1
|
Nguyen TD, Roh S, Nguyen MTN, Lee JS. Structural Control of Nanofibers According to Electrospinning Process Conditions and Their Applications. MICROMACHINES 2023; 14:2022. [PMID: 38004879 PMCID: PMC10673317 DOI: 10.3390/mi14112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023]
Abstract
Nanofibers have gained much attention because of the large surface area they can provide. Thus, many fabrication methods that produce nanofiber materials have been proposed. Electrospinning is a spinning technique that can use an electric field to continuously and uniformly generate polymer and composite nanofibers. The structure of the electrospinning system can be modified, thus making changes to the structure, and also the alignment of nanofibers. Moreover, the nanofibers can also be treated, modifying the nanofiber structure. This paper thoroughly reviews the efforts to change the configuration of the electrospinning system and the effects of these configurations on the nanofibers. Excellent works in different fields of application that use electrospun nanofibers are also introduced. The studied materials functioned effectively in their application, thereby proving the potential for the future development of electrospinning nanofiber materials.
Collapse
Affiliation(s)
| | | | | | - Jun Seop Lee
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si 13120, Gyeonggi-Do, Republic of Korea; (T.D.N.); (S.R.); (M.T.N.N.)
| |
Collapse
|
2
|
Cao L, Wang W, Cheng J, Wang T, Zhang Y, Wang L, Li W, Chen S. Synergetic Inhibition and Corrosion-Diagnosing Nanofiber Networks for Self-Healing Protective Coatings. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48645-48659. [PMID: 37791906 DOI: 10.1021/acsami.3c10698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Organic coatings lack durability in marine corrosive environments. Herein, we designed a self-healing coating with a novel nanofiber network filler for enhanced protection. Using electrospinning, we created a core-shell structure nanofiber network consisting of polyvinyl butyral (PVB) as the shell material and gallic acid (GA) and phenanthroline (Phen) as the core material. The PVB@GA-Phen nanofiber network, which includes synergistic corrosion inhibitors (GA-Phen), was embedded in an epoxy coating (PVB@GA-Phen/epoxy) and applied to carbon steel. Density functional theory (DFT) calculations and molecular dynamics (MD) simulations demonstrated that the GA-Phen combination, through hydrogen bond interaction, facilitated inhibitor adsorption on the steel surface. The GA-Phen combination diagnosed corrosion and formed a protective film on the scratched areas. The sustained release of Phen-GA combination inhibitors for up to 240 h resulted in an 88.63% healing efficiency of the PVB@GA-Phen/epoxy (PGP/EP) coating. The long-term corrosion resistance tests confirmed the effective barrier performance of the PGP/EP coating in 3.5 wt % NaCl solution. Moreover, the incorporation of the nanofiber network in the epoxy coating provided passive barrier, corrosion-diagnosing, and anticorrosion properties for carbon steel protection. The designed coating has the potential to continuously monitor the coating/metal system and could serve as a foundation for developing new anticorrosion coatings.
Collapse
Affiliation(s)
- Lin Cao
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Wei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jia Cheng
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Tong Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yue Zhang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Lei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Wen Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Shougang Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
3
|
Liu J, Tian S, Ren J, Huang J, Luo L, Du B, Zhang T. Improved Interlaminar Properties of Glass Fiber/Epoxy Laminates by the Synergic Modification of Soft and Rigid Particles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6611. [PMID: 37834749 PMCID: PMC10574751 DOI: 10.3390/ma16196611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Poor interlaminar fracture toughness has been a major issue in glass fiber-reinforced epoxy resin (GF/EP) laminate composites. In this paper, soft carboxy-terminated nitrile (CTBN) rubber particles and rigid nano-SiO2 are used to toughen the epoxy resin (EP) matrix to improve the interlayer properties of GF/EP laminate composites. The effects of adding two toughening agents on the mechanical and interlayer properties of GF/EP laminates were studied. The results showed that adding the two kinds of particles improved the mechanical properties of the epoxy matrix. When the additional amount of flexible CTBN rubber particles was 8 wt%, and the rigid nano-SiO2 was 0.5 wt%, the fracture toughness of the matrix resin was increased by 215.8%, and the tensile strength was only decreased by 2.3% compared with the pure epoxy resin. On this basis, the effects of two kinds of particles on the interlayer properties of GF/EP composites were studied. Compared with the unmodified GF/EP laminates, the interlayer shear strength and mode I interlayer fracture toughness is significantly improved by a toughening agent, and the energy release rate GIC of interlayer shear strength and interlayer fracture toughness is increased by 109.2%, and 86.8%, respectively. The flexible CTBN rubber particles and rigid nano-SiO2 improve the interfacial adhesion between GF and EP. The cavitation of the two particles and the plastic deformation of the matrix is the toughening mechanism of the interlayer properties of the composite. Such excellent interlaminar mechanical properties make it possible for GF/EP laminates to be widely used as engineering materials in various industries (e.g., aerospace, hydrogen energy, marine).
