1
|
Ghosh S, Distaffen HE, Jones CW, Nilsson BL. Multicomponent supramolecular hydrogels composed of cationic phenylalanine derivatives and anionic amino acids. Faraday Discuss 2025. [PMID: 40396378 DOI: 10.1039/d4fd00198b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Supramolecular hydrogels composed of self-assembled fluorenylmethoxycarbonyl phenylalanine (Fmoc-Phe) derivatives have been the focus of intense study as novel materials for biological applications that include drug delivery, tissue engineering, and regenerative medicine. Cationic Fmoc-Phe derivatives functionalized with diaminopropane (Fmoc-Phe-DAP) have been shown to undergo self-assembly and hydrogelation upon an increase in solution ionic strength by the addition of inorganic salts that provide cation-shielding counterions. Further, the identity of the inorganic salts modifies the assembly morphology and emergent viscoelastic properties of the resulting materials. Herein, we report multicomponent hydrogels composed of Fmoc-Phe-DAP derivatives in which hydrogelation is promoted by the addition of anionic amino acids, monosodium aspartate or monosodium glutamate. Aspartate and glutamate salts both support supramolecular gelation of Fmoc-Phe-DAP derivatives, although only the glutamate gels remain stable over periods longer than one hour. The assemblies formed by Fmoc-Phe-DAP derivatives in the presence of aspartate and glutamate are morphologically distinct relative to those formed in the presence of sodium chloride. The viscoelastic properties of stable glutamate/Fmoc-Phe-DAP derivative hydrogels are sensitive to the ratios of glutamate to Fmoc-Phe-DAP derivative, with increased concentrations of glutamate corresponding to higher viscoelastic strength. These multicomponent systems demonstrate that comixing unfunctionalized amino acids with self-assembling Fmoc-Phe-DAP derivatives is yet another effective method to modify the emergent properties of the resulting materials.
Collapse
Affiliation(s)
- Shruti Ghosh
- Department of Chemistry, University of Rochester, Rochester, NY, 14627-0216, USA.
| | - Hannah E Distaffen
- Department of Chemistry, University of Rochester, Rochester, NY, 14627-0216, USA.
| | - Christopher W Jones
- Department of Chemistry, University of Rochester, Rochester, NY, 14627-0216, USA.
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, NY, 14627-0216, USA.
- Materials Science Program, University of Rochester, Rochester, NY 14627-0166, USA
| |
Collapse
|
2
|
Nazari M, Taremi S, Elahi R, Mostanadi P, Esmeilzadeh A. Therapeutic Properties of M2 Macrophages in Chronic Wounds: An Innovative Area of Biomaterial-Assisted M2 Macrophage Targeted Therapy. Stem Cell Rev Rep 2025; 21:390-422. [PMID: 39556244 DOI: 10.1007/s12015-024-10806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Wound healing is a dynamic, multi-stage process essential for restoring skin integrity. Dysregulated wound healing is often linked to impaired macrophage function, particularly in individuals with chronic underlying conditions. Macrophages, as key regulators of wound healing, exhibit significant phenotypic diversity, ranging from the pro-healing M2 phenotype to the pro-inflammatory M1 phenotype. Imbalances in the M1/M2 ratio or hyperactivation of the M1 phenotype can delay the normal healing. Consequently, strategies aimed at suppressing the M1 phenotype or promoting the shift of local skin macrophages toward the M2 phenotype can potentially treat chronic non-healing wounds. This manuscript provides an overview of macrophages' role in normal and pathological wound-healing processes. It examines various therapeutic approaches targeting M2 macrophages, such as ex vivo-activated macrophage therapy, immunopharmacological strategies, and biomaterial-directed macrophage polarization. However, it also highlights that M2 macrophage therapies and immunopharmacological interventions may have drawbacks, including rapid phenotypic changes, adverse effects on other skin cells, biotoxicity, and concerns related to biocompatibility, stability, and drug degradation. Therefore, there is a need for more targeted macrophage-based therapies that ensure optimal biosafety, allowing for effective reprogramming of dysregulated macrophages and improved therapeutic outcomes. Recent advances in nano-biomaterials have demonstrated promising regenerative potential compared to traditional treatments. This review discusses the progress of biomaterial-assisted macrophage targeting in chronic wound repair and addresses the challenges faced in its clinical application. Additionally, it explores novel design concepts for combinational therapies, such as incorporating regenerative particles like exosomes into dressing materials or encapsulating them in microneedling systems to enhance wound healing rates.
