1
|
Celi N, Gong D, Cai J, Tang T, Xu Y, Zhang D. AlgaeSperm: Microalgae-Based Soft Magnetic Microrobots for Targeted Tumor Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407585. [PMID: 39806837 DOI: 10.1002/smll.202407585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/25/2024] [Indexed: 01/16/2025]
Abstract
Magnetic microrobots are significant platforms for targeted drug delivery, among which sperm-inspired types have attracted much attention due to their flexible undulation. However, mass production of sperm-like soft magnetic microrobots with high-speed propulsion is still challenging due to the need of more reasonable structure design and facile fabrication. Herein, a novel strategy is proposed for large-scale preparation of microalgae-based soft microrobots with a fully magnetic head-to-tail structure, called AlgaeSperm with robust propulsion and chemo-photothermal performance. This approach deposited Pd@Au nanoparticles (NPs) inside chlorella cells, which are further coated with Fe3O4 NPs and polydopamine layers to form the magnetic heads. Then, flexible flagella are grafted via magnetic assembly of Fe3O4@PVP NPs to construct the final AlgaeSperm. Under precessing magnetic fields, the AlgaeSperms can achieve a forward velocity up to 2.3 body length/s, the highest among sperm-like magnetic microrobots to the best of the knowledge. Besides, their flexible maneuverability in a swarm is also verified. In vitro anti-cancer experiments are conducted after loading doxorubicin (DOX) to confirm their excellent targeted chemo-photothermal performance. This work offers a significant paradigm for constructing sperm-like soft magnetic microrobots with great potential for targeted tumor treatment.
Collapse
Affiliation(s)
- Nuoer Celi
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - De Gong
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Jun Cai
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Tan Tang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Ye Xu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Deyuan Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| |
Collapse
|
2
|
Mallick A, Kim J, Pumera M. Magnetically Propelled Microrobots toward Photosynthesis of Green Ammonia from Nitrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407050. [PMID: 39526509 PMCID: PMC11983241 DOI: 10.1002/smll.202407050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Ammonia (NH₃) production is a critical industrial process, as ammonia is a key component in fertilizers, essential for global agriculture and food production. However, the current method of synthesizing ammonia, the Haber-Bosch process, is highly energy-intensive, and relies on fossil fuels, contributing substantially to greenhouse gas emissions. Moreover, the centralized nature of the Haber-Bosch process limits its accessibility in remote or resource-limited areas. Photochemical synthesis of ammonia, provides an alternate lower energy, carbon-free pathway compared to the prevailing industrial methods. The photoconversion of nitrate anions, often present in wastewater, offers a greener, more sustainable, and energy-efficient route for both ammonia-generation and wastewater treatment. Photochemical and chemical synthesis of ammonia requires intensive mass-transfer processes, which limits the efficiency of the method. To change the game, in this work, a key new technology of ammonia-generation, a catalytic ammonia generation (AmmoGen) microrobot, which converts nitrate to ammonia using renewable light energy is reported. The magnetic propulsion of the AmmoGen microrobots significantly enhances mass-transfer, and expedites the photosynthesis of ammonia. Overall, this "proof-of-concept" study demonstrates that microrobots can aid in catalytic small molecule activation and generation of value-added products; and are envisaged to pave the way toward new sustainable technologies for catalysis.
Collapse
Affiliation(s)
- Apabrita Mallick
- Advanced Nanorobots & Multiscale Robotics LaboratoryFaculty of Electrical Engineering and Computer ScienceVSB − Technical University of Ostrava17. listopadu 2172/15Ostrava708 00Czech Republic
| | - Jeonghyo Kim
- Advanced Nanorobots & Multiscale Robotics LaboratoryFaculty of Electrical Engineering and Computer ScienceVSB − Technical University of Ostrava17. listopadu 2172/15Ostrava708 00Czech Republic
| | - Martin Pumera
- Advanced Nanorobots & Multiscale Robotics LaboratoryFaculty of Electrical Engineering and Computer ScienceVSB − Technical University of Ostrava17. listopadu 2172/15Ostrava708 00Czech Republic
- Department of Medical ResearchChina Medical University HospitalChina Medical UniversityNo. 91 Hsueh‐Shih RoadTaichung4040Taiwan
| |
Collapse
|
3
|
Xuan P, Gong J, Fu T, Zhou Y, Qin J, Chen H, Wang T, Xue G, Peng X, Qian Y, Osella S, Zbořil R, Hofkens J, Müllen K, Lai F, Liu T. Helical Soft Robots with Magnetic and Photocatalytic Components for Water Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412516. [PMID: 39955758 DOI: 10.1002/smll.202412516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Soft robots have demonstrated exceptional potential in various applications, particularly in biomedicine, which is attributed to their motional agility and machinability. However, their potential applications in water remediation have not been fully explored. The main challenge is to achieve both precise motion and efficient pollutant degradation. Herein, a modular design is reported for fabricating soft robots. These robots are designed with spatially separated components. One is superparamagnetic iron oxide nanoparticles for magnetic actuation and the other is photocatalysts for targeted pollutant degradation (i.e., methyl orange, congo red, rhodamine B, tetracycline, and soybean oil). The helical structure enables diverse programmable motional modes, including high-speed propulsion up to 3.54 mm s-1. At the same time, the photocatalytic module enables efficient degradation of multiple pollutants with excellent reusability. The modular design combines structural stability with multifunctionality and opens new opportunities for soft robots in environmental remediation.
