1
|
You DW, Yoon J, Kim S, Yang GG, Lee CW, Shin J, Hong S, Kim JH, Kim SO. Bioinspired Deformable Antireflective Materials by Block Copolymer Self-Assembly. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24610-24619. [PMID: 40200581 DOI: 10.1021/acsami.5c02740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Antireflective surface is a crucial component for high-performance photonic systems but has been principally focused on hard, flat device geometry. We present an antireflective strategy for deformable device geometry that combines superior optical performance with mechanical robustness. Bioinspired nanohole arrays are embedded into a transparent polymer layer by exploiting block copolymer self-assembly. The resultant nanoengineered surface reduces light reflection by over 70% across the visible spectrum compared to a nonpatterned surface, owing to gradual refractive index along nanohole geometry that mediates optical impedance mismatch with the air interface, as supported by simulation studies. Adoption of interconnected nanostructures facilitates efficient dissipation of external mechanical stress, ensuring high mechanical resilience, even under repeated nonlinear deformation cycles. Furthermore, multifunctionality with self-cleaning capabilities is demonstrated, attributed to genuine hydrophobicity of nanostructured geometry. Our straightforward strategy delivers a promising solution for next-generation optical and optoelectronic systems commonly involved in complex and deformable design configurations.
Collapse
Affiliation(s)
- Dong Won You
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for Nanocentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeongbin Yoon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seonghyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Geon Gug Yang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for Nanocentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chan Woo Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for Nanocentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jonghwa Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seungbum Hong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jang Hwan Kim
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Republic of Korea
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Sang Ouk Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for Nanocentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Yang GG, Jin HM, Park M, Kim M, Shin DW, Kim SO, Jung W, Lee S. Monodisperse Pt nanoparticle arrays via block copolymer nanopatterning and their reaction kinetics on CO oxidation. NANOSCALE 2025; 17:3402-3410. [PMID: 39704057 DOI: 10.1039/d4nr03582h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Advances in nanotechnology are able to open up new prospects for catalysis, particularly through the development of catalytic systems featuring precisely controlled size and distribution of metal nanoparticles. In this study, we prepared a model catalytic system, where monodisperse Pt nanoparticles, approximately 8 nm in size, were uniformly distributed onto CeO2 and SiOx/Si substrates via block copolymer (BCP) nanopatterning. To address the validity of these catalysts, we conducted a case study on CO oxidation in a continuous flow reactor, investigated the reaction kinetics, and compared our observations with those reported in the literature. The reaction orders for CO and O2, activation energy, and turnover frequency values on these catalysts were in good agreement with those with well-established kinetic data, demonstrating consistency and reliability. These results suggest a potential application of the BCP-nanopatterned catalyst as a model system for fundamental studies in various catalytic processes.
Collapse
Affiliation(s)
- Geon Gug Yang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyeong Min Jin
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Minsu Park
- Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Republic of Korea.
| | - Minha Kim
- Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Republic of Korea.
| | - Dong-Wook Shin
- Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Republic of Korea.
| | - Sang Ouk Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - WooChul Jung
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Siwon Lee
- Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Republic of Korea.
| |
Collapse
|
3
|
Mullen E, Alvarez-Fernandez A, Prochukhan N, Davó-Quiñonero A, Bekarevich R, Gity F, Sheehan B, Baez Vasquez JF, Gatensby R, Bentaleb A, Ward A, Hurley PK, Morris MA. Combined Swelling and Metal Infiltration: Advancing Block Copolymer Pattern Control for Nanopatterning Applications. ACS APPLIED NANO MATERIALS 2025; 8:1829-1842. [PMID: 39911404 PMCID: PMC11791884 DOI: 10.1021/acsanm.4c06197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/07/2025]
Abstract
Block copolymer (BCP) patterning is a well-established self-assembly technique for developing surfaces with regular and controllable nanosized features. This method relies on the microphase separation of a BCP film and subsequent infiltration with inorganic species. The BCP film serves as a template, leaving behind inorganic replicas when removed. BCP patterning offers a promising, cost-effective alternative to standard nanopatterning techniques, featuring fewer processing steps and reduced energy use. However, BCP patterning can be complex and challenging to control. Varying the structural characteristics of the polymeric template (feature sizes) requires careful and often challenging synthesis of bespoke BCPs with controllable molecular weights (M w). To develop BCP patterning as a standard nanofabrication approach, a vapor-phase patterning (VPP) technology has been developed. VPP allows for the simultaneous, single-step, selective swelling of BCP nanodomains to precise feature sizes and morphologies while forming inorganic features by metallic precursor infiltration. Infiltration preserves the swollen arrangement, thus allowing for feature size selection without synthesizing BCPs with different M w, simplifying the process. VPP has the potential to revolutionize nanopatterning techniques in industries such as optical materials, materials for energy storage, sensors, and semiconductors by providing a pathway to efficient, precise, and cost-effective BCP template patterning.
