1
|
Wang B, Shan G, Zhang Y, Shi Y, Xu J, Wang Z, Shuai Y, Liu W, Liu J. D-band state control engineering over ZnIn 2S 4 for enhanced photoreduction of CO 2 to CH 4. J Colloid Interface Sci 2025; 686:242-250. [PMID: 39893973 DOI: 10.1016/j.jcis.2025.01.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/20/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
Metal-based photocatalysts with d10 electronic configurations exhibit good photocatalytic performance due to strong band edge dispersion, however, the weak bonding between d10 metal sites and CO2 through 2p-3d orbital hybridization limits their activity and selectivity for CO2 to CH4 conversion. Herein, a strategy for modulating the d-band center is proposed to promote the formation of CH4 in the photocatalytic CO2 reduction process. In a model system taking ZnIn2S4 (ZIS) as photocatalysts, highly thermodynamically electronegative elements (such as Bi, Cu, and Co) are doped to upshift the d-band center of ZIS, enhance the selectivity and yield of CH4. In the absence of cocatalysts or photosensitizers, the CO2 photoreduction products of all doped ZIS samples shifts from pure CO to a mixture of CO and CH4, with CH4 being the predominant product. Among all samples, Bi-doped ZnIn2S4 (Bi-ZIS) demonstrates the highest performance, achieving a CH4 selectivity of 63.68 % and a high evolution rate of 21.07 µmol·g-1·h-1 during visible-light-driven CO2 reduction. Density functional theory (DFT) calculations indicate that doping highly electronegative elements can modulate the electron cloud distribution of ZIS, thereby raising its d-band center. This shift reduces the energy barrier for CO2 photoreduction to CH4, enhancing the binding energy between active sites and intermediates (such as *OCH2 and *OCH3), facilitating the formation of CH4. Consequently, this study not only validates the effectiveness of the d-band center modulation strategy but also offers a novel perspective for optimizing the activity and product selectivity of d10 metal-based photocatalysts in CO2RR.
Collapse
Affiliation(s)
- Benkun Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 China
| | - Guochao Shan
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yuheng Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 China
| | - Yaoxuan Shi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 China
| | - Jing Xu
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Zhijiang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 China; Inner Mongolia Haite Huacai Technology Co., Ltd., Management Committee Office Building, Jinqiao Economic and Technological Development Zone. Hohhot, 010000, China
| | - Yong Shuai
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001 China
| | - Wei Liu
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Jingyuan Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 China.
| |
Collapse
|
2
|
Li CQ, Wang JJ. Copper Sulfide based Photocatalysts, Electrocatalysts and Photoelectrocatalysts: Innovations in Structural Modulation and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404798. [PMID: 39344159 DOI: 10.1002/smll.202404798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Copper sulfides (CuxS, 1 ≤ x ≤ 2) are notable for their unique photoelectric properties and potential applications, particularly in photo/electrocatalysis. These materials are valued for their tunable band gap, near-infrared optical characteristics, and plasmonic resonance effects. However, challenges such as low catalytic activity and limited stability impede their practical applications. This review addresses these issues by exploring advanced strategies for electronic structure modulation, including atomic doping, shape alteration, heterojunction construction, and defect introduction to enhance catalytic efficiency. A detailed analysis of the optical and electrical properties of CuxS across various stoichiometric ratios and crystal structures is provided, offering a comprehensive overview of their applications in photocatalysis, electrocatalysis, and photo/electrocatalysis. Additionally, the review synthesizes current knowledge and highlights the potential of these strategies to optimize CuxS-based photo/electrocatalysts, proposing future research directions to bridge the gap between theoretical studies and practical applications. This work underscores the importance of CuxS in photo/electrocatalysis and aims to inspire further innovation and exploration in this field, emphasizing its significance in material science and engineering.