Collapse
Affiliation(s)
- Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Siavash Taremi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parsa Mostanadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
3
|
Peñas-Núñez S, Mecerreyes D, Criado-Gonzalez M. Recent Advances and Developments in Injectable Conductive Polymer Gels for Bioelectronics. ACS APPLIED BIO MATERIALS 2024; 7:7944-7964. [PMID: 38364213 PMCID: PMC11653406 DOI: 10.1021/acsabm.3c01224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Soft matter bioelectronics represents an emerging and interdisciplinary research frontier aiming to harness the synergy between biology and electronics for advanced diagnostic and healthcare applications. In this context, a whole family of soft gels have been recently developed with self-healing ability and tunable biological mimetic features to act as a tissue-like space bridging the interface between the electronic device and dynamic biological fluids and body tissues. This review article provides a comprehensive overview of electroactive polymer gels, formed by noncovalent intermolecular interactions and dynamic covalent bonds, as injectable electroactive gels, covering their synthesis, characterization, and applications. First, hydrogels crafted from conducting polymers (poly(3,4-ethylene-dioxythiophene) (PEDOT), polyaniline (PANi), and polypyrrole (PPy))-based networks which are connected through physical interactions (e.g., hydrogen bonding, π-π stacking, hydrophobic interactions) or dynamic covalent bonds (e.g., imine bonds, Schiff-base, borate ester bonds) are addressed. Injectable hydrogels involving hybrid networks of polymers with conductive nanomaterials (i.e., graphene oxide, carbon nanotubes, metallic nanoparticles, etc.) are also discussed. Besides, it also delves into recent advancements in injectable ionic liquid-integrated gels (iongels) and deep eutectic solvent-integrated gels (eutectogels), which present promising avenues for future research. Finally, the current applications and future prospects of injectable electroactive polymer gels in cutting-edge bioelectronic applications ranging from tissue engineering to biosensing are outlined.
Collapse
Affiliation(s)
- Sergio
J. Peñas-Núñez
- POLYMAT,
University of the Basque Country UPV/EHU, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - David Mecerreyes
- POLYMAT,
University of the Basque Country UPV/EHU, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48013 Bilbao, Spain
| | - Miryam Criado-Gonzalez
- POLYMAT,
University of the Basque Country UPV/EHU, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
4
|
Miranda DG, Ramos LDP, Lopes NFDS, Silva NVDHF, Soares CP, Rodrigues FP, Morais VDP, Sani-Taiariol T, Baldan MR, Vasconcellos LMRD, Borges ALS, Grosgogeat B, Gritsch K. Ketoprofen Associated with Hyaluronic Acid Hydrogel for Temporomandibular Disorder Treatment: An In Vitro Study. Gels 2024; 10:811. [PMID: 39727570 DOI: 10.3390/gels10120811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
Temporomandibular disorders (TMD) are a public health problem that affects around 12% of the global population. The treatment is based on analgesics, non-steroidal anti-inflammatory, corticosteroids, anticonvulsants, or arthrocentesis associated with hyaluronic acid-based viscosupplementation. However, the use of hyaluronic acid alone in viscosupplementation does not seem to be enough to regulate the intra-articular inflammatory process. So, we propose to develop and evaluate the physicochemical and biological properties in vitro of hyaluronic acid hydrogels (HA) associated with ketoprofen (KET) as a new therapeutic treatment for TMD. The hydrogels were synthesized with 3% HA and 0.125, 0.250, 0.500, or 1% KET. Physicochemical analyses of Attenuated Total reflectance-Fourier transform infrared spectroscopy (FTIR), Thermogravimetry (TGA), Rheology by Frequency, Amplitude sweeps, temperature ramp, and scanning electron microscopy (SEM) were performed with or without sterilization and cycled. Cytocompatibility and genotoxicity (micronucleus assay) were performed in mouse macrophages (RAW 264-7) for 24 h. Results: FTIR spectrum showed characteristic absorptions of HA and KET. In the TGA, two mass loss peaks were observed, the first representing the water evaporation at 30 and 100 °C, and the second peaks between 200 and 300 °C, indicating the degradation of HA and KET. Rheology tests in the oscillatory regime classified the hydrogels as non-Newtonian fluids, time-dependent, and thixotropic. Mouse macrophages (RAW 264-7) presented viability of 83.6% for HA, 50.7% for KET, and 92.4%, 66.1%, 65.3%, and 87.7% for hydrogels, in addition to the absence of genotoxicity. Conclusions: Hyaluronic acid associated with ketoprofen shows satisfactory physicochemical and biological properties for use as viscosupplementation. As a limiting point of this study, further research is needed to evaluate the pharmacodynamic, toxicological, and pharmacokinetic characteristics of a complete organism.