Collapse
Affiliation(s)
- Jingwei Liu
- Chongqing Key Laboratory of Nano-Micro Composites and Devices, College of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
- Department of Fine Chemicals and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
| | - Shenghui Tian
- Chongqing Key Laboratory of Nano-Micro Composites and Devices, College of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Jiaqi Ren
- Chongqing Key Laboratory of Nano-Micro Composites and Devices, College of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Jin Huang
- Chongqing Key Laboratory of Soft Matter Materials Chemistry and Functional Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Lin Luo
- Chongqing Key Laboratory of Nano-Micro Composites and Devices, College of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Bing Du
- Chongqing Key Laboratory of Nano-Micro Composites and Devices, College of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Tianyong Zhang
- Department of Fine Chemicals and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
4
|
Sabzekar M, Pourafshari Chenar M, Khayet M, García-Payo C, Mortazavi SM, Golmohammadi M. Development of Novel Electrospun Fibers Based on Cyclic Olefin Polymer. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2412. [PMID: 37686920 PMCID: PMC10490243 DOI: 10.3390/nano13172412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
For the first time, a systematic study to investigate the electrospinnability of cyclic olefin polymer (COP) was performed. Different solvents and mixtures were tested together with different electrospinning parameters and post-treatment types to prepare bead-free fibers without defects. These were successfully obtained using a chloroform/chlorobenzene (40/60 wt.%) solvent mixture with a 15 wt.% COP polymer, a 1 mL/h polymer solution flow rate, a 15 cm distance between the needle and collector, and a 12 kV electric voltage. COP fibers were in the micron range and the hot-press post-treatment (5 MPa, 5 min and 120 °C) induced an integrated fibrous structure along with more junctions between fibers, reducing the mean and maximum inter-fiber space. When the temperature of the press post-treatment was increased (from 25 °C to 120 °C), better strength and less elongation at break of COP fibers were achieved. However, when applying a temperature above the COP glass temperature (Tg = 138 °C) the fibers coalesced, showing a mechanical behavior similar to a plastic film and a low elongation at break with a high strength. The addition of a high dielectric constant non-solvent, N,N-dimethylacetamide (DMAc), resulted in a considerable reduction in the COP fiber diameter. Based on the cloud point approach, it was found that the use of DMAc and the solvent chloroform or chlorobenzene improved the electrospinnability of COP polymer solution.
Collapse
Affiliation(s)
- Malihe Sabzekar
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948944, Iran;
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain;
| | - Mahdi Pourafshari Chenar
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948944, Iran;
| | - Mohamed Khayet
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain;
| | - Carmen García-Payo
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain;
| | | | - Morteza Golmohammadi
- Department of Chemical Engineering, Birjand University of Technology, Birjand 9719866981, Iran;
| |
Collapse
|
5
|
Maccaferri E, Canciani A, Mazzocchetti L, Benelli T, Giorgini L, Albonetti S. Water-Resistant Photo-Crosslinked PEO/PEGDA Electrospun Nanofibers for Application in Catalysis. MEMBRANES 2023; 13:212. [PMID: 36837715 PMCID: PMC9968077 DOI: 10.3390/membranes13020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Catalysts are used for producing the vast majority of chemical products. Usually, catalytic membranes are inorganic. However, when dealing with reactions conducted at low temperatures, such as in the production of fine chemicals, polymeric catalytic membranes are preferred due to a more competitive cost and easier tunability compared to inorganic ones. In the present work, nanofibrous mats made of poly(ethylene oxide), PEO, and poly(ethylene glycol) diacrylate, PEGDA, blends with the Au/Pd catalyst are proposed as catalytic membranes for water phase and low-temperature reactions. While PEO is a water-soluble polymer, its blending with PEGDA can be exploited to make the overall PEO/PEGDA blend nanofibers water-resistant upon photo-crosslinking. Thus, after the optimization of the blend solution (PEO molecular weight, PEO/PEGDA ratio, photoinitiator amount), electrospinning process, and UV irradiation time, the resulting nanofibrous mat is able to maintain the nanostructure in water. The addition of the Au6/Pd1 catalyst (supported on TiO2) in the PEO/PEGDA blend allows the production of a catalytic nanofibrous membrane. The reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP), taken as a water phase model reaction, demonstrates the potential usage of PEO-based membranes in catalysis.