Collapse
Affiliation(s)
- Chao-Qun Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jian-Jun Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, P. R. China
| |
Collapse
|
3
|
Zheng M, Lin H, Li S, Huang S, Huang J, Lai W, Tang D, Lin Y. Photoelectrochemical immunosensor for chloramphenicol detection based on cation exchange reaction-mediacted photocurrent enhancement of ZnIn 2S 4/TiO 2/Ti 3C 2 MXene coupled with controlled-release strategy. Mikrochim Acta 2024; 191:763. [PMID: 39592462 DOI: 10.1007/s00604-024-06847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
A photocurrent enhancing photoelectrochemical (PEC) immunosensor was developed for chloramphenicol (CAP) detection based on cation exchange reaction. The efficient split-type PEC immunosensor combined with controlled-release strategy was established using the ZnIn2S4/TiO2/Ti3C2 MXene (ZIS/T/M) composite as the photoactive material and CuO as the signal response probe. In the presence of target CAP, CuO-labeled CAP antibody (CuO-mAb) was introduced onto the microplate via a competitive-type immunoassay. Under acidic conditions, a large amount of Cu2+ released from CuO-mAb, which triggered a cation exchange reaction with the Zn2+ in ZIS/T/M-modified photoelectrode to generate CuxS, resulting in enhancing the photocurrent. As a result, the quantitative detection of CAP was achieved by detecting the photocurrent change. Under optimized conditions, the linear range of the sensor was 1 pg/mL to 50 ng/mL, and the detection limit was 0.24 pg/mL. The excellent PEC behavior of ZIS/T/M composite could be attributed to the fact that heterojunction formation improved the migration and separation of the photocarrier. Additionally, by virtue of the photocurrent-enhancing strategy via cation exchange reaction and the controlled releasing signal amplification method of ion, the PEC immunosensor has high sensitivity and satisfactory accuracy, offering great potential applications in the determination of CAP.
Collapse
Affiliation(s)
- Mengqin Zheng
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China
| | - Huizi Lin
- Department of Neonatology, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350108, People's Republic of China
| | - Suhua Li
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China
| | - Shuoying Huang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China
| | - Jiangwei Huang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China
| | - Wenqiang Lai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Department of Chemistry, Institute of Nanomedicine and Nanobiosensing, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Youxiu Lin
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China.
| |
Collapse
|
4
|
Shen Y, Zeng X, Chen M, Du Y, Li Y, Peng Y, He F, Wu S, Qin H. Photoelectrochemical detection of Cu 2+ based on ZnIn 2S 4/WO 3 Z-scheme heterojunction. Mikrochim Acta 2024; 191:726. [PMID: 39496960 DOI: 10.1007/s00604-024-06785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024]
Abstract
A one-step hydrothermal technique was utilized to generate WO3 nanosheets on fluorine-doped tin oxide (FTO) (WO3/FTO), which were subsequently modified with ZnIn2S4 microspheres to create a Z-scheme heterojunction ZnIn2S4/WO3/FTO electrode for Cu2+ detection. The heterojunction exhibited excellent photoelectric conversion efficiency, which was nearly 2.5-fold and 5.1-fold greater than that of WO3 and ZnIn2S4. The reduced photoelectrochemical response signal was caused by the formation of CuxS and enabled Cu2+ assessment in water samples. After optimizing the experimental conditions, the anodic photocurrent at 0 V vs SCE in 0.100 M phosphate buffer (pH 7.0) containing 0.100 M L-ascorbic acid was linear with the common logarithm of Cu2+ concentration from 5.00 nM to 100 μM, with a limit of detection of 1.2 nM (S/N = 3). Satisfactory recovery results were obtained in the analyses of Xiangjiang River water samples.
Collapse
Affiliation(s)
- Yuru Shen
- School of Material and Chemical Engineering, Tongren University, Tongren, 554300, China.
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Xingyu Zeng
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Mingjian Chen
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Yun Du
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
- Changsha Center for Diseases Prevention and Control, Changsha, 410004, China.
| | - Yinyu Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Yange Peng
- College of Physics and Electromechanical Engineering, Jishou University, Jishou, 416000, China
| | - Fang He
- School of Pharmacy, Shaoyang University, Shaoyang, 422000, China.