Collapse
Affiliation(s)
- Diego Garcia Miranda
- Multimaterials and Interfaces Laboratory (LMI), CNRS UMR 5615, University Claude Bernard Lyon 1, University of Lyon, 6 rue Victor Grignard, 69622 Villeurbanne, France
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, Avenida Francisco José Longo 777, São José dos Campos 12245-000, SP, Brazil
- Laboratory "Health Systemic Process" (P2S), UR4129, Faculty of Medicine Laennec, University Claude Bernard Lyon 1, University of Lyon, 7 rue Guillaume Paradin, 69008 Lyon, France
| | - Lucas de Paula Ramos
- Laboratory "Health Systemic Process" (P2S), UR4129, Faculty of Medicine Laennec, University Claude Bernard Lyon 1, University of Lyon, 7 rue Guillaume Paradin, 69008 Lyon, France
- School of Dentistry, Federal University of Alfenas-UNIFAL. R. Gabriel Monteiro da Silva, 700-Centro, Alfenas 37130-001, MG, Brazil
| | - Nicole Fernanda Dos Santos Lopes
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, Avenida Francisco José Longo 777, São José dos Campos 12245-000, SP, Brazil
| | - Nicole Van Der Heijde Fernandes Silva
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, Avenida Francisco José Longo 777, São José dos Campos 12245-000, SP, Brazil
| | - Cristina Pacheco Soares
- Laboratory of Cell Compartement Dynamics, Research and Development Institute, Paraíba Valley University, Avenida Shishima Hifumi 2911, São José dos Campos 12244-010, SP, Brazil
| | - Flavia Pires Rodrigues
- Oral Biology Division, School of Dentistry, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9LU, UK
| | | | - Thalita Sani-Taiariol
- National Space Research Institute, Avenida dos astronautas 1758, São José dos Campos 12227-010, SP, Brazil
| | - Mauricio Ribeiro Baldan
- National Space Research Institute, Avenida dos astronautas 1758, São José dos Campos 12227-010, SP, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, Avenida Francisco José Longo 777, São José dos Campos 12245-000, SP, Brazil
| | - Alexandre Luiz Souto Borges
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, Avenida Francisco José Longo 777, São José dos Campos 12245-000, SP, Brazil
| | - Brigitte Grosgogeat
- Multimaterials and Interfaces Laboratory (LMI), CNRS UMR 5615, University Claude Bernard Lyon 1, University of Lyon, 6 rue Victor Grignard, 69622 Villeurbanne, France
- Dental School, University Claude Bernard Lyon 1, University of Lyon, 7 rue Guillaume Paradin, 69372 Lyon, France
- Service d'Odontologie, Hospices Civils de Lyon, 8 Rue de l'Université, 69007 Lyon, France
| | - Kerstin Gritsch
- Multimaterials and Interfaces Laboratory (LMI), CNRS UMR 5615, University Claude Bernard Lyon 1, University of Lyon, 6 rue Victor Grignard, 69622 Villeurbanne, France
- Dental School, University Claude Bernard Lyon 1, University of Lyon, 7 rue Guillaume Paradin, 69372 Lyon, France
- Service d'Odontologie, Hospices Civils de Lyon, 8 Rue de l'Université, 69007 Lyon, France
| |
Collapse
|
5
|
Liu X, Jiang Q, Yin Y, Liang G. Phe-Phe-Based Macroscopic Supramolecular Hydrogel Construction Strategies and Biomedical Applications. CHEM & BIO ENGINEERING 2024; 1:664-677. [PMID: 39974324 PMCID: PMC11792915 DOI: 10.1021/cbe.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 02/21/2025]
Abstract
Since the phenylalanine (Phe) dipeptide moiety is referred to as an essential structure for building amyloid-β peptide from Alzheimer's disease, its wonderful assembly ability to form nanofibers has been extensively studied. Cross-linked Phe-Phe-based peptide nanofibers can construct networks, thus encapsulating the drugs to form supramolecular hydrogels. Recently, scientists have proposed a variety of Phe-Phe-based macroscopic supramolecular hydrogels and used them in biomedical applications. Therefore, we summarize the construction strategies of Phe-Phe-based macroscopic supramolecular hydrogels and list their represented biomedical applications (e.g., wound healing, eye protection, cancer therapy, etc.) since the birth of Phe-Phe-based supramolecular hydrogels. In addition, we present the perspectives and challenges of Phe-Phe-based macroscopic peptide hydrogels.