Collapse
Affiliation(s)
- Pengyang Xuan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jiaming Gong
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tongfang Fu
- Chair of Thermodynamics of Mobile Energy Conversion Systems, RWTH Aachen University, 52074, Aachen, Germany
| | - Yazhou Zhou
- Nanotechnology Centre, Centre for Energy and Environmental Technologies (CEET), VSB─Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jingjing Qin
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Haoxiang Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tianlu Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Guohao Xue
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xiaoyuan Peng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yun Qian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Warsaw, 02-097, Poland
| | - Radek Zbořil
- Nanotechnology Centre, Centre for Energy and Environmental Technologies (CEET), VSB─Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Johan Hofkens
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Klaus Müllen
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Feili Lai
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Tianxi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
4
|
Jancik-Prochazkova A, Ariga K. Nano-/Microrobots for Environmental Remediation in the Eyes of Nanoarchitectonics: Toward Engineering on a Single-Atomic Scale. RESEARCH (WASHINGTON, D.C.) 2025; 8:0624. [PMID: 39995898 PMCID: PMC11848434 DOI: 10.34133/research.0624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025]
Abstract
Nano-/microrobots have been demonstrated as an efficient solution for environmental remediation. Their strength lies in their propulsion abilities that allow active "on-the-fly" operation, such as pollutant detection, capture, transport, degradation, and disruption. Another advantage is their versatility, which allows the engineering of highly functional solutions for a specific application. However, the latter advantage can bring complexity to applications; versatility in dimensionality, morphology, materials, surface decorations, and other modifications has a crucial effect on the resulting propulsion abilities, compatibility with the environment, and overall functionality. Synergy between morphology, materials, and surface decorations and its projection to the overall functionality is the object of nanoarchitectonics. Here, we scrutinize the engineering of nano-/microrobots with the eyes of nanoarchitectonics: we list general concepts that help to assess the synergy and limitations of individual procedures in the fabrication processes and their projection to the operation at the macroscale. The nanoarchitectonics of nano-/microrobots is approached from microscopic level, focusing on the dimensionality and morphology, through the nanoscopic level, evaluating the influence of the decoration with nanoparticles and quantum dots, and moving to the decorations on molecular and single-atomic level to allow very fine tuning of the resulting functionality. The presented review aims to lay general concepts and provide an overview of the engineering of functional advanced nano-/microrobot for environmental remediation procedures and beyond.
Collapse
Affiliation(s)
- Anna Jancik-Prochazkova
- Research Center for Materials Nanoarchitectonics,
National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics,
National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| |
Collapse
|
5
|
Gong D, Cai J, Gu B, Zhou H, Celi N, Peng G, Zhang D. Collective Reconfiguration and Propulsion Behaviors of Chlorella-Based Biohybrid Magnetic Microrobot Swarm. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11062-11072. [PMID: 39907206 DOI: 10.1021/acsami.4c19275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Magnetic microrobots hold great promise for applications in drug delivery and environmental remediation, but achieving collective reconfiguration and effective propulsion for dense, motile magnetic microrobots remains a significant challenge. In this research, we have fabricated Chlorella-based biohybrid magnetic microrobots in bulk using a facile biotemplating process and studied their superior reconfiguration and propulsion performance. Our results show that the dispersed superparamagnetic individuals can self-organize into a swarm of chain-like multimers, achieving effective propulsion via rolling or tumbling modes. The near-bound locomotion process demonstrates pseudochiral periodic reciprocation properties, and a detailed morphological analysis has been conducted. Furthermore, the microrobots can form vortices and realize swarm propulsion in spinning mode. These findings indicate that the spheroidal microrobots exhibit high maneuverability in programmable self-assembly, collective reconfiguration, and swarm propulsion based on dynamic magnetic interactions. In summary, this research provides a feasible method for constructing reconfigurable magnetic microrobots and explores an applicable paradigm for their flexible swarm control and collective cooperation. These advances have significant implications for practical applications of magnetic microrobots in various fields.
Collapse
Affiliation(s)
- De Gong
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Jun Cai
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Bo Gu
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Hui Zhou
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Nuoer Celi
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Guanya Peng
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Deyuan Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| |
Collapse
|
6
|
Jia L, Su G, Zhang M, Wen Q, Wang L, Li J. Propulsion Mechanisms in Magnetic Microrobotics: From Single Microrobots to Swarms. MICROMACHINES 2025; 16:181. [PMID: 40047696 PMCID: PMC11857472 DOI: 10.3390/mi16020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 03/09/2025]
Abstract
Microrobots with different structures can exhibit multiple propulsion mechanisms under external magnetic fields. Swarms dynamically assembled by microrobots inherit the advantages of single microrobots, such as degradability and small dimensions, while also offering benefits like scalability and high flexibility. With control of magnetic fields, these swarms demonstrate diverse propulsion mechanisms and can perform precise actions in complex environments. Therefore, the relationship between single microrobots and their swarms is a significant area of study. This paper reviews the relationship between single microrobots and swarms by examining the structural design, control methods, propulsion mechanisms, and practical applications. At first, we introduce the structural design of microrobots, including materials and manufacturing methods. Then, we describe magnetic field generation systems, including gradient, rotating, and oscillating magnetic fields, and their characteristics. Next, we analyze the propulsion mechanisms of individual microrobots and the way microrobots dynamically assemble into a swarm under an external magnetic field, which illustrates the relationship between single microrobots and swarms. Finally, we discuss the application of different swarm propulsion mechanisms in water purification and targeted delivery, summarize current challenges and future work, and explore future directions.