| | - Sizhan Wu
- School of Material and Chemical Engineering, Tongren University, Tongren, 554300, China
| | - Hangdao Qin
- School of Material and Chemical Engineering, Tongren University, Tongren, 554300, China
| |
Collapse
|
5
|
Tian Y, Long L, Wang H, Zhang J, Lu D, Zhang M, Liu J. Efficient Photoelectrocatalytic Reduction of CO 2 to Selectively Produce Ethanol Using FeS 2/TiO 2 p-n Heterojunction Photoelectrodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52299-52308. [PMID: 39301663 DOI: 10.1021/acsami.4c10453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Herein, the FeS2/TiO2 p-n heterojunction was first utilized as a photoelectrode for the PEC reduction of CO2 to selectively produce ethanol. The FeS2/TiO2 photoelectrode was fabricated through electrochemical anodization, electrodeposition, and vulcanization methods. The impact of the FeS2 loading amount and applied bias on the PEC performance was investigated. The behavior of photocurrent polarity reverse is observed depending on the FeS2 loading amount, which is related to the energy band structure of the semiconductor/electrolyte interface. The active sites for ethanol production were identified on TiO2 nanotubes rather than on the FeS2 surface. Incorporation of FeS2 not only broadened the visible light absorption range but also formed a p-n heterojunction with TiO2. FeS2/TiO2 with an electrodeposition time of 15 min exhibits the highest ethanol yield of 1170 μmol L-1 cm-2 for 3.5 h of reaction under ultraviolet-visible (UV-Vis) illumination at an applied bias of -0.7 V. Compared to TiO2, FeS2/TiO2 showed significantly higher ethanol yield due to its appropriate loading amount of FeS2 and the synergistic effect of strong UV-Vis light absorption and efficient separation and transfer of charge carriers at the p-n junction.
Collapse
Affiliation(s)
- Yue Tian
- School of Physical Science and Technology, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Lizhen Long
- School of Physical Science and Technology, Guangxi Normal University, Guilin 541004, People's Republic of China
- Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Heming Wang
- School of Physical Science and Technology, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Jinqian Zhang
- School of Physical Science and Technology, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Dongmei Lu
- School of Physical Science and Technology, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Mao Zhang
- School of Physical Science and Technology, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Jun Liu
- School of Physical Science and Technology, Guangxi Normal University, Guilin 541004, People's Republic of China
- Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
6
|
Wei M, Zhang Q, Huang L, Xue Z, Gao Q, Cai X, Zhang S, Fang Y, Peng F, Yuan T, Yang S. Reasonable Design and Deep Insight of Efficient Integrated Photorechargeable Li-Ion Batteries by Using a Cu/CuO/Cu 2S Electrode. NANO LETTERS 2024; 24:10827-10833. [PMID: 39167695 DOI: 10.1021/acs.nanolett.4c02255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Herein, Cu-foam-supported CuO nanowire arrays covered with Cu2S nanosheet substrates (Cu/CuO/Cu2S) are adopted as efficient photoelectrodes for photorechargeable lithium-ion batteries (PR-LIBs). The assembled PR-LIB exhibits remarkable solar energy conversion efficiency alongside superior lithium storage capabilities. Without an electrical power supply, the photocharged PR-LIB sustained a discharge process for 63.0 h under a constant current density of 0.05 mA cm-2. The corresponding solar-to-electrical energy conversion efficiency is 4.50%, which is an impressive achievement among recently reported contemporary technologies. Mechanism investigation shows that the Cu/CuO/Cu2S photogenerated carriers augment the extraction and insertion of Li+ according to different oxidation and reduction reactions in the charging and discharging reactions. This research delineates a refined model system and proposes innovative directions for developing efficient heterojunction photoelectrodes, significantly propelling the development of PR-LIB technology.
Collapse
Affiliation(s)
- Meng Wei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Qiuman Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Lisha Huang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhengtao Xue
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Qiongzhi Gao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xin Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Shengsen Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yueping Fang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Feng Peng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 51006, China
| | - Teng Yuan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Siyuan Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Cheng YS, Xiong XW, Cao XF, Ling M, Cheng Y, Wu FH, Xu Q, Wei XW. Construction of Dual-Active Sites by Interfacing with Polyhydroxy Fullerene on Nickel Hydroxide Surfaces to Promote CO 2 Deep Photoreduction to CH 4. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38698684 DOI: 10.1021/acsami.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Due to the complex series of elementary steps involved, achieving deep photoreduction of CO2 to multielectron products such as CH4 remains a challenging task. Therefore, it is crucial to strategically design catalysts that facilitate the controlled formation of the crucial intermediates and provide precise control over the reaction pathway. Herein, we present a pioneering approach by employing polyhydroxy fullerene (PHF) molecules to modify the surface of Ni(OH)2, creating stable and effective synergistic sites to enhance the formation of CH4 from CO2 under light irradiation. As a result, the optimized PHF-modified Ni(OH)2 cocatalyst achieves a CH4 production rate of 455 μmol g-1 h-1, with an electron-based selectivity of approximately 60%. The combination of in situ characterizations and theoretical calculations reveals that the hydroxyl species on the surface of PHF can participate in stabilizing crucial intermediates and facilitating water activation, thereby altering the reaction pathway to form CH4 instead of CO. This study provides a novel approach to regulating the selectivity of photocatalytic CO2 reduction by exploring molecular surface modification through interfacing with functionalized carbon clusters.