Collapse
Affiliation(s)
- Xiaoyang Liu
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering, Southeast
University, 2 Southeast University Road, Nanjing 211189, China
| | - Qiaochu Jiang
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering, Southeast
University, 2 Southeast University Road, Nanjing 211189, China
| | - Yun Yin
- Collaborative
Innovation Center of Tumor Marker Detection Technology, Equipment
and Diagnosis Therapy Integration in Universities of Shandong, Shandong
Province Key Laboratory of Detection Technology for Tumor Makers,
School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Gaolin Liang
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering, Southeast
University, 2 Southeast University Road, Nanjing 211189, China
- Handan
Norman Technology Company, Limited, Guantao 057750, China
| |
Collapse
|
6
|
Regato-Herbella M, Mantione D, Blachman A, Gallastegui A, Calabrese GC, Moya SE, Mecerreyes D, Criado-Gonzalez M. Multiresponsive 4D Printable Hydrogels with Anti-Inflammatory Properties. ACS Macro Lett 2024; 13:1119-1126. [PMID: 39140782 PMCID: PMC11411719 DOI: 10.1021/acsmacrolett.4c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Multiresponsive hydrogels are valuable as biomaterials due to their ability to respond to multiple biologically relevant stimuli, i.e., temperature, pH, or reactive oxygen species (ROS), which can be present simultaneously in the body. In this work, we synthesize triple-responsive hydrogels through UV light photopolymerization of selected monomer compositions that encompass thermoresponsive N-isopropylacrylamide (NIPAM), pH-responsive methacrylic acid (MAA), and a tailor-made ROS-responsive diacrylate thioether monomer (EG3SA). As a result, smart P[NIPAMx-co-MAAy-co-(EG3SA)z] hydrogels capable of being manufactured by digital light processing (DLP) 4D printing are obtained. The thermo-, pH-, and ROS-response of the hydrogels are studied by swelling tests and rheological measurements at different temperatures (25 and 37 °C), pHs (3, 5, 7.4, and 11), and in the absence or presence of ROS (H2O2). The hydrogels are employed as matrixes for the encapsulation of ketoprofen (KET), an anti-inflammatory drug that shows a tunable release, depending on the hydrogel composition and stimuli applied. The cytotoxicity properties of the hydrogels are tested in vitro with mouse embryonic fibroblasts (NIH 3T3) and RAW 264.7 murine macrophage (RAW) cells. Finally, the anti-inflammatory properties are assessed, and the results exhibit a ≈70% nitric oxide reduction up to base values of pro-inflammatory RAW cells, which highlights the anti-inflammatory capacity of P[NIPAM80-co-MAA15-co-(EG3SA)5] hydrogels, per se, without being necessary to encapsulate an anti-inflammatory drug within their network. It opens the route for the fabrication of customizable 4D printable scaffolds for the effective treatment of inflammatory pathologies.
Collapse
Affiliation(s)
- Maria Regato-Herbella
- POLYMAT
University of the Basque Country UPV/EHU, Joxe Mari Korta Center. Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance
(BRTA). Paseo de Miramón 194, 20014, Donostia-San Sebastián,
Spain
| | - Daniele Mantione
- POLYMAT
University of the Basque Country UPV/EHU, Joxe Mari Korta Center. Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48013 Bilbao, Spain
| | - Agustín Blachman
- Universidad
de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento
de Ciencias Biológicas, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Buenos Aires C1053ABH, Argentina
| | - Antonela Gallastegui
- POLYMAT
University of the Basque Country UPV/EHU, Joxe Mari Korta Center. Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain
| | - Graciela C. Calabrese
- Universidad
de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento
de Ciencias Biológicas, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Buenos Aires C1053ABH, Argentina
| | - Sergio E. Moya
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance
(BRTA). Paseo de Miramón 194, 20014, Donostia-San Sebastián,
Spain
| | - David Mecerreyes
- POLYMAT
University of the Basque Country UPV/EHU, Joxe Mari Korta Center. Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48013 Bilbao, Spain
| | - Miryam Criado-Gonzalez
- POLYMAT
University of the Basque Country UPV/EHU, Joxe Mari Korta Center. Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain
| |
Collapse
|
7
|
Criado-Gonzalez M, Peñas MI, Barbault F, Müller AJ, Boulmedais F, Hernández R. Salt-induced Fmoc-tripeptide supramolecular hydrogels: a combined experimental and computational study of the self-assembly. NANOSCALE 2024; 16:9887-9898. [PMID: 38683577 DOI: 10.1039/d4nr00335g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Delving into the mechanism behind the molecular interactions at the atomic level of short-sequence peptides plays a key role in the development of nanomaterials with specific structure-property-function relationships from a bottom-up perspective. Due to their poor water solubility, the self-assembly of Fmoc-bearing peptides is usually induced by dissolution in an organic solvent, followed by a dilution step in water, pH changes, and/or a heating-cooling process. Herein, we report a straightforward methodology for the gelation of Fmoc-FFpY (F: phenylalanine; Y: tyrosine; and p: PO42-), a negatively charged tripeptide, in NaCl solution. The electrostatic interactions between Fmoc-FFpY and Na+ ions give rise to different nanofibrillar hydrogels with rheological properties and nanofiber sizes modulated by the NaCl concentration in pure aqueous media. Initiated by the electrostatic interactions between the peptide phosphate groups and the Na+ ions, the peptide self-assembly is stabilized thanks to hydrogen bonds between the peptide backbones and the π-π stacking of aromatic Fmoc and phenyl units. The hydrogels showed self-healing and thermo-responsive properties for potential biomedical applications. Molecular dynamics simulations from systems devoid of prior training not only confirm the aggregation of peptides at a critical salt concentration and the different interactions involved, but also corroborate the secondary structure of the hydrogels at the microsecond timescale. It is worth highlighting the remarkable achievement of reproducing the morphological behavior of the hydrogels using atomistic simulations. To our knowledge, this study is the first to report such a correspondence.