Collapse
Affiliation(s)
| | | | | | - Qi Wen
- School of Electronic Engineering, Ocean University of China, Qingdao 266000, China; (L.J.); (G.S.); (M.Z.)
| | - Lihong Wang
- School of Electronic Engineering, Ocean University of China, Qingdao 266000, China; (L.J.); (G.S.); (M.Z.)
| | - Junyang Li
- School of Electronic Engineering, Ocean University of China, Qingdao 266000, China; (L.J.); (G.S.); (M.Z.)
| |
Collapse
|
7
|
Wang Y, Chen H, Xie L, Liu J, Zhang L, Yu J. Swarm Autonomy: From Agent Functionalization to Machine Intelligence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312956. [PMID: 38653192 PMCID: PMC11733729 DOI: 10.1002/adma.202312956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Swarm behaviors are common in nature, where individual organisms collaborate via perception, communication, and adaptation. Emulating these dynamics, large groups of active agents can self-organize through localized interactions, giving rise to complex swarm behaviors, which exhibit potential for applications across various domains. This review presents a comprehensive summary and perspective of synthetic swarms, to bridge the gap between the microscale individual agents and potential applications of synthetic swarms. It is begun by examining active agents, the fundamental units of synthetic swarms, to understand the origins of their motility and functionality in the presence of external stimuli. Then inter-agent communications and agent-environment communications that contribute to the swarm generation are summarized. Furthermore, the swarm behaviors reported to date and the emergence of machine intelligence within these behaviors are reviewed. Eventually, the applications enabled by distinct synthetic swarms are summarized. By discussing the emergent machine intelligence in swarm behaviors, insights are offered into the design and deployment of autonomous synthetic swarms for real-world applications.
Collapse
Affiliation(s)
- Yibin Wang
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Hui Chen
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Leiming Xie
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Jinbo Liu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Li Zhang
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong Kong999077China
| | - Jiangfan Yu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| |
Collapse
|
8
|
El‐Naggar K, Yang Y, Tian W, Zhang H, Sun H, Wang S. Metal-Organic Framework-Based Micro-/Nanomotors for Wastewater Remediation. SMALL SCIENCE 2024; 4:2400110. [PMID: 40212073 PMCID: PMC11935036 DOI: 10.1002/smsc.202400110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/21/2024] [Indexed: 04/13/2025] Open
Abstract
Micro-/nanomotors (MNMs) in water remediation have garnered significant attention over the past two decades. More recently, metal-organic framework-based micro-/nanomotors (MOF-MNMs) have been applied for environmental remediation; however, a comprehensive summary of research in this research area is yet to be reported. Herein, a review is presented to cover the recent advances in MOF-MNMs and their various applications in wastewater remediation. The review presents a comprehensive introduction to MNMs, including different propulsion approaches, fabrication, and functionalization strategies, in addition to the unique features of MOF-MNMs. The conception and various synthetic routes of MOF-MNMs are extensively covered and the implementation of MOF-MNMs in water-related applications, including adsorption, degradation, sensing, and disinfection of different pollutants, is in depth discussed. Meanwhile, the propulsion and mechanism of action behind each MOF-MNM are systematically studied. Finally, the review provides insights into the challenges and perspectives to build more effective MOF-MNMs to cover versatile applications for wastewater treatment.
Collapse
Affiliation(s)
- Karim El‐Naggar
- School of Chemical EngineeringThe University of AdelaideNorth TerraceAdelaideSA5005Australia
- Department of ChemistryFaculty of ScienceAin Shams UniversityAbbassiaCairo11566Egypt
| | - Yangyang Yang
- Institute of Green Chemistry and Chemical TechnologySchool of Chemistry & Chemical EngineeringJiangsu UniversityZhenjiang212013China
| | - Wenjie Tian
- School of Chemical EngineeringThe University of AdelaideNorth TerraceAdelaideSA5005Australia
| | - Huayang Zhang
- School of Chemical EngineeringThe University of AdelaideNorth TerraceAdelaideSA5005Australia
| | - Hongqi Sun
- School of Molecular SciencesFaculty of ScienceThe University of Western AustraliaPerthWA6009Australia
| | - Shaobin Wang
- School of Chemical EngineeringThe University of AdelaideNorth TerraceAdelaideSA5005Australia
| |
Collapse
|
9
|
Zhao N, Wang A, Xiao Y, Zhao D, Zhao C, Yin Z, Zhang W, Zhang W, Qiu R, Xing B. Fe Crystalline Phases in Fe/C Composites Modulated the Selective Adsorption of Pb(II) from Industrial Wastewater with Cd(II): An Electronic-Scale Perspective. Inorg Chem 2024; 63:15679-15691. [PMID: 38972034 DOI: 10.1021/acs.inorgchem.4c01587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Fe oxide or Fe0-based materials display weak removal capacity for Pb(II), especially in the presence of Cd(II), and the electronic-scale mechanisms are not reported. In this study, Fe3C(220) modified black carbon (BC) [Fe3C(220)@BC] with high adsorption and selectivity for Pb(II) from industrial wastewater with Cd(II) was developed. The quantitative experiment suggested that Fe species accounted for 80.5-100 and 18.4-33.8% of Pb(II) and Cd(II) removal, respectively. Based on X-ray absorption near-edge structure analysis, 57.3% of adsorbed Pb2+ was reduced to Pb0; however, 61.6% of Cd2+ existed on Fe3C@BC. Density functional theory simulation unraveled that Cd(II) adsorption was attributed to the cation-π interaction with BC, whereas that of Pb(II) was ascribed to the stronger interactions with different Fe phases following the order: Fe3C(220) > Fe0(110) > Fe3O4(311). Crystal orbital bond index and Hamilton population analyses were innovatively applied in the adsorption system and displayed a unique discovery: the stronger Pb(II) adsorption on Fe phases was mediated by a combination of covalent and ionic bonding, whereas ionic bonding was mainly accounted for Cd(II) adsorption. These findings open a new chapter in understanding the functions of different Fe phases in mediating the fate and transport of heavy metals in both natural and engineered systems.