Collapse
Affiliation(s)
- Emanuele Maccaferri
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Andrea Canciani
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Laura Mazzocchetti
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Tiziana Benelli
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Loris Giorgini
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Stefania Albonetti
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| |
Collapse
|
6
|
The Mechanical Properties of Nanocomposites Reinforced with PA6 Electrospun Nanofibers. Polymers (Basel) 2023; 15:polym15030673. [PMID: 36771974 PMCID: PMC9919334 DOI: 10.3390/polym15030673] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Electrospun nanofibers are very popular in polymer nanocomposites because they have a high aspect ratio, a large surface area, and good mechanical properties, which gives them a broad range of uses. The application of nonwoven structures of electrospun nanofiber mats has historically been limited to enhancing the interlaminar responses of fiber-reinforced composites. However, the potential of oriented nanofibers to improve the characteristics of bulk matrices cannot be overstated. In this research, a multilayered laminate composite was created by introducing polyamide (PA6)-oriented nanofibers into an epoxy matrix in order to examine the effect of the nanofibers on the tensile and thermal characteristics of the nanocomposite. The specimens' fracture surfaces were examined using scanning electron microscopy (SEM). Using differential scanning calorimetry (DSC) analysis, the thermal characteristics of the nanofiber-layered composites were investigated. The results demonstrated a 10.58% peak in the nanocomposites' elastic modulus, which was compared to the numerical simulation and the analytical model. This work proposes a technique for the development of lightweight high-performance nanocomposites.
Collapse
|
7
|
Yoo SH, Yoon HS, Han H, Na KH, Choi WY. Fabrications of Electrospun Mesoporous TiO 2 Nanofibers with Various Amounts of PVP and Photocatalytic Properties on Methylene Blue (MB) Photodegradation. Polymers (Basel) 2022; 15:polym15010134. [PMID: 36616487 PMCID: PMC9824412 DOI: 10.3390/polym15010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
The superior chemical and electrical properties of TiO2 are considered to be suitable material for various applications, such as photoelectrodes, photocatalysts, and semiconductor gas sensors; however, it is difficult to commercialize the applications due to their low photoelectric conversion efficiency. Various solutions have been suggested and among them, the increase of active sites through surface modification is one of the most studied methods. A porous nanostructure with a large specific surface area is an attractive solution to increasing active sites, and in the electrospinning process, mesoporous nanofibers can be obtained by controlling the composition of the precursor solution. This study successfully carried out surface modification of TiO2 nanofibers by mixing polyvinylpyrrolidone with different molecular weights and using diisopropyl azodicarboxylate (DIPA). The morphology and crystallographic properties of the TiO2 samples were analyzed using a field emission electron microscope and X-ray diffraction method. The specific surface area and pore properties of the nanofiber samples were compared using the Brunauer-Emmett-Teller method. The TiO2 nanofibers fabricated by the precursor with K-30 polyvinyl pyrrolidone and diisopropyl azodicarboxylate were more porous than the TiO2 nanofibers without them. The modified nanofibers with K-30 and DIPA had a photocatalytic efficiency of 150% compared to TiO2 nanofibers. Their X-ray diffraction patterns revealed anatase peaks. The average crystallite size of the modified nanofibers was calculated to be 6.27-9.27 nm, and the specific surface area was 23.5-27.4 m2/g, which was more than 150% larger than the 17.2 m2/g of ordinary TiO2 nanofibers.