Collapse
Affiliation(s)
- Miryam Criado-Gonzalez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), 28006 Madrid, Spain.
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Mario Iván Peñas
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), 28006 Madrid, Spain.
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | | | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR 22), 67034 Strasbourg, France
| | - Rebeca Hernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), 28006 Madrid, Spain.
| |
Collapse
|
8
|
Regato-Herbella M, Morhenn I, Mantione D, Pascuzzi G, Gallastegui A, Caribé dos Santos Valle AB, Moya SE, Criado-Gonzalez M, Mecerreyes D. ROS-Responsive 4D Printable Acrylic Thioether-Based Hydrogels for Smart Drug Release. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1262-1272. [PMID: 38370279 PMCID: PMC10870821 DOI: 10.1021/acs.chemmater.3c02264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 02/20/2024]
Abstract
Reactive oxygen species (ROS) play a key role in several biological functions like regulating cell survival and signaling; however, their effect can range from beneficial to nondesirable oxidative stress when they are overproduced causing inflammation or cancer diseases. Thus, the design of tailor-made ROS-responsive polymers offers the possibility of engineering hydrogels for target therapies. In this work, we developed thioether-based ROS-responsive difunctional monomers from ethylene glycol/thioether acrylate (EGnSA) with different lengths of the EGn chain (n = 1, 2, 3) by the thiol-Michael addition click reaction. The presence of acrylate groups allowed their photopolymerization by UV light, while the thioether groups conferred ROS-responsive properties. As a result, smart PEGnSA hydrogels were obtained, which could be processed by four-dimensional (4D) printing. The mechanical properties of the hydrogels were determined by rheology, pointing out a decrease of the elastic modulus (G') with the length of the EG segment. To enhance the stability of the hydrogels after swelling, the EGnSA monomers were copolymerized with a polar monomer, 2-hydroxyethyl acrylate (HEA), leading to P[(EGnSA)x-co-HEAy] with improved compatibility in aqueous media, making it a less brittle material. Swelling properties of the hydrogels increased in the presence of hydrogen peroxide, a kind of ROS, reaching values of ≈130% for P[(EG3SA)7-co-HEA93] which confirms the stimuli-responsive properties. Then, the P[(EG3SA)x-co-HEAy] hydrogels were employed as matrixes for the encapsulation of a chemotherapeutic drug, 5-fluorouracil (5FU), which showed sustained release over time modulated by the presence of H2O2. Finally, the effect of the 5-FU release from P[(EG3SA)x-co-HEAy] hydrogels was tested in vitro with melanoma cancer cells B16F10, pointing out B16F10 growth inhibition values in the range of 40-60% modulated by the EG3SA percentage and the presence or absence of ROS agents, thus confirming their excellent ROS-responsive properties for the treatment of localized pathologies.