Collapse
Affiliation(s)
- Nan Zhao
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ao Wang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Ye Xiao
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Dongye Zhao
- Department of Civil, Construction and Environmental Engineering, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, United States
| | - Chuanfang Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ziqin Yin
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Weihua Zhang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Weixian Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Rongliang Qiu
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
10
|
Chen T, Cai Y, Ren B, Sánchez BJ, Dong R. Intelligent micro/nanorobots based on biotemplates. MATERIALS HORIZONS 2024; 11:2772-2801. [PMID: 38597188 DOI: 10.1039/d4mh00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Intelligent micro/nanorobots based on natural materials as biotemplates are considered to be some of the most promising robots in the future in the microscopic field. Due to the advantages of biotemplates such as unique structure, abundant resources, environmental friendliness, easy removal, low price, easy access, and renewability, intelligent micro/nanorobots based on biotemplates can be endowed with both excellent biomaterial activity and unique structural morphology through biotemplates themselves and specific functions through artificial micro/nanotechnology. Thus, intelligent micro/nanorobots show excellent application potential in various fields from biomedical applications to environmental remediation. In this review, we introduce the advantages of using natural biological materials as biotemplates to build intelligent micro/nanorobots, and then, classify the micro/nanorobots according to different types of biotemplates, systematically detail their preparation strategies and summarize their application prospects. Finally, in order to further advance the development of intelligent micro/nanorobots, we discuss the current challenges and future prospects of biotemplates. Intelligent micro/nanorobots based on biotemplates are a perfect combination of natural biotemplates and micro/nanotechnology, which is an important trend for the future development of micro/nanorobots. We hope this review can provide useful references for developing more intelligent, efficient and safe micro/nanorobots in the future.
Collapse
Affiliation(s)
- Ting Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yuepeng Cai
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Biye Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Beatriz Jurado Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering Universidad de Alcala, Alcala de Henares, E-28802 Madrid, Spain.
| | - Renfeng Dong
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials, Chemistry of Guangdong Higher Education Institutes Lingnan Normal University Zhanjiang, Guangdong 524048, P. R. China
| |
Collapse
|
11
|
Preetam S. Nano revolution: pioneering the future of water reclamation with micro-/nano-robots. NANOSCALE ADVANCES 2024; 6:2569-2581. [PMID: 38752135 PMCID: PMC11093266 DOI: 10.1039/d3na01106b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/05/2024] [Indexed: 05/18/2024]
Abstract
Earth's freshwater reserves are alarmingly limited, with less than 1% readily available. Factors such as industrialisation, population expansion, and climate change are compounding the scarcity of clean water. In this context, self-driven, programmable micro- and nano-scale synthetic robots offer a potential solution for enhancing water monitoring and remediation. With the aid of these innovative robots, diffusion-limited reactions can be overcome, allowing for active engagement with target pollutants, such as heavy metals, dyes, nano- and micro-plastics, oils, pathogenic microorganisms, and persistent organic pollutants. Herein, we introduced and reviewed recent influential and advanced studies on micro-/nano-robots (MNR) carried out over the past decade. Typical works are categorized by propulsion modes, analyzing their advantages and drawbacks in detail and looking at specific applications. Moreover, this review provides a concise overview of the contemporary advancements and applications of micro-/nano-robots in water-cleaning applications.
Collapse
Affiliation(s)
- Subham Preetam
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology Daegu-42988 South Korea
- Institute of Advanced Materials, IAAM Gammalkilsvägen 18 Ulrika 59053 Sweden
| |
Collapse
|
12
|
Zhang Z, Deng X, Zhang W, Chen K, Su Y, Gao C, Gong D, Zhu L, Cai J. Manipulation of magnetic beads for actively capturing Vibrio parahaemolyticus and nucleic acid based on microfluidic system. BIOMICROFLUIDICS 2024; 18:034104. [PMID: 38737753 PMCID: PMC11088461 DOI: 10.1063/5.0193442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/27/2024] [Indexed: 05/14/2024]
Abstract
Rapid biological detection of pathogen micro-organisms has attracted much attention for practical biomedical applications. Despite the development in this field, it is still challenging to achieve simple and rapid biological detection using the microfluidic method. Herein, we propose a novel strategy of biological detection that combines precise detection control of the capillary microfluidic chip and versatile manipulation of magnetic beads. The microfluidic chip was fabricated via laser cutting, which utilized capillary pressure to realize rapid passive injection of liquid samples. Under an external magnetic field, the aptamer-modified magnetic beads were actuated to mix with Vibrio parahaemolyticus (V. parahaemolyticus) and its nucleic acid in the capillary microfluidic chip for rapid selective capture and detection, which could be achieved within 40 min. The experimental results demonstrated that V. parahaemolyticus could be captured using on-chip immunomagnetic beads with a high efficiency and significantly enhanced detection value. Due to these superior performances, the capillary microfluidic system, based on the manipulation of magnetic beads, demonstrated great potential for automatic biological detection.