Collapse
Affiliation(s)
- Eleanor Mullen
- Centre
for Research on Adaptive Nanostructures and Nanodevices (CRANN) and
Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin 2 D02 W085, Ireland
| | - Alberto Alvarez-Fernandez
- Centre
for Research on Adaptive Nanostructures and Nanodevices (CRANN) and
Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin 2 D02 W085, Ireland
- Centro
de Física de Materiales (CFM) (CSIC−UPV/EHU)—Materials
Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Nadezda Prochukhan
- Centre
for Research on Adaptive Nanostructures and Nanodevices (CRANN) and
Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin 2 D02 W085, Ireland
| | - Arantxa Davó-Quiñonero
- Centre
for Research on Adaptive Nanostructures and Nanodevices (CRANN) and
Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin 2 D02 W085, Ireland
- Inorganic
Chemistry Department, University of Alicante, Carretera San Vicente del Raspeig
s/n, E-03080 Alicante, Spain
| | - Raman Bekarevich
- Advanced
Microscopy Laboratory (AML), Centre for Research on Adaptive Nanostructures
and Nanodevices (CRANN), Trinity College
Dublin, Dublin 2 D02 DA31, Ireland
| | - Farzan Gity
- Centre
for Research on Adaptive Nanostructures and Nanodevices (CRANN) and
Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin 2 D02 W085, Ireland
- Tyndall
National Institute, University College Cork, Lee Maltings, Cork T12 R5CP, Ireland
| | - Brendan Sheehan
- Tyndall
National Institute, University College Cork, Lee Maltings, Cork T12 R5CP, Ireland
| | - Jhonattan Frank Baez Vasquez
- Centre
for Research on Adaptive Nanostructures and Nanodevices (CRANN) and
Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin 2 D02 W085, Ireland
| | - Riley Gatensby
- Centre
for Research on Adaptive Nanostructures and Nanodevices (CRANN) and
Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin 2 D02 W085, Ireland
| | - Ahmed Bentaleb
- Centre
de
Recherche Paul Pascal (CRPP)—UMR 5031, Pessac 33600, France
| | - Alan Ward
- Imperial
College London, South
Kensington Campus, London SW7 2AZ, United Kingdom
| | - Paul K. Hurley
- Centre
for Research on Adaptive Nanostructures and Nanodevices (CRANN) and
Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin 2 D02 W085, Ireland
- Tyndall
National Institute, University College Cork, Lee Maltings, Cork T12 R5CP, Ireland
| | - Michael A. Morris
- Centre
for Research on Adaptive Nanostructures and Nanodevices (CRANN) and
Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin 2 D02 W085, Ireland
| |
Collapse
|
4
|
Sun YS, Jian YQ, Yang ST, Chiang PH, Su CJ. Structural evolution and nanodomain formation in blend films of a block copolymer and homopolymer. SOFT MATTER 2025; 21:277-290. [PMID: 39679467 DOI: 10.1039/d4sm01029a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
This study explores the concurrent formation of surface perforations, parallel cylinders, and double gyroids in symmetric PS-b-PMMA/hPS blend films during isothermal annealing at 205 and 240 °C. By controlling the weight fraction ratio of PS-b-PMMA to hPS at 75/25, we systematically examined the impact of film thickness and annealing temperature on nanodomain development. Using in situ GISAXS and ex situ SEM, we observed that thin films rapidly formed surface perforations and underlying parallel cylinders at both annealing temperatures. For thicker films, annealing at 205 °C resulted in the coexistence of surface perforations and parallel cylinders, while annealing at 240 °C yielded the additional formation of double gyroids besides surface perforations and parallel cylinders. Furthermore, the double gyroids, which grew independently with {121}DG planes parallel to the substrate, did not exhibit in-plane epitaxial relationships with the other structures. These findings highlight the critical role of annealing temperature and film thickness in directing nanodomain morphology, offering new insights for the design of nanostructured materials with tailored properties.
Collapse
Affiliation(s)
- Ya-Sen Sun
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Yi-Qing Jian
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Shin-Tung Yang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Pei-Hsuan Chiang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Chun-Jen Su
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
5
|
Lee H, Kwon JS, Kim MH, Choi HJ, Kim TW, Lee SH. Swift and precise detection of unlabeled pathogens using a nanogap electrode impedimetric sensor facilitated by electrokinetics. Talanta 2024; 280:126670. [PMID: 39126965 DOI: 10.1016/j.talanta.2024.126670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
For the protection of human health and environment, there is a growing demand for high-performance, user-friendly biosensors for the prompt detection of pathogenic bacteria in samples containing various substances. We present a nanogap electrode-based purely electrical impedimetric sensor that utilizes the dielectrophoresis (DEP) mechanism. Our nanogap sensor can directly and sensitively detect pathogens present at concentrations as low as 1-10 cells/assay in buffers and drinking milk without the need for separation, purification, or specific ligand binding. This is achieved by minimizing the electrical double-layer effect and electrode polarization in nanogap impedance sensors, reducing signal loss. In addition, even at low DEP voltages, nanogap sensors can quickly establish strong DEP forces between the nanogap electrodes to control the spatial concentration of pathogens around the electrodes. This activates and stabilizes inter-electrode signal transmission along the nanogap-aligned pathogens, increasing sensitivity and reducing errors during repeated measurements. The DEP-enabled nanogap impedance sensor developed in this study is valuable for a variety of pathogen detection and monitoring systems including point-of-care testing (POCT) as it can detect pathogens in diverse samples containing multiple substances quickly and with high sensitivity, is compatible with complex solutions such as food and beverages, and provides highly reproducible results without the need for separate binding and separation processes.
Collapse
Affiliation(s)
- Hyunjung Lee
- Graduate School of Flexible and Printable Electronics, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Jung Sun Kwon
- BioNano Health Guard Research Center (H-GUARD), Daejeon, 34141, Republic of Korea
| | - Min Hyeok Kim
- National Creative Research Initiative Center for Multi-dimensional Directed Nanoscale Assembly, Department of Material Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Hak-Jong Choi
- Nano-Convergence Manufacturing Systems Research Division, Department of Nano Manufacturing Technology, Korea Institute of Machinery & Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Tae-Wook Kim
- Graduate School of Flexible and Printable Electronics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sang Hyun Lee
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
6
|
Davletbaeva IM, Sazonov OO. Macromolecular Architecture in the Synthesis of Micro- and Mesoporous Polymers. Polymers (Basel) 2024; 16:3267. [PMID: 39684011 DOI: 10.3390/polym16233267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Polymers with micro- and mesoporous structure are promising as materials for gas storage and separation, encapsulating agents for controlled drug release, carriers for catalysts and sensors, precursors of nanostructured carbon materials, carriers for biomolecular immobilization and cellular scaffolds, as materials with a low dielectric constant, filtering/separating membranes, proton exchange membranes, templates for replicating structures, and as electrode materials for energy storage. Sol-gel technologies, track etching, and template synthesis are used for their production, including in micelles of surfactants and microemulsions and sublimation drying. The listed methods make it possible to obtain pores with variable shapes and sizes of 5-50 nm and achieve a narrow pore size distribution. However, all these methods are technologically multi-stage and require the use of consumables. This paper presents a review of the use of macromolecular architecture in the synthesis of micro- and mesoporous polymers with extremely high surface area and hierarchical porous polymers. The synthesis of porous polymer frameworks with individual functional capabilities, the required chemical structure, and pore surface sizes is based on the unique possibilities of developing the architecture of the polymer matrix.