Collapse
Affiliation(s)
- Yuan-Sheng Cheng
- School of Chemistry and Chemical Engineering, Institute of Materials Sciences and Engineering, Institute of Clean Energy and Advanced Nanocatalysis (iClean), Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Maanshan 243002, China
- School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Xiao-Wan Xiong
- School of Chemistry and Chemical Engineering, Institute of Materials Sciences and Engineering, Institute of Clean Energy and Advanced Nanocatalysis (iClean), Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Maanshan 243002, China
| | - Xue-Feng Cao
- School of Chemistry and Chemical Engineering, Institute of Materials Sciences and Engineering, Institute of Clean Energy and Advanced Nanocatalysis (iClean), Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Maanshan 243002, China
| | - Min Ling
- Anhui Provincial Laboratory of Biomimetic Sensor and Detecting Technology, College of Materials and Chemical Engineering, West Anhui University, Lu'an 237012, China
| | - Yuwen Cheng
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Fang-Hui Wu
- School of Chemistry and Chemical Engineering, Institute of Materials Sciences and Engineering, Institute of Clean Energy and Advanced Nanocatalysis (iClean), Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Maanshan 243002, China
| | - Qiyan Xu
- School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Xian-Wen Wei
- School of Chemistry and Chemical Engineering, Institute of Materials Sciences and Engineering, Institute of Clean Energy and Advanced Nanocatalysis (iClean), Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Maanshan 243002, China
| |
Collapse
|
8
|
Zang S, Cai X, Zang Y, Jing F, Lu Y, Tang S, Lin F, Mo L. ZnIn 2S 4 Heterojunctions Constructed with In-MOF Precursor for Photocatalytic Hydrogen Evolution without Cocatalysts. Inorg Chem 2024; 63:6546-6554. [PMID: 38535616 DOI: 10.1021/acs.inorgchem.4c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Znln2S4 has great prospects for photocatalytic water splitting to hydrogen by visible light. Herein, a novel Znln2S4-In-MOF (ZnInMS4) photocatalyst is elaborately synthesized by in situ method with In-MOF as the template and In3+ as the source. ZnInMS4 overcomes the fast interface charge recombination and a sluggish charge lifetime via the formed heterojunctions. Photoelectrochemical measurements reveal that the charge-transfer kinetics is enhanced since In-MOF is introduced to act as a reliable charge-transport channel. ZnInMS4 exhibits outstanding cocatalyst-free H2 evolution rate of 70 μmol h-1 under irradiation (λ > 420 nm), which is 3.2-fold higher than that of Znln2S4. In addition, the ZnInMS4 photocatalyst shows good stability in the 16 h continuous reaction. This work illustrates the feasibility of the MOF precursor instead of inorganic salts to directly synthesize photocatalysts with high performance.
