1
|
Chen M, Fu GE, Zhao W, Zhang T. Effective Strategies in Covalent Organic Frameworks for Enhanced Photocatalytic Hydrogen Production. Chemistry 2025; 31:e202500100. [PMID: 40041928 DOI: 10.1002/chem.202500100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Hydrogen as a significant green energy source, has emerged as one of the most promising candidates to solve serious environmental and energy problems. Photocatalytic water splitting is a prospective route to sustainable hydrogen production. Covalent organic frameworks (COFs) are considered as efficient photocatalysts due to their substantial specific surface areas, extended π-conjugated backbones, and robust chemical stability. This review summarizes the recent advances of COF-based materials in the field of photocatalytic hydrogen production, including the construction of donor-acceptor (D-A) structure, protonation of the N site, synthesis of zwitterionic COFs, introduction of co-catalysts, use of metal-containing monomers, and compositing COFs with other catalysts. The properties of the catalysts are meticulously adjusted through those structural and system design strategies, thereby significantly enhancing the hydrogen production performance of the COFs. Finally, the challenges and potential opportunities for future developments are discussed in terms of the current research status and practical applications of photocatalytic hydrogen production from COFs.
Collapse
Affiliation(s)
- Mengyao Chen
- Ningbo Institute of Materials Technology &Engineering, Chinese Academy of Sciences, Key Laboratory of Advanced Marine Materials, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guang-En Fu
- Ningbo Institute of Materials Technology &Engineering, Chinese Academy of Sciences, Key Laboratory of Advanced Marine Materials, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenkai Zhao
- Ningbo Institute of Materials Technology &Engineering, Chinese Academy of Sciences, Key Laboratory of Advanced Marine Materials, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tao Zhang
- Ningbo Institute of Materials Technology &Engineering, Chinese Academy of Sciences, Key Laboratory of Advanced Marine Materials, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
2
|
Peng S, Wang R, Yang Y, Wang S, Liang E, Han B, Li J, Yu X, Zhang Q. sp 2 Carbon-Conjugated Covalent Organic Frameworks (sp 2c-COFs): Synthesis and Application in Photocatalytic Water Splitting. Macromol Rapid Commun 2025; 46:e2400967. [PMID: 39923235 DOI: 10.1002/marc.202400967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/12/2025] [Indexed: 02/11/2025]
Abstract
Preparation of irreversible sp2 carbon-conjugated covalent organic frameworks (sp2c-COFs) with specific porosity, easy structural functionalization, high chemical stability, and unique π-electron conjugation structure (especially the combination of π-π stacking interactions and conjugation system), can remove the barrier of electron transfer and provide a unique advantage for photocatalytic water splitting. Herein, based on three kinds of reactions (Aldol condensation reaction, Knoevenagel condensation reaction, and Horner-Wadsworth-Emmons reaction) and guided by the precise modulation of ligand structure and topology, this review summarizes the synthesis of sp2c-COFs and their applications in photoelectrocatalytic water splitting (hydrogen evolution and oxygen evolution reactions). Furthermore, challenges and possible research directions for sp2c-COFs in photocatalytic water splitting are also provided.
Collapse
Affiliation(s)
- Shiqiong Peng
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Renjie Wang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Yao Yang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Shuyan Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - En Liang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Bing Han
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Junbo Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Xianglin Yu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy, City University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
3
|
Bie C, Yang J, Zeng X, Wang Z, Sun X, Yang Z, Yu J, Zhang X. Nanoconfinement Effects in Electrocatalysis and Photocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411184. [PMID: 39989153 PMCID: PMC11962712 DOI: 10.1002/smll.202411184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/22/2025] [Indexed: 02/25/2025]
Abstract
Recently, the enzyme-inspired nanoconfinement effect has garnered significant attention for enhancing the efficiency of electrocatalysts and photocatalysts. Despite substantial progress in these fields, there remains a notable absence of comprehensive and insightful articles providing a clear understanding of nanoconfined catalysts. This review addresses this gap by delving into nanoconfined catalysts for electrocatalytic and photocatalytic energy conversion. Initially, the effect of nanoconfinement on the thermodynamics and kinetics of reactions is explored. Subsequently, the primary and secondary structures of nanoconfined catalysts are categorized, their properties are outlined, and typical methods for their construction are summarized. Furthermore, an overview of the state-of-the-art applications of nanoconfined catalysts is provided, focusing on reactions of hydrogen and oxygen evolution, oxygen reduction, carbon dioxide reduction, hydrogen peroxide production, and nitrogen reduction. Finally, the current challenges and future prospects in nanoconfined catalysts are discussed. This review aims to provide in-depth insights and guidelines to advance the development of electrocatalytic and photocatalytic energy conversion technology by nanoconfined catalysts.