Collapse
Affiliation(s)
- Ilsiya M Davletbaeva
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| | - Oleg O Sazonov
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| |
Collapse
|
7
|
Hamieh T. Exploring the Application of Advanced Chromatographic Methods to Characterize the Surface Physicochemical Properties and Transition Phenomena of Polystyrene- b-poly(4-vinylpyridine). Molecules 2024; 29:4812. [PMID: 39459180 PMCID: PMC11510071 DOI: 10.3390/molecules29204812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The linear diblock copolymer polystyrene-b-poly(4-vinylpyridine) (PS-P4VP) is an important copolymer recently used in many applications such as optoelectronics, sensors, catalysis, membranes, energy conversion, energy storage devices, photolithography, and biomedical applications. (1) Background: The surface thermodynamic properties of PS-P4VP copolymers are of great importance in many chemical and industrial processes. (2) Methods: The inverse gas chromatography (IGC) at infinite dilution was used for the experimental determination of the retention volumes of organic solvents adsorbed on copolymer surfaces as a function of temperature. This led to the variations in the free energy of interaction necessary to the evaluation of the London dispersive and polar acid-base surface energies, the polar enthalpy and entropy, the Lewis acid-base constants, and the transition temperatures of the PS-P4VP copolymer. (3) Results: The application of the thermal Hamieh model led to an accurate determination of the London dispersive surface energy of the copolymer that showed non-linear variations versus the temperature, highlighting the presence of two transition temperatures. It was observed that the Lewis acid-base parameters of the copolymer strongly depend on the temperature, and the Lewis base constant of the solid surface was shown to be higher than its acid constant. (4) Conclusions: An important effect of the temperature on the surface thermodynamic properties of PS-P4VP was proven and new surface correlations were determined.
Collapse
Affiliation(s)
- Tayssir Hamieh
- Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; ; Tel.: +31-6-5723-9324
- Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences, Lebanese University, Beirut P.O. Box 6573/14, Lebanon
- Institut de Science des Matériaux de Mulhouse, Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
| |
Collapse
|
8
|
Scott JA, Bishop J, Budnik G, Toth M. Hydrogen Plasma Inhibits Ion Beam Restructuring of GaP. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53116-53122. [PMID: 39315410 DOI: 10.1021/acsami.4c06977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Focused ion beam (FIB) techniques are employed widely for nanofabrication and processing of materials and devices. However, ion irradiation often gives rise to severe damage due to atomic displacements that cause defect formation, migration, and clustering within the ion-solid interaction volume. The resulting restructuring degrades the functionality of materials and limits the utility of FIB ablation and nanofabrication techniques. Here we show that such restructuring can be inhibited by performing FIB irradiation in a hydrogen plasma environment via chemical pathways that modify defect binding energies and transport kinetics, as well as material ablation rates. The method is minimally invasive and has the potential to greatly expand the utility of FIB nanofabrication techniques in processing functional materials and devices.
Collapse
Affiliation(s)
- John A Scott
- Institute for Photonics and Optical Sciences (IPOS), School of Physics, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - James Bishop
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Garrett Budnik
- Advanced Technology, Thermo Fisher Scientific, NE Dawson Creek Dr., Hillsboro, Oregon 97124, United States
| | - Milos Toth
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
9
|
Qiao L, Vega DA, Schmid F. Stability and Elasticity of Ultrathin Sphere-Patterned Block Copolymer Films. Macromolecules 2024; 57:4629-4634. [PMID: 38765499 PMCID: PMC11100483 DOI: 10.1021/acs.macromol.4c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Sphere-patterned ultrathin block copolymer films are potentially interesting for a variety of applications in nanotechnology. We use self-consistent field theory to investigate the elastic response of sphere monolayer films with respect to in-plane shear, in-plane extension, compression deformations, and bending. The relations between the in-plane elastic moduli are roughly compatible with the expectations for two-dimensional elastic systems with hexagonal symmetry, with one notable exception: The pure shear and the simple shear moduli differ from each other by roughly 20%. Even more importantly, the bending constants are found to be negative, indicating that free-standing block copolymer membranes made of only a sphere monolayer are inherently unstable above the glass transition. Our results are discussed in view of the experimental findings.