Collapse
Affiliation(s)
- Sun-Ho Yoo
- Department of Advanced Materials Engineering, Gangneung-Wonju National University, 7 Jukheongil, Gangneung 25457, Republic of Korea
| | - Han-Sol Yoon
- Department of Advanced Materials Engineering, Gangneung-Wonju National University, 7 Jukheongil, Gangneung 25457, Republic of Korea
| | - HyukSu Han
- Department of Energy Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyeong-Han Na
- Research Institute for Dental Engineering, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
- Smart Hydrogen Energy Center, Gangneung-Wonju National University, 7 Jukheongil, Gangneung 25457, Republic of Korea
- Correspondence: (K.-H.N.); (W.-Y.C.)
| | - Won-Youl Choi
- Department of Advanced Materials Engineering, Gangneung-Wonju National University, 7 Jukheongil, Gangneung 25457, Republic of Korea
- Research Institute for Dental Engineering, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
- Smart Hydrogen Energy Center, Gangneung-Wonju National University, 7 Jukheongil, Gangneung 25457, Republic of Korea
- Correspondence: (K.-H.N.); (W.-Y.C.)
| |
Collapse
|
8
|
Maccaferri E, Mazzocchetti L, Benelli T, Ortolani J, Brugo TM, Zucchelli A, Giorgini L. Is Graphene Always Effective in Reinforcing Composites? The Case of Highly Graphene-Modified Thermoplastic Nanofibers and Their Unfortunate Application in CFRP Laminates. Polymers (Basel) 2022; 14:polym14245565. [PMID: 36559932 PMCID: PMC9781409 DOI: 10.3390/polym14245565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Graphene (G) can effectively enhance polymers' and polymer composites' electric, thermal, and mechanical properties. Nanofibrous mats have been demonstrated to significantly increase the interlaminar fracture toughness of composite laminates, hindering delamination and, consequently, making such materials safer and more sustainable thanks to increased service life. In the present paper, poly(ethylene oxide) (PEO), polycaprolactone (PCL), and Nylon 66 nanofibers, plain or reinforced with G, were integrated into epoxy-matrix Carbon Fiber Reinforced Polymers (CFRPs) to evaluate the effect of polymers and polymers + G on the laminate mechanical properties. The main aim of this work is to compare the reinforcing action of the different nanofibers (polyether, polyester, and polyamide) and to disclose the effect of G addition. The polymers were chosen considering their thermal properties and, consequently, their mechanism of action against delamination. PEO and PCL, displaying a low melting temperature, melt, and mix during the curing cycle, act via matrix toughening; in this context, they are also used as tools to deploy G specifically in the interlaminar region when melting and mixing with epoxy resin. The high extent of modification stems from an attempt to deploy it in the interlaminar layer, thus diluting further in the resin. In contrast, Nylon 66 does not melt and maintain the nanostructure, allowing laminate toughening via nanofiber bridging. The flexural properties of the nanomodifed CFRPs were determined via a three-point bending (3PB) test, while delamination behavior in Mode I and Mode II was carried out using Double Cantilever Beam (DCB) and End-Notched Flexture (ENF) tests, respectively. The lack of a positive contribution of G in this context is an interesting point to raise in the field of nanoreinforced CFRP.
Collapse
Affiliation(s)
- Emanuele Maccaferri
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
- Correspondence: (E.M.); (L.M.)
| | - Laura Mazzocchetti
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology (CIRI-MAM), University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
- Correspondence: (E.M.); (L.M.)