Collapse
Affiliation(s)
- Chuanbiao Bie
- Laboratory of Solar FuelFaculty of Materials Science and ChemistryChina University of Geosciences68 Jincheng StreetWuhan430078P. R. China
- UQ Dow Centre for Sustainable Engineering InnovationSchool of Chemical EngineeringThe University of QueenslandSt LuciaQLD4072Australia
| | - Jindi Yang
- UQ Dow Centre for Sustainable Engineering InnovationSchool of Chemical EngineeringThe University of QueenslandSt LuciaQLD4072Australia
| | - Xiangkang Zeng
- UQ Dow Centre for Sustainable Engineering InnovationSchool of Chemical EngineeringThe University of QueenslandSt LuciaQLD4072Australia
| | - Zhuyuan Wang
- UQ Dow Centre for Sustainable Engineering InnovationSchool of Chemical EngineeringThe University of QueenslandSt LuciaQLD4072Australia
| | - Xin Sun
- UQ Dow Centre for Sustainable Engineering InnovationSchool of Chemical EngineeringThe University of QueenslandSt LuciaQLD4072Australia
| | - Zhe Yang
- UQ Dow Centre for Sustainable Engineering InnovationSchool of Chemical EngineeringThe University of QueenslandSt LuciaQLD4072Australia
| | - Jiaguo Yu
- Laboratory of Solar FuelFaculty of Materials Science and ChemistryChina University of Geosciences68 Jincheng StreetWuhan430078P. R. China
| | - Xiwang Zhang
- UQ Dow Centre for Sustainable Engineering InnovationSchool of Chemical EngineeringThe University of QueenslandSt LuciaQLD4072Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide (GETCO2)The University of QueenslandBrisbaneQLD4072Australia
| |
Collapse
|
4
|
Zhu W, Zhu H, Zhang T, Qin L, Kang SZ, Li X. Surface Engineering of 2D Metal-Porphyrin Metal-Organic Frameworks Z-Scheme Heterostructure for Boosting and Stable Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2408064. [PMID: 39777982 DOI: 10.1002/smll.202408064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/06/2024] [Indexed: 01/11/2025]
Abstract
How to improve the stability and activity of metal-organic frameworks is an attractive but challenging task in energy conversion and pollutant degradation of metal-organic framework materials. In this paper, a facile method is developed by fabricating titanium dioxide nanoparticles (TiO2 NPs) layer on 2D copper tetracarboxylphenyl-metalloporphyrin metal-organic frameworks with zinc ions as the linkers (ZnTCuMT-X, "Zn" represented zinc ions as the linkers, the first "T" represented tetracarboxylphenyl-metalloporphyrin (TCPP), "Cu" represented the Cu2+ coordinated into the porphyrin macrocycle, "M" represented metal-organic frameworks, the second "T" represented TiO2 NPs layer, and "X" represented the added volume of n-tetrabutyl titanate (X = 100, 200, 300 or 400)). It is found that the optimized ZnTCuMT-200 showed greatly and stably enhanced H2 generation, which is ≈28.2 times and 47.0 times as high as those of the original ZnTCuM and TiO2, respectively. Combined with the results of free radical capture, X-ray photoelectron spectra (XPS), electron spin resonance (ESR), and theoretical calculation, a direct Z-scheme electron transfer mechanism is achieved to fully explain the enhanced photocatalytic performance. It demonstrates that facilely designing Z-scheme heterostructures based on porphyrin MOFs modified with an inorganic semiconductor layer can be an advantageous strategy for enhancing the stability and activity of photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Wenjun Zhu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Hu Zhu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Taiyang Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Lixia Qin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Shi-Zhao Kang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Xiangqing Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| |
Collapse
|
5
|
Zhang D, Zhang C, Lai X, Wei X, Zhuang T, Lv Z. Engineering single-atom rhodium-C 3N sites on covalent organic frameworks for boosting photocatalytic hydrogen evolution. J Colloid Interface Sci 2024; 676:691-700. [PMID: 39059276 DOI: 10.1016/j.jcis.2024.07.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Developing efficient and stable photocatalysts for solar hydrogen (H2) energy conversion is meaningful but challenging. Herein, a novel photocatalyst with Rh single atoms (Rh SAs) anchoring in β-ketoimine-linked covalent organic frameworks (TpPa-1) via RhC3N sites is proposed for achieving highly efficient H2 production in phosphate buffer saline (PBS) solution with sodium ascorbate (SA) as sacrificial agent under visible light. TpPa-1 with abundant N and C-chelate sites provides a reliable basis for anchoring Rh single atoms. The optimized Rh SAs/TpPa-1 exhibits an outstanding hydrogen evolution activity (1836.81μmol h-1 g-1), 9.34 and 2.27 folds enhancement than that of pristine TpPa-1 and Rh NPs/TpPa-1. X-ray absorption fine structure (XAFS) combined with density functional theory (DFT) calculations reveal that the significant improvement in H2 evolution performance on Rh SAs/TpPa-1 originates from the unique RhC3N coordination environment, promoting the charge separation and migration at the atomic interface, and thus decreasing the energy barrier for H* formation. Notably, in situ Raman technique confirmed Rh SAs was the main active sites (RhH) for proton reduction.