Collapse
Affiliation(s)
- Maria Regato-Herbella
- POLYMAT
University of the Basque Country UPV/EHU, Joxe Mari Korta Center. Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014Donostia-San Sebastián, Spain
| | - Isabel Morhenn
- POLYMAT
University of the Basque Country UPV/EHU, Joxe Mari Korta Center. Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Daniele Mantione
- POLYMAT
University of the Basque Country UPV/EHU, Joxe Mari Korta Center. Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48013 Bilbao, Spain
| | - Giuseppe Pascuzzi
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano ,Italy
| | - Antonela Gallastegui
- POLYMAT
University of the Basque Country UPV/EHU, Joxe Mari Korta Center. Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Ana Beatriz Caribé dos Santos Valle
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014Donostia-San Sebastián, Spain
| | - Sergio E. Moya
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014Donostia-San Sebastián, Spain
| | - Miryam Criado-Gonzalez
- POLYMAT
University of the Basque Country UPV/EHU, Joxe Mari Korta Center. Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - David Mecerreyes
- POLYMAT
University of the Basque Country UPV/EHU, Joxe Mari Korta Center. Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
9
|
Sari MHM, Cobre ADF, Pontarolo R, Ferreira LM. Status and Future Scope of Soft Nanoparticles-Based Hydrogel in Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15030874. [PMID: 36986736 PMCID: PMC10057168 DOI: 10.3390/pharmaceutics15030874] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Wounds are alterations in skin integrity resulting from any type of trauma. The healing process is complex, involving inflammation and reactive oxygen species formation. Therapeutic approaches for the wound healing process are diverse, associating dressings and topical pharmacological agents with antiseptics, anti-inflammatory, and antibacterial actions. Effective treatment must maintain occlusion and moisture in the wound site, suitable capacity for the absorption of exudates, gas exchange, and the release of bioactives, thus stimulating healing. However, conventional treatments have some limitations regarding the technological properties of formulations, such as sensory characteristics, ease of application, residence time, and low active penetration in the skin. Particularly, the available treatments may have low efficacy, unsatisfactory hemostatic performance, prolonged duration, and adverse effects. In this sense, there is significant growth in research focusing on improving the treatment of wounds. Thus, soft nanoparticles-based hydrogels emerge as promising alternatives to accelerate the healing process due to their improved rheological characteristics, increased occlusion and bioadhesiveness, greater skin permeation, controlled drug release, and a more pleasant sensory aspect in comparison to conventional forms. Soft nanoparticles are based on organic material from a natural or synthetic source and include liposomes, micelles, nanoemulsions, and polymeric nanoparticles. This scoping review describes and discusses the main advantages of soft nanoparticle-based hydrogels in the wound healing process. Herein, a state-of-the-art is presented by addressing general aspects of the healing process, current status and limitations of non-encapsulated drug-based hydrogels, and hydrogels formed by different polymers containing soft nanostructures for wound healing. Collectively, the presence of soft nanoparticles improved the performance of natural and synthetic bioactive compounds in hydrogels employed for wound healing, demonstrating the scientific advances obtained so far.
Collapse
Affiliation(s)
| | - Alexandre de Fátima Cobre
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba 80210-170, Brazil
| | - Roberto Pontarolo
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba 80210-170, Brazil
- Pharmacy Department, Federal University of Paraná, Curitiba 80210-170, Brazil
| | - Luana Mota Ferreira
- Pharmacy Department, Federal University of Paraná, Curitiba 80210-170, Brazil
- Correspondence: ; Tel.: +55-41-3360-4095
| |
Collapse
|
10
|
Abraham B, Agredo P, Mensah SG, Nilsson BL. Anion Effects on the Supramolecular Self-Assembly of Cationic Phenylalanine Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15494-15505. [PMID: 36473193 PMCID: PMC9776537 DOI: 10.1021/acs.langmuir.2c01394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Supramolecular hydrogels have emerged as a class of promising biomaterials for applications such as drug delivery and tissue engineering. Self-assembling peptides have been well studied for such applications, but low molecular weight (LMW) amino acid-derived gelators have attracted interest as low-cost alternatives with similar emergent properties. Fluorenylmethyloxycarbonyl-phenylalanine (Fmoc-Phe) is one such privileged motif often chosen due to its inherent self-assembly potential. Previously, we developed cationic Fmoc-Phe-DAP gelators that assemble into hydrogel networks in aqueous NaCl solutions of sufficient ionic strength. The chloride anions in these solutions screen the cationic charge of the gelators to enable self-assembly to occur. Herein, we report the effects of varying the anions of sodium salts on the gelation potential, nanoscale morphology, and hydrogel viscoelastic properties of Fmoc-Phe-DAP and two of its fluorinated derivatives, Fmoc-3F-Phe-DAP and Fmoc-F5-Phe-DAP. It was observed that both the anion identity and gelator structure had a significant impact on the self-assembly and gelation properties of these derivatives. Changing the anion identity resulted in significant polymorphism of the nanoscale morphology of the assembled states that was dependent on the chemical structure of the gelator. The emergent viscoelastic character of the hydrogel networks was also found to be reliant on the anion identity and gelator structure. These results demonstrate the complex interplay between the gelator and environment that have a profound and often unpredictable impact on both self-assembly properties and emergent viscoelasticity in supramolecular hydrogels formed by LMW compounds. This work also illustrates the current lack of understanding that limits the rational design of potential biomaterials that will be in contact with complex biological fluids and provides motivation for additional research to correlate the chemical structure of LMW gelators with the structure and emergent properties of the resulting supramolecular assemblies as a function of environment.