| | - Tiziana Benelli
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology (CIRI-MAM), University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Jacopo Ortolani
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology (CIRI-MAM), University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Tommaso Maria Brugo
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology (CIRI-MAM), University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
- Department of Industrial Engineering, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Andrea Zucchelli
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology (CIRI-MAM), University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
- Department of Industrial Engineering, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Loris Giorgini
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology (CIRI-MAM), University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| |
Collapse
|
9
|
Maccaferri E, Dalle Donne M, Mazzocchetti L, Benelli T, Brugo TM, Zucchelli A, Giorgini L. Rubber-enhanced polyamide nanofibers for a significant improvement of CFRP interlaminar fracture toughness. Sci Rep 2022; 12:21426. [PMID: 36504116 PMCID: PMC9742143 DOI: 10.1038/s41598-022-25287-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Nanofibrous mats provide substantial delamination hindering in composite laminates, especially if the polymer (as rubbers) can directly toughen the composite resin. Here, the well-known Nylon 66 nanofibers were impregnated with Nitrile Butadiene Rubber (NBR) for producing rubber/thermoplastic membranes for hampering the delamination of epoxy Carbon Fiber Reinforced Polymers (CFRPs). The starting polyamide mats were electrospun using two different solvent systems, and their effect on the mat's thermal and mechanical properties was investigated, as well as the laminate Mode I delamination resistance via Double Cantilever Beam (DCB) tests. Plain Nylon 66 mats electrospun from formic acid/chloroform perform better than the ones obtained from a solvent system containing trifluoroacetic acid, showing up to + 64% vs + 53% in interlaminar fracture toughness (GI), respectively. The effect of NBR coating benefits both nanofiber types, significantly raising the GI. The best results are obtained when interleaving medium-thickness and lightweight mats (20 µm, 9-10 g/m2) with 70-80 wt% of loaded rubber, achieving up to + 180% in GI. The work demonstrates the ability of NBR at improving the delamination hindering of common polyamide nonwovens, paving the way to the use of NBR-coated Nylon 66 nanofibers as effective interleaves for GI enhancement and overall composite safety improvement.
Collapse
Affiliation(s)
- Emanuele Maccaferri
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy.
| | - Matteo Dalle Donne
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Laura Mazzocchetti
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy.
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, 40136, Bologna, Italy.
| | - Tiziana Benelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, 40136, Bologna, Italy
| | - Tommaso Maria Brugo
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, 40136, Bologna, Italy
- Department of Industrial Engineering, University of Bologna, Viale Risorgimento 2, 40136, Bologna, Italy
| | - Andrea Zucchelli
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, 40136, Bologna, Italy
- Department of Industrial Engineering, University of Bologna, Viale Risorgimento 2, 40136, Bologna, Italy
| | - Loris Giorgini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, 40136, Bologna, Italy
| |
Collapse
|
10
|
Tang L, Tang Y, Zhang J, Lin Y, Kong J, Zhou K, Gu J. High-strength super-hydrophobic double-layered PBO nanofiber-polytetrafluoroethylene nanocomposite paper for high-performance wave-transparent applications. Sci Bull (Beijing) 2022; 67:2196-2207. [DOI: 10.1016/j.scib.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/12/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022]
|
11
|
Pan L, Yang J, Xu L. Preparation and Characterization of Simvastatin-Loaded PCL/PEG Nanofiber Membranes for Drug Sustained Release. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27217158. [PMID: 36363985 PMCID: PMC9656846 DOI: 10.3390/molecules27217158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 01/25/2023]
Abstract
Simvastatin (SIM) particles are liposoluble drugs with large particle sizes, resulting in poor compatibility with electrospun polycaprolactone (PCL)/polyethylene glycol (PEG) nanofibers, so that part of them will be exposed to the electrospun nanofiber surface, which is easy to cause the burst release of drugs. Therefore, in this paper, stearic acid (SA) with good biocompatibility was innovatively added to increase the dispersion uniformity of SIM in the spinning solution, thus improving the performances of SIM-loaded PCL/PEG nanofiber membranes (NFMs). Accordingly, the effects of SA addition on the morphologies, mechanical properties, wettability, and drug release properties of the SIM-loaded NFMs were studied. The results showed that after SIM was dissolved in SA solution, the particle size of SIM was significantly reduced and could be evenly dispersed in the polymer spinning solution, thus obtaining the SIM-loaded composite NFMs with the best morphology and performance.