Collapse
Affiliation(s)
- Le Qiao
- Institut
für Physik, Johannes Gutenberg-Universität
Mainz, Mainz D55099, Germany
| | - Daniel A. Vega
- Instituto
de Física del Sur (IFISUR), Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET), Universidad Nacional del Sur, Bahía Blanca 8000, Argentina
| | - Friederike Schmid
- Institut
für Physik, Johannes Gutenberg-Universität
Mainz, Mainz D55099, Germany
| |
Collapse
|
10
|
Sytu MRC, Cho DH, Hahm JI. Self-Assembled Block Copolymers as a Facile Pathway to Create Functional Nanobiosensor and Nanobiomaterial Surfaces. Polymers (Basel) 2024; 16:1267. [PMID: 38732737 PMCID: PMC11085100 DOI: 10.3390/polym16091267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Block copolymer (BCP) surfaces permit an exquisite level of nanoscale control in biomolecular assemblies solely based on self-assembly. Owing to this, BCP-based biomolecular assembly represents a much-needed, new paradigm for creating nanobiosensors and nanobiomaterials without the need for costly and time-consuming fabrication steps. Research endeavors in the BCP nanobiotechnology field have led to stimulating results that can promote our current understanding of biomolecular interactions at a solid interface to the never-explored size regimes comparable to individual biomolecules. Encouraging research outcomes have also been reported for the stability and activity of biomolecules bound on BCP thin film surfaces. A wide range of single and multicomponent biomolecules and BCP systems has been assessed to substantiate the potential utility in practical applications as next-generation nanobiosensors, nanobiodevices, and biomaterials. To this end, this Review highlights pioneering research efforts made in the BCP nanobiotechnology area. The discussions will be focused on those works particularly pertaining to nanoscale surface assembly of functional biomolecules, biomolecular interaction properties unique to nanoscale polymer interfaces, functionality of nanoscale surface-bound biomolecules, and specific examples in biosensing. Systems involving the incorporation of biomolecules as one of the blocks in BCPs, i.e., DNA-BCP hybrids, protein-BCP conjugates, and isolated BCP micelles of bioligand carriers used in drug delivery, are outside of the scope of this Review. Looking ahead, there awaits plenty of exciting research opportunities to advance the research field of BCP nanobiotechnology by capitalizing on the fundamental groundwork laid so far for the biomolecular interactions on BCP surfaces. In order to better guide the path forward, key fundamental questions yet to be addressed by the field are identified. In addition, future research directions of BCP nanobiotechnology are contemplated in the concluding section of this Review.
Collapse
Affiliation(s)
- Marion Ryan C. Sytu
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA
| | - David H. Cho
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| | - Jong-in Hahm
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA
| |
Collapse
|
11
|
Wang J, Hou L. Spatially Amplified and Rigid Junction in Diblock Copolymers: Reduced Microphase Separation Size via Interface Expansion. ACS Macro Lett 2024; 13:348-353. [PMID: 38447586 DOI: 10.1021/acsmacrolett.3c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
We introduce an approach in diblock copolymer design, where modifying the junction point with rigid bulky monomer expands the cross-sectional area of the interface and leads to a decrease in the repeat period. Using living anionic polymerization, we synthesized a series of dialkynyl midfunctionalized poly(styrene-b-methyl methacrylate) (PSM-DA) and functionalized them using the thiol-alkyne click reaction with specifically selected rigid bulky monomers: PSS-(3-mercapto)propyl-heptaisobutyl substituted (PSS) and 1-adamantanethiol (ADA). This modification, though involving only a single monomer unit within the diblock copolymer structure, brought about a significant reduction in domain size, with PSS and ADA reducing it by 18% and 15%, respectively. The results indicate a method for reducing the domain sizes of block copolymers, which could lead to advancements in lithography and various nanotechnological applications.
Collapse
Affiliation(s)
- Jiaxian Wang
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Linxi Hou
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, People's Republic of China
- Qingyuan Innovation Laboratory, Quanzhou 362801, People's Republic of China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals, Fuzhou University, Fuzhou 350116, People's Republic of China
| |
Collapse
|
12
|
Xu Z, Chu X, Li W. Microscopic Origins of the Distinct Mechanical Response of ABA and ABC Block Copolymer Nanostructures. ACS Macro Lett 2024:240-246. [PMID: 38315127 DOI: 10.1021/acsmacrolett.3c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
It has been commonly believed that the ordered thermoplastic elastomers formed by the ABC triblock copolymer should have better mechanical performance than that by the ABA counterpart due to the higher bridging fraction. However, the thermoplastic elastomer of ABA was often observed to perform better than that of ABC. To compare the performance of two kinds of thermoplastic elastomers and unveil the underlying microscopic mechanism, we have calculated their stress-strain curves using coarse-grained molecular dynamics simulations in conjunction with self-consistent field theory. It is revealed that the stretching degree of the bridging blocks and the network connectivity play important roles in determining the mechanical properties in addition to the bridging fraction. The higher degree in the stretching of bridging blocks and network connectivity of the structure formed by the ABA triblock copolymer enables its superior mechanical performance over the ABC block copolymer.
Collapse
Affiliation(s)
- Zhanwen Xu
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xing Chu
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
13
|
Sun YS, Liao YP, Hung HH, Chiang PH, Su CJ. Molecular-weight effects of a homopolymer on the AB- and ABC-stacks of perforations in block copolymer/homopolymer films. SOFT MATTER 2024; 20:609-620. [PMID: 38131364 DOI: 10.1039/d3sm01249b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
We have demonstrated the molecular-weight effects of adding homopolystyrene (hPS) on the evolution of perforated layers and double gyroids in polystyrene-block-poly(methyl methacrylate)-based films during isothermal annealing. Two homopolystyrenes of 2.8 and 17 kg mol-1 were used. To prepare blend films, PS-b-PMMA and hPSx (x: 2.8 or 17) were mixed at a weight-fraction ratio of 75/25 in toluene and then spin-coated at SiOx/Si. Spin coating inevitably produced films with thick edges at the periphery of the substrate. The structural evolution of the spun films was in situ characterized by grazing incidence small-angle X-ray scattering (GISAXS). The annealed films were then characterized using a scanning electron microscope (SEM). We found that thin middle regions behaved differently from thick beads for the films. The middle of the blend films mainly formed perforated layers with different spatial orders and orientations, depending on the molecular weight of added hPS chains. Hexagonally perforated layers quickly formed at 205 °C for PS-b-PMMA/hPS2.8 films. However, when hPS17 was used instead of hPS2.8, perforated layers formed with defects in PS-b-PMMA/hPS17 films annealed at 205 °C. Annealing at 240 °C improved the spatial order and orientation of perforated layers for a PS-b-PMMA/hPS17 film. Nevertheless, annealing at 240 °C inversely depressed the in-plane spatial order of perforated layers for a PS-b-PMMA/hPS2.8 film. The depression in the in-plane spatial order is ascribed to a dilution effect of added short chains. Compared to the middle regions, the thick beads went through several metastable phases, such as perpendicularly oriented perforated layers and double gyroids.