Collapse
Affiliation(s)
- Brittany
L. Abraham
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Pamela Agredo
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Samantha G. Mensah
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Bradley L. Nilsson
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
- Materials
Science Program, University of Rochester, Rochester, New York 14627-0166, United States
| |
Collapse
|
11
|
Joorabloo A, Liu T. Recent advances in nanomedicines for regulation of macrophages in wound healing. J Nanobiotechnology 2022; 20:407. [PMID: 36085212 PMCID: PMC9463766 DOI: 10.1186/s12951-022-01616-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Macrophages are essential immune cells and play a major role in the immune response as pro-inflammatory or anti-inflammatory agents depending on their plasticity and functions. Infiltration and activation of macrophages are usually involved in wound healing. Herein, we first described macrophage polarization and their critical functions in wound healing process. It is addressed how macrophages collaborate with other immune cells in the wound microenvironment. Targeting macrophages by manipulating or re-educating macrophages in inflammation using nanomedicines is a novel and feasible strategy for wound management. We discussed the design and physicochemical properties of nanomaterials and their functions for macrophages activation and anti-inflammatory signaling during wound therapy. The mechanism of action of the strategies and appropriate examples are also summarized to highlight the pros and cons of those approaches. Finally, the potential of nanomedicines to modulate macrophage polarization for skin regeneration is discussed.
Collapse
Affiliation(s)
- Alireza Joorabloo
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia.
| |
Collapse
|
12
|
Du H, Wang L, Lu K, Pan B, Liu J. YAFAF-Based Hydrogel: Characterization, Mechanism, and Factors Influencing Micro-organization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10669-10679. [PMID: 35976795 DOI: 10.1021/acs.jafc.2c04505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The YAFAF-based hydrogel was a three-dimensional network cross-linked by grooved fiber bundles. The fiber bundles were formed by entanglement of fibrils with a diameter of 2 nm, and the surface of the fibrils also presented grooves. Spectroscopic analysis revealed that the main secondary structures were β-sheets and β-turns, which led to the grooved feature of fibrils. In comparison of the nuclear magnetic resonance spectra of peptide solutions at 313 and 277 K, the nuclear Overhauser effects can be clearly observed, indicating that hydrogen-bondings and π-π stacking interactions play important roles in self-assembly. The micro-organization of the self-assemblies was affected by the ratio of solvents (xA) remarkably. Unexpectedly, xA of 0.05 produced hollow spherical aggregates. The result of these investigations on the mechanism and organization of the YAFAF-based hydrogel can contribute to the development of strategies using hydrogels in the food industry.
Collapse
Affiliation(s)
- Heng Du
- Food Science and Technology, College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Lan Wang
- Peptides Chemistry, School of Chemical Engineering and Food Science, Zhengzhou University of Technology, 18 Yingcai Road, Zhengzhou, Henan 450044, People's Republic of China
| | - Kui Lu
- Peptides Chemistry, School of Chemical Engineering and Food Science, Zhengzhou University of Technology, 18 Yingcai Road, Zhengzhou, Henan 450044, People's Republic of China
| | - Boyuan Pan
- Peptides Chemistry, School of Chemistry and Chemical Engineering, Henan University of Technology, 100 Lianhua Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Jun Liu
- Chemical Analysis, College of Food Science and Engineering, Institute of Grain and Oil Standardization, Henan University of Technology, 100 Lianhua Road, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
13
|
Impresari E, Bossi A, Lumina EM, Ortenzi MA, Kothuis JM, Cappelletti G, Maggioni D, Christodoulou MS, Bucci R, Pellegrino S. Fatty Acids/Tetraphenylethylene Conjugates: Hybrid AIEgens for the Preparation of Peptide-Based Supramolecular Gels. Front Chem 2022; 10:927563. [PMID: 36003614 PMCID: PMC9393247 DOI: 10.3389/fchem.2022.927563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Aggregation-induced emissive materials are gaining particular attention in the last decades due to their wide application in different fields, from optical devices to biomedicine. In this work, compounds having these kinds of properties, composed of tetraphenylethylene scaffold combined with fatty acids of different lengths, were synthesized and characterized. These molecules were found able to self-assemble into different supramolecular emissive structures depending on the chemical composition and water content. Furthermore, they were used as N-terminus capping agents in the development of peptide-based materials. The functionalization of a 5-mer laminin-derived peptide led to the obtainment of luminescent fibrillary materials that were not cytotoxic and were able to form supramolecular gels in aqueous environment.