Collapse
Affiliation(s)
- Shaohong Zang
- Donghai Laboratory, Zhoushan 316021, China
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Xiaorong Cai
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Yixian Zang
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Fei Jing
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Youwei Lu
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Shuting Tang
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Feng Lin
- College of Chemical and Materials Engineering, Quzhou University, Quzhou 324000, China
| | - Liuye Mo
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| |
Collapse
|
9
|
Ma T, Li W, Li J, Duan W, Gao F, Liao G, Li J, Wang C. Multisite Cocatalysis: Single atomic Pt 2+/Pt 0 active sites synergistically improve the simulated sunlight driven H 2O-to-H 2 conversion performance of Sb 2S 3 nanorods. J Colloid Interface Sci 2024; 658:476-486. [PMID: 38128191 DOI: 10.1016/j.jcis.2023.12.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Single atomic metal (SAM) cocatalysis is a potential strategy to improve the performance of photocatalytic materials. However, the cocatalytic mechanism of SAM sites in different valence states is rarely reported. Herein, single atomic Pt2+/Pt0 active sites were anchored on Sb2S3 nanorods to synergistically improve the photoactivity for hydrogen production under simulated sunlight. Experimental results and density functional theory calculations indicated that the coexistence of single atomic Pt2+/Pt0 sites synergistically improves the broadband light harvesting and promotes the Sb2S3-to-Pt electron transfer following inhibited photoexciton recombination kinetics and enhanced H proton adsorption capacity, resulting higher and more durable photoactivity for hydrogen production. Therefore, the optimal Sb2S3-Pt0.9‰ composite catalyst achieved remarkably enhanced hydrogen evolution rate of 1.37 mmol∙g-1∙h-1 (about 105-fold greater of that of Sb2S3 NRs) under faintly alkaline condition, and about 5.41 % of apparent quantum yield (AQY700 nm) was achieved, which shows obvious superiority in hydrogen production by contrasting with the reported Sb2S3-based photocatalysts and conventional semiconductor photocatalytic materials modified with noble metals. This study elucidate a well-defined mechanism of multisite cocatalysis for photoactivity improvement.
Collapse
Affiliation(s)
- Tenghao Ma
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Wei Li
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Jiayuan Li
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Wen Duan
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Fanfan Gao
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guocheng Liao
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Ji Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| | - Chuanyi Wang
- School of Environmental Sciences and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
10
|
Liu R, Yu Z, Zhang R, Xiong J, Qiao Y, Liu X, Lu X. Hollow Nanoreactors for Controlled Photocatalytic Behaviors: Fundamental Theory, Structure-Performance Relationship, and Catalytic Advantages. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308142. [PMID: 37984879 DOI: 10.1002/smll.202308142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/21/2023] [Indexed: 11/22/2023]
Abstract
Hollow nanoreactors (HoNRs) have regarded as an attractive catalytic material for photocatalysis due to their exceptional capabilities in enhancing light harvesting, facilitating charge separation and transfer, and optimizing surface reactions. Developing novel HoNRs offers new options to realize controllable catalytic behavior. However, the catalytic mechanism of photocatalysis occurring in HoNRs has not yet been fully revealed. Against this backdrop, this review elaborates on three aspects: 1) the fundamental theoretical insights of HoNRs-driven photocatalytic kinetics; 2) structure-performance relationship of HoNRs to photocatalysis; 3) catalytic advantages of HoNRs in photocatalytic applications. Specifically, the review focuses on the fundamental theories of HoNRs for photocatalysis and their structural advantages for strengthening light scattering, promoting charge separation and transfer, and facilitating surface reaction kinetics, and the relationship between key structural parameters of HoNRs and their photocatalytic performance is in-depth discussed. Also, future prospects and challenges are proposed. It is anticipated that this review paper will pave the way for forthcoming investigations in the realm of HoNRs for photocatalysis.
