brussels Belgium
| | - Qianqian Wei
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
| | - Jingyu Li
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
| | - Yaling Deng
- College of Intelligent Science and Control Engineering, Jinling Institute of Technology Nanjing 211169 P.R. China
| | - Xiaorui He
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
| | - Xinyue Gao
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
| | - Xiao Ma
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
| | - Shuang Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt 50 - CP 165/61 1050 Brussels Belgium
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt 50 - CP 165/61 1050 Brussels Belgium
| | - Shengli Jing
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
| |
Collapse
|
22
|
Rong Y, Zhu L, Zhang X, Fei J, Li H, Huang D, Huang X, Yao X. Photocurable 3D printing gels with dual networks for high-sensitivity wearable sensors. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
|
24
|
Zhao Y, Cui J, Qiu X, Yan Y, Zhang Z, Fang K, Yang Y, Zhang X, Huang J. Manufacturing and post-engineering strategies of hydrogel actuators and sensors: From materials to interfaces. Adv Colloid Interface Sci 2022; 308:102749. [PMID: 36007285 DOI: 10.1016/j.cis.2022.102749] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
Living bodies are made of numerous bio-sensors and actuators for perceiving external stimuli and making movement. Hydrogels have been considered as ideal candidates for manufacturing bio-sensors and actuators because of their excellent biocompatibility, similar mechanical and electrical properties to that of living organs. The key point of manufacturing hydrogel sensors/actuators is that the materials should not only possess excellent mechanical and electrical properties but also form effective interfacial connections with various substrates. Traditional hydrogel normally shows high electrical resistance (~ MΩ•cm) with limited mechanical strength (<1 MPa), and it is prone to fatigue fracture during continuous loading-unloading cycles. Just like iron should be toughened and hardened into steel, manufacturing and post-treatment processes are necessary for modifying hydrogels. Besides, advanced design and manufacturing strategies can build effective interfaces between sensors/actuators and other substrates, thus enhancing the desired mechanical and electrical performances. Although various literatures have reviewed the manufacture or modification of hydrogels, the summary regarding the post-treatment strategies and the creation of effective electrical and mechanically sustainable interfaces are still lacking. This paper aims at providing an overview of the following topics: (i) the manufacturing and post-engineering treatment of hydrogel sensors and actuators; (ii) the processes of creating sensor(actuator)-substrate interfaces; (iii) the development and innovation of hydrogel manufacturing and interface creation. In the first section, the manufacturing processes and the principles for post-engineering treatments are discussed, and some typical examples are also presented. In the second section, the studies of interfaces between hydrogels and various substrates are reviewed. Lastly, we summarize the current manufacturing processes of hydrogels, and provide potential perspectives for hydrogel manufacturing and post-treatment methods.
Collapse
Affiliation(s)
- Yiming Zhao
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Jiuyu Cui
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yonggan Yan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Zekai Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Kezhong Fang
- Lunan Pharmaceutical Group Co., LTD, Linyi 276005, China
| | - Yu Yang
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Linyi 276005, China
| | - Xiaolai Zhang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jun Huang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China.
| |
Collapse
|
25
|
Qi C, Dong Z, Huang Y, Xu J, Lei C. Tough, Anti-Swelling Supramolecular Hydrogels Mediated by Surfactant-Polymer Interactions for Underwater Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30385-30397. [PMID: 35737578 DOI: 10.1021/acsami.2c06395] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is a great challenge for traditional hydrogel-based sensors to be effective underwater due to unsatisfactory water resistance and insufficient wet adhesion. Herein, a tough supramolecular hydrogel aiming at underwater sensing is prepared by the modification of hydrophilic poly(acrylic acid) (PAA) with a small amount of hydrophobic lauryl methacrylate (LMA) in the presence of high concentrations of the cationic surfactant cetyltrimethylammonium bromide (CTAB). Owing to the synergistic effects of the electrostatic interactions and hydrophobic associations of CTAB with the P(AA-co-LMA) copolymer, the hydrogel with a water content of approximately 58.5 wt % demonstrates outstanding anti-swelling feature, superior tensile strength (≈1.6 MPa), large stretchability (>900%), rapid room-temperature self-recovery (≈3 min at 100% strain), and robust wet adhesion to diverse substrates. Moreover, the strain sensor based on the hydrogel displays keen sensitivity in a sensing range of 0-900% (gauge factor is 0.42, 3.44, 5.44, and 7.39 in the strain range of 0-100, 100-300, 300-500, and 500-900%, respectively) and pronounced stability both in air and underwater. Additionally, the hydrogel can be easily recycled by dissolving in anhydrous ethanol. This work provides a facile strategy to fabricate eco-friendly, tough supramolecular hydrogels for underwater sensing.
Collapse
Affiliation(s)
- Chuyi Qi
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Zhixian Dong
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Yuekai Huang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Jinbao Xu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Caihong Lei
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P.R. China
| |
Collapse
|
26
|
Chen K, Liu M, Wang F, Hu Y, Liu P, Li C, Du Q, Yu Y, Xiao X, Feng Q. Highly Transparent, Self-Healing, and Self-Adhesive Double Network Hydrogel for Wearable Sensors. Front Bioeng Biotechnol 2022; 10:846401. [PMID: 35198546 PMCID: PMC8859421 DOI: 10.3389/fbioe.2022.846401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/17/2022] [Indexed: 12/21/2022] Open
Abstract
Hydrogel-based flexible electronic devices are essential in future healthcare and biomedical applications, such as human motion monitoring, advanced diagnostics, physiotherapy, etc. As a satisfactory flexible electronic material, the hydrogel should be conductive, ductile, self-healing, and adhesive. Herein, we demonstrated a unique design of mechanically resilient and conductive hydrogel with double network structure. The Ca2+ crosslinked alginate as the first dense network and the ionic pair crosslinked polyzwitterion as the second loose network. With the synthetic effect of these two networks, this hydrogel showed excellent mechanical properties, such as superior stretchability (1,375%) and high toughness (0.57 MJ/m3). At the same time, the abundant ionic groups of the polyzwitterion network endowed our hydrogel with excellent conductivity (0.25 S/m). Moreover, due to the dynamic property of these two networks, our hydrogel also performed good self-healing performance. Besides, our experimental results indicated that this hydrogel also had high optical transmittance (92.2%) and adhesive characteristics. Based on these outstanding properties, we further explored the utilization of this hydrogel as a flexible wearable strain sensor. The data strongly proved its enduring accuracy and sensitivity to detect human motions, including large joint flexion (such as finger, elbow, and knee), foot planter pressure measurement, and local muscle movement (such as eyebrow and mouth). Therefore, we believed that this hydrogel had great potential applications in wearable health monitoring, intelligent robot, human-machine interface, and other related fields.
Collapse
Affiliation(s)
- Kai Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
- School of Resources and Chemical Engineering, Sanming University, Sanming, China
| | - Mingxiang Liu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Feng Wang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yunping Hu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Pei Liu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Cong Li
- Department of Biomaterial, College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Qianqian Du
- Department of Biomaterial, College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yongsheng Yu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- *Correspondence: Qian Feng, ; Xiufeng Xiao, ; Yongsheng Yu,
| | - Xiufeng Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
- *Correspondence: Qian Feng, ; Xiufeng Xiao, ; Yongsheng Yu,
| | - Qian Feng
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, China
- *Correspondence: Qian Feng, ; Xiufeng Xiao, ; Yongsheng Yu,
| |
Collapse
|