Collapse
Affiliation(s)
- Zhaoxuan Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xue Deng
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Wenqiang Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Kehan Chen
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yuan Su
- Key Laboratory of Precision Nutrition and Quality Control of Food, Ministry of Education, Department of Nutrition and Health (Institute of Nutrition and Health), China Agricultural University, Beijing 100083, China
| | - Chao Gao
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - De Gong
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Quality Control of Food, Ministry of Education, Department of Nutrition and Health (Institute of Nutrition and Health), China Agricultural University, Beijing 100083, China
| | - Jun Cai
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| |
Collapse
|
13
|
Zhou H, Cai J, Gu B, Zhang D, Gong D. Biohybrid Urchin-Like ZnO-Based Microspheres with Tunable Hierarchical Structures and Enhanced Photoelectrocatalytic Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305511. [PMID: 37726230 DOI: 10.1002/smll.202305511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/26/2023] [Indexed: 09/21/2023]
Abstract
Microorganisms have attracted much attention to act as biotemplates for fabricating micro/nanostructured functional particles. However, it is still challenging to produce tunable hierarchical particles based on microorganisms with intricate architectures and superior stability. Herein, a novel strategy is developed to fabricate biohybrid urchin-like magnetic ZnO microspheres based on Chlorella (Ch.) with tunable hierarchical core-shell structures. Using Ch. cells as microspherical templates, Fe3 O4 nanoparticles and ZnO nanorod (NR) arrays are deposited in sequence to form the final biohybrid heterostructure microspheres (Ch.@Fe3 O4 @ZnO NRs). Ordered growth and structural regulation of 3D ZnO NR arrays are achieved via a facile and controllable manner. Compared with the prepared microspheres with diverse structure configurations of ZnO shells, the Ch.@Fe3 O4 @ZnO NRs possess excellent light absorption and photoelectrocatalysis performance toward tetracycline degradation (normalized apparent rate constant, k = 366.3 h-1 g-1 ), which is significantly larger than that of ZnO nanoflower/nanoparticle loaded types. It also proves that the synergistic enhancement of well-oriented ZnO NR arrays, heterojunction structures, and biomass features is the fundamental reason for outstanding photoelectrocatalytic activity. Due to the remarkable stability and versatility, this work provides abundant opportunities to construct biohybrid multilevel micro/nanostructures with significant potentials for practical applications.
Collapse
Affiliation(s)
- Hui Zhou
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Jun Cai
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Bo Gu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Deyuan Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - De Gong
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| |
Collapse
|
14
|
Wang H, Jing Y, Yu J, Ma B, Sui M, Zhu Y, Dai L, Yu S, Li M, Wang L. Micro/nanorobots for remediation of water resources and aquatic life. Front Bioeng Biotechnol 2023; 11:1312074. [PMID: 38026904 PMCID: PMC10666170 DOI: 10.3389/fbioe.2023.1312074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Nowadays, global water scarcity is becoming a pressing issue, and the discharge of various pollutants leads to the biological pollution of water bodies, which further leads to the poisoning of living organisms. Consequently, traditional water treatment methods are proving inadequate in addressing the growing demands of various industries. As an effective and eco-friendly water treatment method, micro/nanorobots is making significant advancements. Based on researches conducted between 2019 and 2023 in the field of water pollution using micro/nanorobots, this paper comprehensively reviews the development of micro/nanorobots in water pollution control from multiple perspectives, including propulsion methods, decontamination mechanisms, experimental techniques, and water monitoring. Furthermore, this paper highlights current challenges and provides insights into the future development of the industry, providing guidance on biological water pollution control.
Collapse
Affiliation(s)
- Haocheng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Yizhan Jing
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Jiuzheng Yu
- Oil & Gas Technology Research Institute, PetroChina Changqing Oilfield Company, Xi’an, China
| | - Bo Ma
- State Engineering Laboratory of Exploration and Development of Low-Permeability Oil & Gas Field, Xi’an, China
| | - Mingyang Sui
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Yanhe Zhu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Lizhou Dai
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Shimin Yu
- College of Engineering, Ocean University of China, Qingdao, China
| | - Mu Li
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
15
|
Shang Z, Xu Y, Wu P, Ahmed Z, Niu W, Wu J, Feng Q, Zhu N. Mixed solvent fabrication of tobermorite and the fixation of heavy metals in water and soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118581. [PMID: 37451030 DOI: 10.1016/j.jenvman.2023.118581] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/14/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
Here, tobermorite was prepared by a solvothermal technology using calcite and quartz with a mixed solvent of ethanol and water. Factors including reaction temperature, time and KOH content were studied to optimize the preparation procedure. To study the relationship between ethanol content-material structural characteristics-adsorption capacity, a series of materials were prepared in different mixed solvent proportions of ethanol and water, and their structural characteristics and adsorption capacity were compared. We found that the adsorption capacity of different samples for Pb2+ and Cd2+ was positively correlated with negatively correlated with the surface area and negatively correlated with the crystallinity of materials. Then, the material prepared by 30% ethanol solution (30-T) with the best adsorption performance was used for further research; the results were fitted by kinetic and thermodynamic models, and adsorbed materials were analyzed by various characterizations, suggesting that the adsorption process was ascribed to comprehensive pathways including ion exchange, chemical precipitation, and surface-complexation. Then, the 30-T was further used to remediate heavy metals contaminated soil, and the remediation effect was examined by the DTPA-extractable method and the European Community Bureau of Reference (BCR) sequential extraction method. The DTPA-extractable results showed that tobermorite observably reduced the bioavailability of Pb and Cd, and the BCR results suggested that the acid-soluble and reducible fractions of Pb and Cd were transformed to the oxidizable and residual fractions after remediation. In summary, tobermorite has great potential in the remediation of heavy metal polluted-aquatic environment/system and soil.
Collapse
Affiliation(s)
- Zhongbo Shang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China.
| | - Yijing Xu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, PR China.
| | - Zubair Ahmed
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; Department of Energy and Environment Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Wenchao Niu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Jiayan Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Qianrui Feng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| |
Collapse
|
16
|
Zhu S, Cheng Y, Wang J, Liu G, Luo T, Li X, Yang S, Yang R. Biohybrid magnetic microrobots: An intriguing and promising platform in biomedicine. Acta Biomater 2023; 169:88-106. [PMID: 37572981 DOI: 10.1016/j.actbio.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Biohybrid magnetic microrobots (BMMs) have emerged as an exciting class of microrobots and have been considered as a promising platform in biomedicine. Many microorganisms and body's own cells show intriguing properties, such as morphological characteristics, biosafety, and taxis abilities (e.g., chemotaxis, aerotaxis), which have made them attractive for the fabrication of microrobots. For remote controllability and sustainable actuation, magnetic components are usually incorporated onto these biological entities, and other functionalized non-biological components (e.g., therapeutic agents) are also included for specific applications. This review highlights the latest developments in BMMs with a focus on their biomedical applications. It starts by introducing the fundamental understanding of the propulsion system at the microscale in a magnetically driven manner, followed by a summary of diverse BMMs based on different microorganisms and body's own cells along with their relevant applications. Finally, the review discusses how BMMs contribute to the advancements of microrobots, the current challenges of using BMMs in practical clinical settings, and the future perspectives of this exciting field. STATEMENT OF SIGNIFICANCE: Biohybrid magnetic microrobots (BMMs), composed of biological entities and functional parts, hold great potential and serve as a novel and promising platform for biomedical applications such as targeted drug delivery. This review comprehensively summarizes the recent advancements in BMMs for biomedical applications, mainly focused on the representative propulsion modalities in a magnetically propelled manner and diverse designs of BMMs based on different biological entities, including microorganisms and body's own cells. We hope this review can provide ideas for the future design, development, and innovation of micro/nanorobots in the field of biomedicine.