Collapse
Affiliation(s)
- Runyu Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P. R. China
| | - Jian Xiong
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P. R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Xinzhong Liu
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fujian, 350108, P. R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P. R. China
| |
Collapse
|
11
|
Zhang Y, Shi H, Zhao S, Chen Z, Zheng Y, Tu G, Zhong S, Zhao Y, Bai S. Hollow Plasmonic P-Metal-N S-Scheme Heterojunction Photoreactor with Spatially Separated Dual Cocatalysts toward Artificial Photosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304050. [PMID: 37712104 DOI: 10.1002/smll.202304050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Semiconductor-based step-scheme (S-scheme) heterojunctions possess many merits toward mimicking natural photosynthesis. However, their applications for solar-to-chemical energy conversion are hindered by inefficient charge utilization and unsatisfactory surface reactivity. Herein, two synergistic protocols are demonstrated to overcome these limitations based on the construction of a hollow plasmonic p-metal-n S-scheme heterojunction photoreactor with spatially separated dual noble-metal-free cocatalysts. On one side, plasmonic Au, inserted into the heterointerfaces of CuS@ZnIn2 S4 core-shell nanoboxes, not only accelerates the transfer and recombination of useless charges, enabling a more thorough separation of useful ones for CO2 reduction and H2 O oxidation but also generates hot electrons and holes, respectively injects them into ZnIn2 S4 and CuS, further increasing the number of active carriers participating in redox reactions. On the other side, Fe(OH)x and Ti3 C2 cocatalysts, separately located on the CuS and ZnIn2 S4 surface, enrich the redox sites, adjust the reduction potential and pathway for selective CO2 -to-CH4 transformation, and balance the transfer and consumption of photocarriers. As expected, significantly enhanced activity and selectivity in CH4 production are achieved by the smart design along with nearly stoichiometric ratios of reduction and oxidation products. This study paves the way for optimizing artificial photosynthetic systems via rational interfacial channel introduction and surface cocatalyst modification.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Hulin Shi
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Shuyi Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Zhulei Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yiyi Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Gaomei Tu
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Shuxian Zhong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yuling Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Song Bai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| |
Collapse
|
12
|
Zhang Y, Xu M, Zhou W, Song X, Liu X, Zhang J, Chen S, Huo P. Fabricated ZnO@ZnIn 2S 4 S-scheme heterojunction photocatalyst for enhanced electron-transfer and CO 2 reduction. J Colloid Interface Sci 2023; 650:1762-1772. [PMID: 37506417 DOI: 10.1016/j.jcis.2023.07.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Step-scheme (S-scheme) heterojunctions can efficiently promote the separation of photogenerated carriers while maintaining the strong oxidation/reduction ability of photocatalysts; thus, research attention on S-scheme heterojunctions is increasing year by year. In this study, the S-scheme ZnO@ZnIn2S4 (ZnO@ZIS) heterojunction was prepared successfully. Then, electron spin resonance (ESR) characterization was applied to prove the successful construction of the S-scheme heterojunction. Photoluminescence (PL), time-resolved photoluminescence (TRPL), and photoelectrochemical experiments have demonstrated efficient interfacial charge transport in ZnO@ZIS. Finally, the mechanism of CO2 activation and electron transport was investigated by in situ Fourier transform infrared spectroscopy (FT-IR) and discrete Fourier transform (DFT) calculation analysis. The 40-ZnO@ZIS composite showed the best activity under light, and its CO and CH4 yields reached 39.76 and 3.92 μmol∙g-1∙h-1, respectively. This study provides a solution for optimizing the photocatalytic reduction activity of semiconductor photocatalysts by constructing S-scheme heterojunction materials to improve the CO2 reduction capacity.
Collapse
Affiliation(s)
- Yining Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China; College of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467000, PR China; Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mengyang Xu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Weiqiang Zhou
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xianghai Song
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xin Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jisheng Zhang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Songtao Chen
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China; College of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467000, PR China.
| | - Pengwei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
13
|
Zhang Y, Cao L, Bai G, Lan X. Engineering Single Cu Sites into Covalent Organic Framework for Selective Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300035. [PMID: 36866454 DOI: 10.1002/smll.202300035] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/16/2023] [Indexed: 06/02/2023]
Abstract
Photocatalytic CO2 conversion into value-added chemicals is a promising route but remains challenging due to poor product selectivity. Covalent organic frameworks (COFs) as an emerging class of porous materials are considered as promising candidates for photocatalysis. Incorporating metallic sites into COF is a successful strategy to realize high photocatalytic activities. Herein, 2,2'-bipyridine-based COF bearing non-noble single Cu sites is fabricated by chelating coordination of dipyridyl units for photocatalytic CO2 reduction. The coordinated single Cu sites not only significantly enhance light harvesting and accelerate electron-hole separation but also provide adsorption and activation sites for CO2 molecules. As a proof of concept, the Cu-Bpy-COF as a representative catalyst exhibits superior photocatalytic activity for reducing CO2 to CO and CH4 without photosensitizer, and impressively, the product selectivity of CO and CH4 can be readily modulated only by changing reaction media. Experimental and theoretical results reveal the crucial role of single Cu sites in promoting photoinduced charge separation and solvent effect in regulating product selectivity, which provides an important sight onto the design of COF photocatalysts for selective CO2 photoreduction.