Collapse
Affiliation(s)
- Ya-Sen Sun
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Yin-Ping Liao
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Hsiang-Ho Hung
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Pei-Hsuan Chiang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Chun-Jen Su
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
14
|
Kuschlan S, Chiarcos R, Laus M, Pérez-Murano F, Llobet J, Fernandez-Regulez M, Bonafos C, Perego M, Seguini G, De Michielis M, Tallarida G. Periodic Arrays of Dopants in Silicon by Ultralow Energy Implantation of Phosphorus Ions through a Block Copolymer Thin Film. ACS APPLIED MATERIALS & INTERFACES 2023; 15:57928-57940. [PMID: 37314734 PMCID: PMC10739587 DOI: 10.1021/acsami.3c03782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
In this work, block copolymer lithography and ultralow energy ion implantation are combined to obtain nanovolumes with high concentrations of phosphorus atoms periodically disposed over a macroscopic area in a p-type silicon substrate. The high dose of implanted dopants grants a local amorphization of the silicon substrate. In this condition, phosphorus is activated by solid phase epitaxial regrowth (SPER) of the implanted region with a relatively low temperature thermal treatment preventing diffusion of phosphorus atoms and preserving their spatial localization. Surface morphology of the sample (AFM, SEM), crystallinity of the silicon substrate (UV Raman), and position of the phosphorus atoms (STEM- EDX, ToF-SIMS) are monitored during the process. Electrostatic potential (KPFM) and the conductivity (C-AFM) maps of the sample surface upon dopant activation are compatible with simulated I-V characteristics, suggesting the presence of an array of not ideal but working p-n nanojunctions. The proposed approach paves the way for further investigations on the possibility to modulate the dopant distribution within a silicon substrate at the nanoscale by changing the characteristic dimension of the self-assembled BCP film.
Collapse
Affiliation(s)
- Stefano Kuschlan
- CNR-IMM,
Unit of Agrate Brianza, Via C. Olivetti 2, Agrate Brianza I-20864, Italy
- Università
del Piemonte Orientale ‘‘A. Avogadro’’, Viale T. Michel 11, Alessandria I-15121, Italy
| | - Riccardo Chiarcos
- Università
del Piemonte Orientale ‘‘A. Avogadro’’, Viale T. Michel 11, Alessandria I-15121, Italy
| | - Michele Laus
- Università
del Piemonte Orientale ‘‘A. Avogadro’’, Viale T. Michel 11, Alessandria I-15121, Italy
| | | | - Jordi Llobet
- Institute
of Microelectronics of Barcelona (IMB-CNM, CSIC), Bellaterra 08193, Spain
| | | | - Caroline Bonafos
- CEMES-CNRS,
Université de Toulouse, CNRS, Toulouse 31055, France
| | - Michele Perego
- CNR-IMM,
Unit of Agrate Brianza, Via C. Olivetti 2, Agrate Brianza I-20864, Italy
| | - Gabriele Seguini
- CNR-IMM,
Unit of Agrate Brianza, Via C. Olivetti 2, Agrate Brianza I-20864, Italy
| | - Marco De Michielis
- CNR-IMM,
Unit of Agrate Brianza, Via C. Olivetti 2, Agrate Brianza I-20864, Italy
| | - Graziella Tallarida
- CNR-IMM,
Unit of Agrate Brianza, Via C. Olivetti 2, Agrate Brianza I-20864, Italy
| |
Collapse
|
15
|
Feng H, Kash B, Yim S, Bagchi K, Craig GSW, Chen W, Rowan SJ, Nealey PF. Wetting Behavior of A -block-(B- random-C) Copolymers with Equal Block Surface Energies on Surfaces Functionalized with B- random-C Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14688-14698. [PMID: 37782843 PMCID: PMC10586369 DOI: 10.1021/acs.langmuir.3c02065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/18/2023] [Indexed: 10/04/2023]
Abstract
To form nanopatterns with self-assembled block copolymers (BCPs), it is desirable to have through-film domains that are oriented perpendicular to the substrate. The domain orientation is determined by the interfacial interactions of the BCP domains with the substrate and with the free surface. Here, we use thin films of two different sets of BCPs with A-block-(B-random-C) architecture matched with a corresponding B-random-C copolymer nanocoating on the substrate to demonstrate two distinct wetting behaviors. The two sets of A-b-(B-r-C) BCPs are made by using thiol-epoxy click chemistry to functionalize polystyrene-block-poly(glycidyl methacrylate) with trifluoroethanethiol (TFET) and either 2-mercaptopyridine (2MP) or methyl thioglycolate (MTG). For each set of BCPs, the composition ratio of the two thiols in the BCP (φ1) is found that results in the two blocks of the modified BCP having equal surface energies (Δγair = 0). The corresponding B-r-C random copolymers were synthesized and used to modify the substrate, and the composition ratio (φ2) values that resulted in the two blocks of the BCP having equal interfacial energy with the substrate (Δγsub = 0) were determined with scanning electron microscopy. The correlation between each block's γsub value and the interaction parameter, χ, is employed to explain the different wetting behaviors of the two sets of BCPs. For the thiol pair 2MP and TFET, the values of φ1 and φ2 that lead to Δγair = 0 and Δγsub = 0, respectively, are significantly different. A similar difference was observed between the φ1 and φ2 values that lead to Δγair = 0 and Δγsub = 0 for the BCPs made with the thiol pair MTG and TFET. In the latter case, for Δγsub = 0 two windows of φ2 are identified, which can be explained by the thermodynamic interactions of the specific thiol pair and the A-b-(B-r-C) architecture.