Collapse
Affiliation(s)
- Shilu Zhu
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Yifan Cheng
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Jian Wang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Guangli Liu
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Tingting Luo
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China.
| | - Xiaojian Li
- Department of Management, Hefei University of Technology, Hefei 230009, China.
| | - Shanlin Yang
- Key Laboratory of Process Optimization and Intelligent Decision-Making (Ministry of Education), Hefei University of Technology, Hefei 230009, China.
| | - Runhuai Yang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
17
|
Ben Amor I, Hemmami H, Laouini SE, Zeghoud S, Benzina M, Achour S, Naseef A, Alsalme A, Barhoum A. Use of Insect-Derived Chitosan for the Removal of Methylene Blue Dye from Wastewater: Process Optimization Using a Central Composite Design. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5049. [PMID: 37512323 PMCID: PMC10383991 DOI: 10.3390/ma16145049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Insects are a readily available source of chitosan due to their high reproductive rates, ease of breeding, and resistance to changes in their ecosystem. This study aimed to extract chitosan from several widespread insects: Blaps lethifera (CS-BL), Pimelia fernandezlopezi (CS-PF), and Musca domestica (CS-MD). The study was also extended to using the obtained chitosans in removing methylene blue dye (MB) from wastewater. The source of the chitosan, the initial concentration of MB dye, and the reaction time were chosen as the working parameters. The experiments were designed using a central composite design (CCD) based on the dye removal efficiency as the response variable. The experimental work and statistical calculation of the CCD showed that the dye removal efficiency ranged from 35.9% to 88.7% for CS-BL, from 18.8% to 47.1% for CS-PF, and from 10.3% to 29.0% for CS-MD at an initial MB concentration of 12.79 mg/L. The highest methylene blue dye removal efficiency was 88.7% for CS-BL at a reaction time of 120 min. This indicates that the extraction of chitosan from insects (Blaps lethifera) and its application in dye removal is a promising, environmentally friendly, economical, biodegradable, and cost-effective process. Furthermore, the CCD is a statistical experimental design technique that can be used to optimize process variables for removing other organic pollutants using chitosan.
Collapse
Affiliation(s)
- Ilham Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
| | - Hadia Hemmami
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
| | - Salah Eddine Laouini
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria
- Laboratory of Biotechnology Biomaterials and Condensed Materials, Faculte de la Technologie, University of El Oued, El Oued 39000, Algeria
| | - Soumeia Zeghoud
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
| | - Mourad Benzina
- Water, Energy and Environment Laboratory, National School of Engineers of Sfax, University of Sfax, Sfax 3083, Tunisia
| | - Sami Achour
- Institut Supérieur de Biotechnologie de Monastir ISBM, Monastir 5000, Tunisia
| | - Abanoub Naseef
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
18
|
Mayorga-Burrezo P, Mayorga-Martinez CC, Pumera M. Photocatalysis dramatically influences motion of magnetic microrobots: Application to removal of microplastics and dyes. J Colloid Interface Sci 2023; 643:447-454. [PMID: 37086534 DOI: 10.1016/j.jcis.2023.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/24/2023]
Abstract
Micromachines gain momentum in the applications for environmental remediation. Magnetic components have been used to functionalize light-responsive micromachines to achieve efficient magnetic microrobots with photodegradation activity for decomposition of environmental pollutants. However, the influence of photocatalyst itself on the trajectory of micromotors in conjunction with magnetic motion was never considered. In this work, light-powered catalysis and transversal rotating magnetic field have been independently and simultaneously applied over Fe3O4@BiVO4 microrobots to investigate the dynamics of their hybrid motion. Light exposure of microrobots results in the production of reactive oxygen species (ROS) which power the microrobots, in addition to magnetic powered motion, and have a strong influence on the magnetic trajectories, resulting in an unexpected alteration of the direction of the motion of the microrobots. We have subsequently applied such magnetic/light powered micromachines for removal of microplastics in cigarette filter residues, one of the major contributors to the microplastic pollution, and dyes via photocatalysis. Such dual orthogonal propulsion modes act independently on the motion of the micromachines; and they also bring additional functionality as photodegradation agents. Hence, the dual magnetic/photocatalytic microrobots shall find a variety of catalytic applications in different fields.