Collapse
Affiliation(s)
- Yize Zhang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei, 071002, P. R. China
| | - Lili Cao
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei, 071002, P. R. China
| | - Guoyi Bai
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei, 071002, P. R. China
| | - Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei, 071002, P. R. China
| |
Collapse
|
14
|
Yang HY, Wei JJ, Zheng JY, Ai QY, Wang AJ, Feng JJ. Integration of CuS/ZnIn 2S 4 flower-like heterojunctions and (MnCo)Fe 2O 4 nanozyme for signal amplification and their application to ultrasensitive PEC aptasensing of cancer biomarker. Talanta 2023; 260:124631. [PMID: 37163924 DOI: 10.1016/j.talanta.2023.124631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Vascular endothelial growth factor 165 (VEGF165) is a crucial regulator of angiogenesis and works as a major protein biomarker of cancer metastasis. Therefore, its quantitative detection is pivotal in clinic. In this work, CuS/ZnIn2S4 flower-like heterojunctions had strong and stable photocurrents, which behaved as photoactive material to construct a photoelectrochemical (PEC) aptasensor for detecting VEGF165, combined by home-prepared (MnCo)Fe2O4 nanozyme-mediated signal amplification. The interfacial photo-induced electron transfer mechanism was chiefly discussed by UV-vis diffuse reflectance spectroscopy in details. Specifically, the (MnCo)Fe2O4 modified VEGF165 aptamer was released from the PEC aptasensing platform for its highly specific affinity to target VEGF165, which terminated the color precipitation reaction, ultimately recovering the PEC signals. The developed sensor displayed a wider linear range from 1 × 10-2 to 1 × 104 pg mL-1 with a smaller limit of detection (LOD) of 0.1 fg mL-1. This study provides some valuable insights for building other ultrasensitive aptasensors for clinical assays of cancer biomarkers in practice.
Collapse
Affiliation(s)
- Hong-Ying Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jing-Jing Wei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jia-Ying Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Qing-Ying Ai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
15
|
Guo RT, Wang J, Bi ZX, Chen X, Hu X, Pan WG. Recent Advances and Perspectives of Core-Shell Nanostructured Materials for Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206314. [PMID: 36515282 DOI: 10.1002/smll.202206314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Photocatalytic CO2 conversion into solar fuels is a promising technology to alleviate CO2 emissions and energy crises. The development of core-shell structured photocatalysts brings many benefits to the photocatalytic CO2 reduction process, such as high conversion efficiency, sufficient product selectivity, and endurable catalyst stability. Core-shell nanostructured materials with excellent physicochemical features take an irreplaceable position in the field of photocatalytic CO2 reduction. In this review, the recent development of core-shell materials applied for photocatalytic reduction of CO2 is introduced . First, the basic principle of photocatalytic CO2 reduction is introduced. In detail, the classification and synthesis techniques of core-shell catalysts are discussed. Furthermore, it is also emphasized that the excellent properties of the core-shell structure can greatly improve the activity, selectivity, and stability in the process of photocatalytic CO2 reduction. Hopefully, this paper can provide a favorable reference for the preparation of efficient photocatalysts for CO2 reduction.
Collapse
Affiliation(s)
- Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, China
| | - Juan Wang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
| | - Zhe-Xu Bi
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
| | - Xin Chen
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
| | - Xing Hu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, China
| |
Collapse
|
16
|
Design of hollow nanostructured photocatalysts for clean energy production. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
17
|
Yuan X, Huang Z, Li J, Meng Y, Gu Z, Xie B, Ni Z, Xia S. The S-Cu-O bonds boosted efficient photocatalytic degradation of semi-coherent interface Cu2O/Cu7S4 heterojunction. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Low temperature growth of CuS nanosheets on hollow Co9S8 nanotubes: Synthesis and analytical application. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Liang S, Chen Y, Han W, Jiao Y, Li W, Tian G. Hierarchical S-scheme titanium dioxide@cobalt-nickel based metal–organic framework nanotube photocatalyst for selective carbon dioxide photoreduction to methane. J Colloid Interface Sci 2022; 630:11-22. [DOI: 10.1016/j.jcis.2022.09.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 10/14/2022]
|