Collapse
Affiliation(s)
- Hongbo Feng
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Benjamin Kash
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Soonmin Yim
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Kushal Bagchi
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Gordon S. W. Craig
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Wen Chen
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Stuart J. Rowan
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
- Department
of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Paul F. Nealey
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
- Center
for Molecular Engineering, Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
16
|
Qian Z, Shi R, Lu ZY, Qian HJ. Horizontal to perpendicular transition of lamellar and cylinder phases in block copolymer films induced by interface segregation of single-chain nanoparticles during solvent evaporation. J Chem Phys 2023; 159:124901. [PMID: 38127373 DOI: 10.1063/5.0166202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/05/2023] [Indexed: 12/23/2023] Open
Abstract
How to fabricate perpendicularly oriented domains (PODs) of lamellar and cylinder phases in block copolymer thin films remains a major challenge. In this work, via a coarse-grained molecular dynamics simulation study, we report a solvent evaporation strategy starting from a mixed solution of A-b-B-type diblock copolymers (DBCs) and single-chain nanoparticles (SCNPs) with the same composition, which is capable of spontaneously generating PODs in drying DBC films induced by the interface segregation of SCNPs. The latter occurs at both the free surface and substrate and, consequently, neutralizes the interface selectivity of distinct blocks in DBCs, leading to spontaneous formation of PODs at both interfaces. The interface segregation of SCNPs is related to the weak solvophilicity of the internal cross-linker units. A mean-field theory calculation demonstrates that the increase in the chemical potential of SCNPs in the bulk region drives their interface segregation along with solvent evaporation. We believe that such a strategy can be useful in regulating the PODs of DBC films in practical applications.
Collapse
Affiliation(s)
- Zhao Qian
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Rui Shi
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, Changchun 130012, China
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, Changchun 130012, China
| |
Collapse
|
17
|
Ding SP, Zhang ZK, Ye Z, Xia DL, Xu JT. Electrostatic crosslinking-enabled highly asymmetric lamellar nanostructures of polyzwitterionic block copolymers for lithography. NANOSCALE 2023; 15:4553-4560. [PMID: 36757829 DOI: 10.1039/d3nr00073g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
For the bulk self-assembly of traditional diblock copolymers (di-BCPs), lamellar structures only occur when two constituents have similar volume fractions (f) and two alternating layers tend to have similar thicknesses. Highly asymmetric lamellar (A-LAM) structures, in which the thickness of one layer is several times higher than the other, are hardly formed in di-BCPs, while they have potential applications in nanolithography. In this work, A-LAM structures with different dimensions were constructed using a type of simple linear di-BCP, polystyrene-b-poly(4-vinylpyridine)propane-1-sulfonate (PS-b-PVPS) with the polyzwitterionic block PVPS in minority. The origin of the A-LAM structure was ascribed to the electrostatic crosslinking and confirmed by doping PS-b-PVPS block copolymers (BCPs) with N-butyl pyridinium methane sulfonate (BPMS). The morphology of compositionally asymmetric PS-b-PVPS BCPs changed from A-LAM to cylindrical structures upon salt-doping, i.e. the phase behavior of common BCPs was recovered. In addition, the morphologies of PS-b-PVPS BCPs with similar molecular weights but varied compositions were also studied, and only two kinds of structures (lamellar or ill-defined spherical structure) were observed when the volume fraction of PVPS (fPVPS) was less than 0.5, and the composition range for the formation of the lamellar structure was found to be fPVPS ≥ 0.188.
Collapse
Affiliation(s)
- Shi-Peng Ding
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Ze-Kun Zhang
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Ze Ye
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Ding-Li Xia
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jun-Ting Xu
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
18
|
Ranasinghe DR, Doerk G, Aryal BR, Pang C, Davis RC, Harb JN, Woolley AT. Block copolymer self-assembly to pattern gold nanodots for site-specific placement of DNA origami and attachment of nanomaterials. NANOSCALE 2023; 15:2188-2196. [PMID: 36633155 DOI: 10.1039/d2nr05045e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Directed placement of DNA origami could play a key role in future integrated nanoelectronic devices. Here we demonstrated the site-selective attachment of DNA origami on gold dots formed using a pattern transfer method through block copolymer self-assembly. First, a random copolymer brush layer is grafted on the Si surface and then poly (styrene-b-methylmethacrylate) block copolymer is spin-coated to give a hexagonal nanoarray after annealing. UV irradiation followed by acetic acid etching is used to remove the PMMA, creating cylindrical holes and then oxygen plasma etching removes the random copolymer layer inside those holes. Next, metal evaporation, followed by lift-off creates a gold dot array. We evaluated different ligand functionalization of Au dots, as well as DNA hybridization to attach DNA origami to the nanodots. DNA-coated Au nanorods are assembled on the DNA origami as a step towards creating nanowires and to facilitate electron microscopy characterization of the attachment of DNA origami on these Au nanodots. The DNA hybridization approach showed better DNA attachment to Au nanodots than localization by electrostatic interaction. This work contributes to the understanding of DNA-templated assembly, nanomaterials, and block copolymer nanolithography. Furthermore, the work shows potential for creating DNA-templated nanodevices and their placement in ordered arrays in future nanoelectronics.