Collapse
Affiliation(s)
- Delu Zhang
- State Key Laboratory Base for Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chao Zhang
- State Key Laboratory Base for Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Xiaoning Lai
- State Key Laboratory Base for Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiayang Wei
- State Key Laboratory Base for Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tao Zhuang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, Shandong, China
| | - Zhiguo Lv
- State Key Laboratory Base for Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
6
|
Zhu W, Zhu H, Zhang T, Qin L, Kang SZ, Li X. Surface Engineering of 2D Metal-Porphyrin Metal-Organic Frameworks Z-Scheme Heterostructure for Boosting and Stable Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408806. [PMID: 39659046 DOI: 10.1002/smll.202408806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/21/2024] [Indexed: 12/12/2024]
Abstract
How to improve the stability and activity of metal-organic frameworks is an attractive but challenging task in energy conversion and pollutant degradation of metal-organic frameworks materials. In this paper, we developed a facile method by fabricating TiO2 nanoparticles (NPs) layer on 2D copper tetracarboxylphenyl-metalloporphyrin metal-organic frameworks (MOFs) with Zn2+ as the linkers (ZnTCuMT-X, "Zn" represented Zn2+ as the linkers, the first "T" represented tetracarboxylphenyl-metalloporphyrin (TCPP), "Cu" represented the Cu2+ coordinated into the porphyrin macrocycle, "M" represented MOFs, the second "T" represented TiO2 NPs layer, and "X" represented the added volume of n-tetrabutyl titanate (X = 100, 200, 300 or 400)). It was found that the optimized ZnTCuMT-200 showed greatly and stably enhanced H2 generation, which was about 28.2 times and 47.0 times as high as those of the original metalloporphyrin MOFs and TiO2, respectively. Combined with the results of free radical capture, X-ray photoelectron spectra, electron spin resonance and theoretical calculation, a direct Z-scheme electron transfer mechanism was achieved to fully explain the enhanced photocatalytic performance. It demonstrates that facilely designing Z-scheme heterostructures based on porphyrin MOFs modified with inorganic semiconductor layer could be an advantageous strategy for enhancing the stability and activity of photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Wenjun Zhu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Hu Zhu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Taiyang Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Lixia Qin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Shi-Zhao Kang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Xiangqing Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| |
Collapse
|
7
|
Blätte D, Ortmann F, Bein T. Photons, Excitons, and Electrons in Covalent Organic Frameworks. J Am Chem Soc 2024; 146:32161-32205. [PMID: 39556616 PMCID: PMC11613328 DOI: 10.1021/jacs.3c14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
Covalent organic frameworks (COFs) are created by the condensation of molecular building blocks and nodes to form two-dimensional (2D) or three-dimensional (3D) crystalline frameworks. The diversity of molecular building blocks with different properties and functionalities and the large number of possible framework topologies open a vast space of possible well-defined porous architectures. Besides more classical applications of porous materials such as molecular absorption, separation, and catalytic conversions, interest in the optoelectronic properties of COFs has recently increased considerably. The electronic properties of both the molecular building blocks and their linkage chemistry can be controlled to tune photon absorption and emission, to create excitons and charge carriers, and to use these charge carriers in different applications such as photocatalysis, luminescence, chemical sensing, and photovoltaics. In this Perspective, we will discuss the relationship between the structural features of COFs and their optoelectronic properties, starting with the building blocks and their chemical connectivity, layer stacking in 2D COFs, control over defects and morphology including thin film synthesis, exploring the theoretical modeling of structural, electronic, and dynamic features of COFs, and discussing recent intriguing applications with a focus on photocatalysis and photoelectrochemistry. We conclude with some remarks about present challenges and future prospects of this powerful architectural paradigm.