Collapse
Affiliation(s)
- Paula Mayorga-Burrezo
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic; Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic; Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan; Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
19
|
Naveed M, Makhdoom SI, Rehman SU, Aziz T, Bashir F, Ali U, Alharbi M, Alshammari A, Alasmari AF. Biosynthesis and Mathematical Interpretation of Zero-Valent Iron NPs Using Nigella sativa Seed Tincture for Indemnification of Carcinogenic Metals Present in Industrial Effluents. Molecules 2023; 28:molecules28083299. [PMID: 37110533 PMCID: PMC10146977 DOI: 10.3390/molecules28083299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023] Open
Abstract
Zero-valent iron nanoparticles (ZVI-NPs) are utilized for the indemnification of a wide range of environmental pollutants. Among the pollutants, heavy metal contamination is the major environmental concern due to their increasing prevalence and durability. In this study, heavy metal remediation capabilities are determined by the green synthesis of ZVI-NPs using aqueous seed extract of Nigella sativa which is a convenient, environmentally friendly, efficient, and cost-effective technique. The seed extract of Nigella sativa was utilized as a capping and reducing agent for the generation of ZVI-NPs. UV-visible spectrophotometry (UV-vis), scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX), and Fourier transform infrared spectroscopy (FTIR) was used to investigate the ZVI-NP composition, shape, elemental constitution, and perspective functional groups, respectively. The biosynthesized ZVI-NPs displayed a peak of plasmon resonance spectra at 340 nm. The synthesized NPs were cylindrical in shape, with a size of 2 nm and (-OH) hydroxyl, (C-H) alkanes and alkynes N-C, N=C, C-O, =CH functional groups attached to the surface of ZVI-NPs. Heavy metals were successfully remediated from industrial wastewater collected from the various tanneries of Kasur. During the reaction duration of 24 h, different concentrations of ZVI-NPs (10 μg, 20 μg and 30 μg) per 100 mL were utilized for the removal of heavy metals from industrial wastewater. The 30 μg/100 mL of ZVI-NPs proved the pre-eminent concentration of NPs as it removed >90% of heavy metals. The synthesized ZVI-NPs were analyzed for compatibility with the biological system resulting in 87.7% free radical scavenging, 96.16% inhibition of protein denaturation, 60.29% and 46.13% anti-cancerism against U87-MG and HEK 293 cell lines, respectively. The physiochemical and exposure mathematical models of ZVI-NPs represented them as stable and ecofriendly NPs. It proved that biologically synthesized NPs from a seed tincture of Nigella sativa have a strong potential to indemnify heavy metals found in industrial effluent samples.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Syeda Izma Makhdoom
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Shafiq Ur Rehman
- Department of Basic and Applied Chemistry, Faculty of Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Tariq Aziz
- Department of Agriculture, University of Ioaninna, 47100 Arta, Greece
| | - Farzana Bashir
- Principal Scientific Officer, Centre for Environmental Protection Studies, Pakistan Council of Scientific & Industrial Research Laboratory Complex, Lahore 54000, Pakistan
| | - Urooj Ali
- Department of Biotechnology, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
20
|
Deng X, Su Y, Xu M, Gong D, Cai J, Akhter M, Chen K, Li S, Pan J, Gao C, Li D, Zhang W, Xu W. Magnetic Micro/nanorobots for biological detection and targeted delivery. Biosens Bioelectron 2023; 222:114960. [PMID: 36463650 DOI: 10.1016/j.bios.2022.114960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/12/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Xue Deng
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuan Su
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health Institute of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Minghao Xu
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - De Gong
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Jun Cai
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Muhammad Akhter
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China
| | - Kehan Chen
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Shuting Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health Institute of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Jingwen Pan
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Chao Gao
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Daoliang Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China
| | - Wenqiang Zhang
- College of Engineering, China Agricultural University, Beijing, 100083, China.
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health Institute of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism Food Safety MOA, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
21
|
Smart micro- and nanorobots for water purification. NATURE REVIEWS BIOENGINEERING 2023; 1:236-251. [PMID: 37064655 PMCID: PMC9901418 DOI: 10.1038/s44222-023-00025-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Less than 1% of Earth's freshwater reserves is accessible. Industrialization, population growth and climate change are further exacerbating clean water shortage. Current water-remediation treatments fail to remove most pollutants completely or release toxic by-products into the environment. The use of self-propelled programmable micro- and nanoscale synthetic robots is a promising alternative way to improve water monitoring and remediation by overcoming diffusion-limited reactions and promoting interactions with target pollutants, including nano- and microplastics, persistent organic pollutants, heavy metals, oils and pathogenic microorganisms. This Review introduces the evolution of passive micro- and nanomaterials through active micro- and nanomotors and into advanced intelligent micro- and nanorobots in terms of motion ability, multifunctionality, adaptive response, swarming and mutual communication. After describing removal and degradation strategies, we present the most relevant improvements in water treatment, highlighting the design aspects necessary to improve remediation efficiency for specific contaminants. Finally, open challenges and future directions are discussed for the real-world application of smart micro- and nanorobots.
Collapse
|
22
|
Purev O, Park C, Kim H, Myung E, Choi N, Cho K. Spirulina platensis Immobilized Alginate Beads for Removal of Pb(II) from Aqueous Solutions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1106. [PMID: 36673865 PMCID: PMC9859109 DOI: 10.3390/ijerph20021106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Microalgae contain a diversity of functional groups that can be used as environmental adsorbents. Spirulina platensis is a blue-green microalga that comprises protein-N, which is advantageous for use in nitrogen-containing biomass as adsorbents. This study aimed to enhance the adsorption properties of alginate hydrogels by employing Spirulina platensis. Spirulina platensis was immobilized on sodium alginate (S.P@Ca-SA) via crosslinking. The results of field-emission scanning electron microscopy, Fourier-transform infrared, and X-ray photoelectron spectroscopy analyses of the N-containing functional groups indicated that Spirulina platensis was successfully immobilized on the alginate matrix. We evaluated the effects of pH, concentration, and contact time on Pb(II) adsorption by S.P@Ca-SA. The results demonstrated that S.P@Ca-SA could effectively eliminate Pb(II) at pH 5, reaching equilibrium within 6 h, and the maximum Pb(II) sorption capacity of S.P@Ca-SA was 87.9 mg/g. Our results indicated that S.P@Ca-SA fits well with the pseudo-second-order and Freundlich models. Compared with Spirulina platensis and blank alginate beads, S.P@Ca-SA exhibited an enhanced Pb(II) adsorption efficiency. The correlation implies that the amino groups act as adsorption sites facilitating the elimination of Pb(II).