Collapse
Affiliation(s)
| | - Gregory Doerk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | - Basu R Aryal
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| | - Chao Pang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| | - Robert C Davis
- Department of Physics and Astronomy, Brigham Young University, Provo, UT, USA
| | - John N Harb
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
19
|
Angelopoulou PP, Moutsios I, Manesi GM, Ivanov DA, Sakellariou G, Avgeropoulos A. Designing high χ copolymer materials for nanotechnology applications: A systematic bulk vs. thin films approach. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Mendoza C, Nirwan VP, Fahmi A. Nanofabrication of hybrid nanomaterials: Macroscopically aligned nanoparticles pattern via directed self‐assembly of block copolymers. J Appl Polym Sci 2022. [DOI: 10.1002/app.53409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Viraj Pratap Nirwan
- Faculty of Technology and Bionics Rhine‐Waal University of Applied Sciences Kleve Germany
| | - Amir Fahmi
- Faculty of Technology and Bionics Rhine‐Waal University of Applied Sciences Kleve Germany
| |
Collapse
|
21
|
Yang GG, Ko J, Choi HJ, Kim DH, Han KH, Kim JH, Kim MH, Park C, Jin HM, Kim ID, Kim SO. Multilevel Self-Assembly of Block Copolymers and Polymer Colloids for a Transparent and Sensitive Gas Sensor Platform. ACS NANO 2022; 16:18767-18776. [PMID: 36374261 DOI: 10.1021/acsnano.2c07499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The recent emerging significance of the Internet of Things (IoT) demands sensor devices to be integrated with many different functional structures and devices while conserving their original functionalities. To this end, optical transparency and mechanical flexibility of sensor devices are critical requirements for optimal integration as well as high sensitivity. In this work, a transparent, flexible, and sensitive gas sensor building platform is introduced by using multilevel self-assembly of block copolymers (BCPs) and polystyrene (PS) colloids. For the demonstration of an H2 gas sensor, a hierarchically porous Pd metal mesh structure is obtained by overlaying the two different patterned template structures with synergistic, distinctive characteristic length scales. The hierarchical Pd mesh shows not only high transparency over 90% but also superior sensing performance in terms of response and recovery time owing to enhanced Pd-to-hydride ratio and short H2 diffusion lengths from the enlarged active surface areas. The hierarchical morphology also endows high mechanical flexibility while securing reliable sensing performance even under severe mechanical deformation cycles. Our scalable self-assembly based multiscale nanopatterning offers an intriguing generalized platform for many different multifunctional devices requiring hidden in situ monitoring of environmental signals.
Collapse
Affiliation(s)
- Geon Gug Yang
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advance Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | | | - Hee Jae Choi
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advance Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | | | - Kyu Hyo Han
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advance Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jang Hwan Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advance Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Min Hyuk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advance Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | | | - Hyeon Min Jin
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea
| | | | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advance Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
22
|
Liquid Phase Infiltration of Block Copolymers. Polymers (Basel) 2022; 14:polym14204317. [PMID: 36297895 PMCID: PMC9612101 DOI: 10.3390/polym14204317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
Novel materials with defined composition and structures at the nanoscale are increasingly desired in several research fields spanning a wide range of applications. The development of new approaches of synthesis that provide such control is therefore required in order to relate the material properties to its functionalities. Self-assembling materials such as block copolymers (BCPs), in combination with liquid phase infiltration (LPI) processes, represent an ideal strategy for the synthesis of inorganic materials into even more complex and functional features. This review provides an overview of the mechanism involved in the LPI, outlining the role of the different polymer infiltration parameters on the resulting material properties. We report newly developed methodologies that extend the LPI to the realisation of multicomponent and 3D inorganic nanostructures. Finally, the recently reported implementation of LPI into different applications such as photonics, plasmonics and electronics are highlighted.
Collapse
|
23
|
Lai H, Zhang X, Huang G, Liu Y, Li W, Ji S. Directed self-assembly of poly(styrene-b-vinyl acetate) block copolymers on chemical patterns for sub-10 nm nanopatterning via thermal annealing. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Ji C, Zhang Z, Omotosho KD, Berman D, Lee B, Divan R, Guha S, Shevchenko EV. Porous but Mechanically Robust All-Inorganic Antireflective Coatings Synthesized using Polymers of Intrinsic Microporosity. ACS NANO 2022; 16:14754-14764. [PMID: 36049118 DOI: 10.1021/acsnano.2c05592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Here, we introduce polymer of intrinsic microporosity 1 (PIM-1) to design single-layer and multilayered all-inorganic antireflective coatings (ARCs) with excellent mechanical properties. Using PIM-1 as a template in sequential infiltration synthesis (SIS), we can fabricate highly uniform, mechanically stable conformal coatings of AlOx with porosities of ∼50% and a refractive index of 1.41 compared to 1.76 for nonporous AlOx that is perfectly suited for substrates commonly used in high-end optical systems or touch screens (e.g., sapphire, conductive glass, bendable glass, etc.). We show that such films can be used as a single-layer ARC capable of reduction of the Fresnel reflections of sapphire to as low as 0.1% at 500 nm being deposited only on one side of the substrate. We also demonstrate that deposition of the second layer with higher porosity using block copolymers enables the design of graded-index double-layered coatings. AlOx structures with just two layers and a total thickness of less than 200 nm are capable of reduction of Fresnel reflections under normal illumination to below 0.5% in a broad spectral range with 0.1% reflection at 700 nm. Additionally, and most importantly, we show that highly porous single-layer and graded-index double-layered ARCs are characterized by high hardness and scratch resistivity. The hardness and the maximum reached load were 7.5 GPa and 13 mN with a scratch depth of about 130 nm, respectively, that is very promising for the structures consisting of two porous AlOx layers with 50% and 85% porosities, correspondingly. Such mechanical properties of coatings can also allow their application as protective layers for other optical coatings.