Collapse
|
12
|
Medeiros GB, Lima FDA, de Almeida DS, Guerra VG, Aguiar ML. Modification and Functionalization of Fibers Formed by Electrospinning: A Review. MEMBRANES 2022; 12:membranes12090861. [PMID: 36135880 PMCID: PMC9505773 DOI: 10.3390/membranes12090861] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 05/24/2023]
Abstract
The development of new materials with specific functionalities for certain applications has been increasing with the advent of nanotechnology. A technique widely used for this purpose is electrospinning, because control of several parameters involved in the process can yield nanoscale fibers. In addition to the production of innovative and small-scale materials, through structural, chemical, physical, and biological modifications in the fibers produced in electrospinning, it is possible to obtain specific properties for a given application. Thus, the produced fibers can serve different purposes, such as in the areas of sensors, catalysis, and environmental and medical fields. Given this context, this article presents a review of the electrospinning technique, addressing the parameters that influence the properties of the fibers formed and some techniques used to modify them as specific treatments that can be conducted during or after electrospinning. In situ addition of nanoparticles, changes in the configuration of the metallic collector, use of alternating current, electret fibers, core/shell method, coating, electrospray-coating, plasma, reinforcing composite materials, and thermal treatments are some of the examples addressed in this work. Therefore, this work contributes to a better comprehension of some of the techniques mentioned in the literature so far.
Collapse
Affiliation(s)
- Gabriela B. Medeiros
- Departamento de Engenharia Química, Federal University of São Carlos, Rodovia Washington Luiz, km 235-SP 310, São Carlos 13565-905, SP, Brazil
| | - Felipe de A. Lima
- Departamento de Engenharia Química, Federal University of São Carlos, Rodovia Washington Luiz, km 235-SP 310, São Carlos 13565-905, SP, Brazil
| | - Daniela S. de Almeida
- Departamento de Engenharia Ambiental, Federal University of Technology-Paraná, Avenida dos Pioneiros, 3131, Londrina 86030-370, PR, Brazil
| | - Vádila G. Guerra
- Departamento de Engenharia Química, Federal University of São Carlos, Rodovia Washington Luiz, km 235-SP 310, São Carlos 13565-905, SP, Brazil
| | - Mônica L. Aguiar
- Departamento de Engenharia Química, Federal University of São Carlos, Rodovia Washington Luiz, km 235-SP 310, São Carlos 13565-905, SP, Brazil
| |
Collapse
|
13
|
Maccaferri E, Ortolani J, Mazzocchetti L, Benelli T, Brugo TM, Zucchelli A, Giorgini L. New Application Field of Polyethylene Oxide: PEO Nanofibers as Epoxy Toughener for Effective CFRP Delamination Resistance Improvement. ACS OMEGA 2022; 7:23189-23200. [PMID: 35847344 PMCID: PMC9281329 DOI: 10.1021/acsomega.2c01189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Delamination is the most severe weakness affecting all composite materials with a laminar structure. Nanofibrous mat interleaving is a smart way to increase the interlaminar fracture toughness: the use of thermoplastic polymers, such as poly(ε-caprolactone) and polyamides (Nylons), as nonwovens is common and well established. Here, electrospun polyethylene oxide (PEO) nanofibers are proposed as reinforcing layers for hindering delamination in epoxy-based carbon fiber-reinforced polymer (CFRP) laminates. While PEO nanofibers are well known and successfully applied in medicine and healthcare, to date, their use as composite tougheners is undiscovered, resulting in the first investigation in this application field. The PEO-modified CFRP laminate shows a significant improvement in the interlaminar fracture toughness under Mode I loading: +60% and +221% in G I,C and G I,R, respectively. The high matrix toughening is confirmed by the crack path analysis, showing multiple crack planes, and by the delamination surfaces, revealing that extensive phase separation phenomena occur. Under Mode II loading, the G II enhancement is almost 20%. Despite a widespread phase separation occurring upon composite curing, washings in water do not affect the surface delamination morphology, suggesting a sufficient humidity resistance of the PEO-modified laminate. Moreover, it almost maintains both the original stiffness and glass transition temperature (T g), as assessed via three-point bending and dynamic mechanical analysis tests. The achieved results pave the way for using PEO nanofibrous membranes as a new effective solution for hindering delamination in epoxy-based composite laminates.