Collapse
Affiliation(s)
- Oyunbileg Purev
- Department of Energy and Resource Engineering, Chosun University, Gwangju 61452, Republic of Korea
| | - Chulhyun Park
- Department of Energy and Resource Engineering, Chosun University, Gwangju 61452, Republic of Korea
| | - Hyunsoo Kim
- Department of Energy and Resource Engineering, Chosun University, Gwangju 61452, Republic of Korea
| | - Eunji Myung
- Green-Bio Research Facility Center, Seoul National University, Seoul 25354, Republic of Korea
| | - Nagchoul Choi
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kanghee Cho
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
23
|
Liu D, Zhang T, Guo Y, Liao Y, Wu Z, Jiang H, Lu Y. Biohybrid Magnetic Microrobots for Tumor Assassination and Active Tissue Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:5933-5942. [PMID: 36384280 DOI: 10.1021/acsabm.2c00880] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Magnetic microrobots have attracted increasing research interest for diverse biomedical applications, such as targeted therapy and tissue regeneration. However, multifunctional microrobots with complex morphology at the microscale are urgently needed to be fabricated, actively controlled, and functionalized. In this study, the chrysanthemum pollen-derived biohybrid magnetic microrobots (CDBMRs) with spiny protrusion, hollow cavity, and porous surface structure were proposed for tumor assassination and active tissue regeneration. By exquisitely designing the sequential treatment process, CDBMRs were fabricated and the innate morphology of pollen templates was well preserved. Under magnetic field, CDBMR exhibited various individual and collective behaviors. CDBMRs were utilized for synergetic tumor treatment by the combination of magnetically controlled physical assassination and active drug delivery. Meanwhile, CDBMRs showed excellent ability for active cell delivery and tissue regeneration, which was further proved by enhanced osteogenesis ability. By making full use of the natural morphology of pollen grains, the biohybrid microrobots presented a promising strategy for effective tumor therapeutics and tissue regeneration.
Collapse
Affiliation(s)
- Dong Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Ting Zhang
- College of New Energy and Materials, China University of Petroleum, Beijing102249, China
| | - Yijia Guo
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Yuting Liao
- Department of Food Science, Guangxi University, Nanning, Guangxi530004, China
| | - Zijian Wu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Hao Jiang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| |
Collapse
|
24
|
Hosseini M, Ahmadi Z, Kefayat A, Molaabasi F, Ebrahimpour A, Naderi Khojasteh Far Y, Khoobi M. Multifunctional Gold Helix Phototheranostic Biohybrid That Enables Targeted Image-Guided Photothermal Therapy in Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37447-37465. [PMID: 35943871 DOI: 10.1021/acsami.2c10028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The preparation of multifunctional smart theranostic systems is commonly achieved through complicated strategies, limiting their biomedical applications. Spirulina platensis (SP) microalgae, as a natural helix with some of the intrinsic theranostic functionalities (e.g., fluorescent and photosensitizer pigments), not only facilitates the fabrication process but also guarantees their biosafety for clinical applications. Herein, the helical architecture of gold nanoparticles (AuNPs) based on a SP biotemplate was engineered as a safe, biodegradable, and tumor-targeted biohybrid for imaging-guided photothermal therapy (PTT) to combat triple-negative breast cancer. The quasi-spherical AuNPs were embedded throughout the SP cell (Au-SP) with minimally involved reagents, only by controlling the original morphological stability of SP through pH adjustment of the synthesis media. SP thiolation increased the localization of AuNPs selectively on the cell wall without using a reducing agent (Au-TSP). SP autofluorescence, along with the high X-ray absorption of AuNPs, was employed for dual-modal fluorescence and computed tomography (FL/CT) imaging. Furthermore, the theranostic efficacy of Au-SP was improved through a targeting process with folic acid (Au-SP@CF). High tumor inhibition effects were obtained by the excellent photothermal performance of Au-SP@CF in both in vitro and in vivo analyses. Of particular note, a comparison of the photothermal effect of Au-SP@CF with the naked SP and calcined form of Au-SP@CF not only indicated the key role of the helical architecture of AuNPs in achieving a high photothermal effect but also led to the formation of new gold microspiral biohybrids (Au-MS) over the calcination process. In short, well-controllable immobilization of AuNPs, appropriate biodegradability, good hemocompatibility, long-term biosafety, accurate imaging, high tumor suppression, and low tumor metastasis effects under laser irradiation are an array of intriguing attributes, making the proposed biohybrid a promising theranostic system for FL/CT-imaging-guided PTT.
Collapse
Affiliation(s)
- Maryam Hosseini
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15916-34311, Iran
| | - Zahed Ahmadi
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15916-34311, Iran
| | - Amirhosein Kefayat
- Cancer Prevention Research Center, Department of Oncology, Isfahan University of Medical Science, Isfahan 81746-73461, Iran
| | - Fatemeh Molaabasi
- Biomaterials and Tissue Engineering Research Group, Breast Cancer Research Center, Department of Interdisciplinary Technologies, Academic Center for Education, Culture and Research, Motamed Cancer Institute, Tehran 15179-64311, Iran
| | - Anita Ebrahimpour
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Science (TUMS), Tehran 14176-14411, Iran
| | - Yousef Naderi Khojasteh Far
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Science (TUMS), Tehran 14176-14411, Iran
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran 15179-64311, Iran
- Biomaterials Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science (TUMS), Tehran 14176-14411, Iran
| |
Collapse
|
25
|
Fang Y, Ren G, Ma Y, Wang C, Li M, Pang X, Pan Q, Li J. Adsorption and reutilization of Pb(II) based on acid-resistant metal-organic gel. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|