Collapse
Affiliation(s)
- Elisa Impresari
- DISFARM, Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Milan, Italy
| | - Alberto Bossi
- Istituto di Scienze e Tecnologie Chimiche “G.Natta”, Consiglio Nazionale delle Ricerche (CNR-SCITEC), Milan, Italy
- SmartMatLab Center, Milan, Italy
| | - Edoardo Mario Lumina
- DISFARM, Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Milan, Italy
| | - Marco Aldo Ortenzi
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | | | | | - Daniela Maggioni
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Michael S. Christodoulou
- Departiment of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Raffaella Bucci
- DISFARM, Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Milan, Italy
| | - Sara Pellegrino
- DISFARM, Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
14
|
Hernández-Sosa A, Ramírez-Jiménez RA, Rojo L, Boulmedais F, Aguilar MR, Criado-Gonzalez M, Hernández R. Optimization of the Rheological Properties of Self-Assembled Tripeptide/Alginate/Cellulose Hydrogels for 3D Printing. Polymers (Basel) 2022; 14:polym14112229. [PMID: 35683902 PMCID: PMC9182594 DOI: 10.3390/polym14112229] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
3D printing is an emerging and powerful technique to create shape-defined three-dimensional structures for tissue engineering applications. Herein, different alginate-cellulose formulations were optimized to be used as printable inks. Alginate (Alg) was chosen as the main component of the scaffold due to its tunable mechanical properties, rapid gelation, and non-toxicity, whereas microcrystalline cellulose (MCC) was added to the hydrogel to modulate its mechanical properties for printing. Additionally, Fmoc-FFY (Fmoc: 9-fluorenylmethoxycarbonyl; F: phenylalanine; Y: tyrosine), a self-assembled peptide that promotes cell adhesion was incorporated into the ink without modifying its rheological properties and shear-thinning behavior. Then, 3D-printed scaffolds made of Alg, 40% of MCC inks and Fmoc-FFY peptide were characterized by scanning electron microscopy and infrared spectroscopy, confirming the morphological microstructure of the hydrogel scaffolds with edged particles of MCC homogeneously distributed within the alginate matrix and the self-assembly of the peptide in a β-sheet conformation. Finally, the cytocompatibility of the scaffolds was tested in contact with the MG63 osteosarcoma cells, confirming the absence of cytotoxic components that may compromise their viability. Interestingly, MG63 cell growth was retarded in the scaffolds containing the peptide, but cells were more likely to promote adhesive interactions with the material rather than with the other cells, indicating the benefits of the peptide in promoting biological functionality to alginate-based biomaterials.
Collapse
Affiliation(s)
- Alejandro Hernández-Sosa
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, c/Juan de la Cierva, 3, 28006 Madrid, Spain; (A.H.-S.); (R.A.R.-J.); (M.R.A.)
| | - Rosa Ana Ramírez-Jiménez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, c/Juan de la Cierva, 3, 28006 Madrid, Spain; (A.H.-S.); (R.A.R.-J.); (M.R.A.)
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, c/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, c/Juan de la Cierva, 3, 28006 Madrid, Spain; (A.H.-S.); (R.A.R.-J.); (M.R.A.)
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, c/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
- Correspondence: (L.R.); (M.C.-G.); (R.H.)
| | - Fouzia Boulmedais
- Institut Charles Sadron (UPR 22), Université de Strasbourg, CNRS, 23 rue du Loess, BP 84047, CEDEX 2, 67034 Strasbourg, France;
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, c/Juan de la Cierva, 3, 28006 Madrid, Spain; (A.H.-S.); (R.A.R.-J.); (M.R.A.)
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, c/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Miryam Criado-Gonzalez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, c/Juan de la Cierva, 3, 28006 Madrid, Spain; (A.H.-S.); (R.A.R.-J.); (M.R.A.)
- POLYMAT, Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 San Sebastian, Spain
- Correspondence: (L.R.); (M.C.-G.); (R.H.)
| | - Rebeca Hernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, c/Juan de la Cierva, 3, 28006 Madrid, Spain; (A.H.-S.); (R.A.R.-J.); (M.R.A.)
- Correspondence: (L.R.); (M.C.-G.); (R.H.)
| |
Collapse
|
15
|
Criado-Gonzalez M, Mecerreyes D. Thioether-based ROS responsive polymers for biomedical applications. J Mater Chem B 2022; 10:7206-7221. [PMID: 35611805 DOI: 10.1039/d2tb00615d] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) play a key role in several biological functions of living organisms such as regulation of cell signalling, production of some hormones, modulation of protein function or mediation of inflammation. In this regard, ROS responsive polymers are ideal candidates for the development of stimuli-responsive biomaterials for target therapies. Among different ROS-responsive polymers, those containing thioether groups are widely investigated in the biomedical field due to their hydrophobic to hydrophilic phase transition under oxidative conditions. This feature makes them able to self-assemble in aqueous solutions forming micellar-type nanoparticles or hydrogels to be mainly used as drug carriers for local therapies in damaged body areas characterized by high ROS production. This review article collects the main findings about the synthesis of thioether-based ROS responsive polymers and polypeptides, their self-assembly properties and ROS responsive behaviour for use as injectable nanoparticles or hydrogels. Afterward, the foremost applications of the thioether-based ROS responsive nanoparticles and hydrogels in the biomedical field, where cancer therapies are a key objective, will be discussed.
Collapse
Affiliation(s)
- Miryam Criado-Gonzalez
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain. .,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|