Collapse
Affiliation(s)
- Cheng Ji
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Zhongbo Zhang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- The Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Khalil D Omotosho
- Materials Science and Engineering Department and Advanced Materials and Manufacturing Processes Institute, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| | - Diana Berman
- Materials Science and Engineering Department and Advanced Materials and Manufacturing Processes Institute, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| | - Byeongdu Lee
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Ralu Divan
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Supratik Guha
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Elena V Shevchenko
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
25
|
Esmeraldo Paiva A, Baez Vasquez JF, Selkirk A, Prochukhan N, G L Medeiros Borsagli F, Morris M. Highly Ordered Porous Inorganic Structures via Block Copolymer Lithography: An Application of the Versatile and Selective Infiltration of the "Inverse" P2VP- b-PS System. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35265-35275. [PMID: 35876355 DOI: 10.1021/acsami.2c10338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A facile and versatile strategy was developed to produce highly ordered porous metal oxide structures via block copolymer (BCP) lithography. Phase separation of poly(2-vinylpyridine)-b-polystyrene (P2VP-b-PS) was induced by solvent vapor annealing in a nonselective solvent environment to fabricate cylindrical arrays. In this work, we thoroughly analyzed the effects of the film thickness, solvent annealing time, and temperature on the ordering of a P2VP-majority system for the first time, resulting in "inverse" structures. Reflectometry, atomic force microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy were used to characterize the formation of the highly ordered BCP morphology and the subsequently produced metal oxide film. At 40 min solvent annealing time, hexagonally close packed structures were produced with cylinder diameters ∼40 nm. Subsequently, the BCP films were infiltrated with different metal cations. Metal ions (Cr, Fe, Ni, and Ga) selectively infiltrated the P2VP domain, while the PS did not retain any detectable amount of metal precursor. This gave rise to a metal oxide porous structure after a UV/ozone (UVO) treatment. The results showed that the metal oxide structures demonstrated high fidelity compared to the BCP template and cylindrical domains presented a similar size to the previous PS structure. Moreover, XPS analyses revealed the complete elimination of the BCP template and confirmed the presence of the metal oxides. These metal oxides were used as hard masks for pattern transfer via dry etching as a further application. Silicon nanopores were fabricated mimicking the BCP template and demonstrated a pore depth of ∼50 nm. Ultimately, this strategy can be applied to create different inorganic nanostructures for a diverse range of applications, for example, solar cells, diodes, and integrated circuits. Furthermore, by optimizing the etching parameters, deeper structures can be obtained via ICP/RIE processes, leading to many potential applications.
Collapse
Affiliation(s)
- Aislan Esmeraldo Paiva
- AMBER Research Centre/School of Chemistry, Trinity College Dublin, Dublin D02W085, Ireland
| | | | - Andrew Selkirk
- AMBER Research Centre/School of Chemistry, Trinity College Dublin, Dublin D02W085, Ireland
| | - Nadezda Prochukhan
- AMBER Research Centre/School of Chemistry, Trinity College Dublin, Dublin D02W085, Ireland
| | - Fernanda G L Medeiros Borsagli
- Institute of Engineering, Science and Technology, Universidade Federal dos Vales do Jequitinhonha e Mucuri/UFVJM, Av. 01, 4050, Janaúba, MG 39440-039, Brazil
| | - Michael Morris
- AMBER Research Centre/School of Chemistry, Trinity College Dublin, Dublin D02W085, Ireland
| |
Collapse
|
26
|
Sun W, Shen X, Liu J, Wu Z, Chen H. Preparing Well-Defined Polyacrylamide-b-Polycarbonate by Integrating Photoiniferter Polymerization and TBD-Catalyzed ROP. Macromol Rapid Commun 2022; 43:e2200376. [PMID: 35726483 DOI: 10.1002/marc.202200376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/09/2022] [Indexed: 11/07/2022]
Abstract
The dual-initiator technique allows the polymerization of different monomers from orthogonal polymerization mechanisms to obtain block copolymers (BCPs). In this study, it is attempted to combine photoiniferter living free radical polymerization and organocatalytic ring-opening polymerization (ROP) to design a hydroxyl-functionalized carbamodithioate, i.e., 4-(hydroxymethyl)benzyl diethylcarbamodithioate (HBDC), which can integrate photoiniferter polymerization of acrylamide monomers and ROP of cyclic carbonates. As a proof of concept, the monomer applicability is further extended to acrylates and lactones. The results confirm that the two polymerization systems are experimentally compatible in a stepwise sequence as well as in a simultaneous one-pot process to synthesize BCPs. It is reasonable to assume that HBDC can allow for simple and efficient one-pot access to well-defined BCPs from a larger range of monomers, which is more advantageous from the operational, economical, and environmental points of view.
Collapse
Affiliation(s)
- Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Xiang Shen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jingrui Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Zhaoqiang Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
27
|
Singh A, Shi A, Claridge SA. Nanometer-scale patterning of hard and soft interfaces: from photolithography to molecular-scale design. Chem Commun (Camb) 2022; 58:13059-13070. [DOI: 10.1039/d2cc05221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Many areas of modern materials chemistry, from nanoscale electronics to regenerative medicine, require design of precisely-controlled chemical environments at near-molecular scales on both hard and soft surfaces.
Collapse
Affiliation(s)
- Anamika Singh
- Purdue University, Chemistry, West Lafayette, Indiana, USA
| | - Anni Shi
- Purdue University, Chemistry, West Lafayette, Indiana, USA
| | - Shelley A. Claridge
- Purdue University, Chemistry and Biomedical Engineering, 560 Oval Drive, West Lafayette, Indiana, USA
| |
Collapse
|