Collapse
Affiliation(s)
- Emanuele Maccaferri
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Jacopo Ortolani
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
| | - Laura Mazzocchetti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
| | - Tiziana Benelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
| | - Tommaso Maria Brugo
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
- Department
of Industrial Engineering, University of
Bologna, Viale Risorgimento
2, Bologna 40136, Italy
| | - Andrea Zucchelli
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
- Department
of Industrial Engineering, University of
Bologna, Viale Risorgimento
2, Bologna 40136, Italy
| | - Loris Giorgini
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
| |
Collapse
|
14
|
Schifino G, Gasparini C, Drudi S, Giannelli M, Sotgiu G, Posati T, Zamboni R, Treossi E, Maccaferri E, Giorgini L, Mazzarro R, Morandi V, Palermo V, Bertoldo M, Aluigi A. Keratin/Polylactic acid/graphene oxide composite nanofibers for drug delivery. Int J Pharm 2022; 623:121888. [PMID: 35716978 DOI: 10.1016/j.ijpharm.2022.121888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 12/18/2022]
Abstract
In this work keratin/poly(lactic acid) (PLA) 50/50 wt blend nanofibers with different loadings of graphene-oxide (GO) were prepared by electrospinning and tested as delivery systems of Rhodamine Blue (RhB), selected as a model of a drug. The effect of GO on the electrospinnability and drug release mechanism and kinetics was investigated. Rheological measurements carried out on the blend solutions revealed unsatisfactory compatibility between keratin and PLA under quiet condition. Accordingly, poor interfacial adhesion between the two phases was observed by SEM analysis of a film prepared by solution casting. On the contrary, keratin chains seem to rearrange under the flux conditions of the electrospinning process thus promoting better interfacial interactions between the two polymers, thereby enhancing their miscibility, which resulted in homogeneous and defect-free nanofibers. The loading of GO into the keratin/PLA solution contributes to increase its viscosity, its shear thinning behavior, and its conductivity. Accordingly, thinner and more homogeneous nanofibers resulted from solutions with a relatively high conductivity coupled with a pronounced shear thinning behavior. FTIR and DSC analyses have underlined, that while the PLA/GO interfacial interactions significantly compete with the PLA/keratin ones, there are no significant effects of GO on the structural organization of keratin in blend with the PLA. However, GO offers several advantages from the application point of view by slightly improving the mechanical properties of the electrospun mats and by slowing down the release of the model drug through the reduction of the matrix swelling.
Collapse
Affiliation(s)
- Gioacchino Schifino
- Institute of Organic Synthesis and Photoreactivity - Italian National Research Council, Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Claudio Gasparini
- Institute of Organic Synthesis and Photoreactivity - Italian National Research Council, Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Simone Drudi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Marta Giannelli
- Institute of Organic Synthesis and Photoreactivity - Italian National Research Council, Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Giovanna Sotgiu
- Institute of Organic Synthesis and Photoreactivity - Italian National Research Council, Via P. Gobetti, 101, 40129 Bologna, Italy; Kerline srl, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Tamara Posati
- Institute of Organic Synthesis and Photoreactivity - Italian National Research Council, Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Roberto Zamboni
- Institute of Organic Synthesis and Photoreactivity - Italian National Research Council, Via P. Gobetti, 101, 40129 Bologna, Italy; Kerline srl, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Emanuele Treossi
- Institute of Organic Synthesis and Photoreactivity - Italian National Research Council, Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Emanuele Maccaferri
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Loris Giorgini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Raffaello Mazzarro
- National Research Council, Institute for Microelectronics and Microsystems, Via Piero Gobetti 101, 40129 Bologna, Italy; Department of Physics and Astronomy, Viale Berti Pichat 6/2, Università di Bologna, 40127 Bologna, Italy
| | - Vittorio Morandi
- National Research Council, Institute for Microelectronics and Microsystems, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Vincenzo Palermo
- Institute of Organic Synthesis and Photoreactivity - Italian National Research Council, Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Monica Bertoldo
- Institute of Organic Synthesis and Photoreactivity - Italian National Research Council, Via P. Gobetti, 101, 40129 Bologna, Italy; Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy.
| | - Annalisa Aluigi
- Institute of Organic Synthesis and Photoreactivity - Italian National Research Council, Via P. Gobetti, 101, 40129 Bologna, Italy; Department of Biomolecular Sciences - School of Pharmacy, University of Urbino, Piazza del Rinascimento 6, 61029 Urbino, Italy; Kerline srl, Via Piero Gobetti 101, 40129 Bologna, Italy.
| |
Collapse
|