Collapse
Affiliation(s)
- Dominic Blätte
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Frank Ortmann
- Department
of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Thomas Bein
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
8
|
Wang M, Dai H, Yang Q. Catalytic applications of organic-inorganic hybrid porous materials. Chem Commun (Camb) 2024; 60:13325-13335. [PMID: 39444317 DOI: 10.1039/d4cc04284k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Organic-inorganic hybrid porous materials (OIHMs) inherit the unique properties from both organic and inorganic components, and the flexibility in the incorporation of functional groups renders the OIHMs an ideal platform for the construction of catalytic materials with multiple active sites. The preparation of OIHMs with precise locations of organic-inorganic components and tunable structures is one of the important topics for the catalytic application of OIHMs, but it is still very challenging. In this feature article, we describe our work related to the preparation of OIHMs via confining active sites in the nanostructure and a layer-by-layer assembly method and their applications in acid-base catalysis, catalytic hydrogenation and photocatalysis with a focus on the elucidation of the synergistic effects of different active sites and the unique properties of OIHMs in catalysis.
Collapse
Affiliation(s)
- Maodi Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Huicong Dai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Qihua Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
9
|
Zhang X, Wang C, Zhang M, Luo D, Ye S, Weng B. Surface Plasmon Resonance-Mediated Photocatalytic H 2 Generation. CHEMSUSCHEM 2024; 17:e202400513. [PMID: 38772862 DOI: 10.1002/cssc.202400513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
The limited yield of H2 production has posed a significant challenge in contemporary research. To address this issue, researchers have turned to the application of surface plasmon resonance (SPR) materials in photocatalytic H2 generation. SPR, arising from collective electron oscillations, enhances light absorption and facilitates efficient separation and transfer of electron-hole pairs in semiconductor systems, thereby boosting photocatalytic H2 production efficiency. However, existing reviews predominantly focus on SPR noble metals, neglecting non-noble metals and SPR semiconductors. In this review, we begin by elucidating five different SPR mechanisms, covering hot electron injection, electric field enhancement, light scattering, plasmon-induced resonant energy transfer, and photo-thermionic effect, by which SPR enhances photocatalytic activity. Subsequently, a comprehensive overview follows, detailing the application of SPR materials-metals, non-noble metals, and SPR semiconductors-in photocatalytic H2 production. Additionally, a personal perspective is offered on developing highly efficient SPR-based photocatalysis systems for solar-to-H2 conversion in the future. This review aims to guide the development of next-gen SPR-based materials for advancing solar-to-fuel conversion.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Huangpu H2 Energy Innovation Center, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Cong Wang
- Bingtuan Energy Development Institute, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832000, P. R. China
| | - Menglong Zhang
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong 528225, P. R. China
| | - Dongxiang Luo
- Huangpu H2 Energy Innovation Center, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Siyu Ye
- Huangpu H2 Energy Innovation Center, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Bo Weng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Wang M, Lv H, Dong B, He W, Yuan D, Wang X, Wang R. Photoelectron Migration Boosted by Hollow Double-Shell Dyads Based on Covalent Organic Frameworks for Highly Efficient Photocatalytic Hydrogen Generation. Angew Chem Int Ed Engl 2024; 63:e202401969. [PMID: 38372671 DOI: 10.1002/anie.202401969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Photocatalytic hydrogen production based on noble metal-free systems is a promising technology for the conversion of solar energy into green hydrogen, it is pivotal and challenging to tailor-make photocatalysts for achieving high photocatalytic efficiency. Herein, we reported a hollow double-shell dyad through uniformly coating covalent organic frameworks (COFs) on the surface of hollow Co9S8. The double shell architecture enhances the scattering and refraction efficiency of incident light, shortens the transmission distance of the photogenerated charge carriers, and exposes more active sites for photocatalytic conversion. The hydrogen evolution rate is as high as 23.15 mmol g-1 h-1, which is significantly enhanced when compared with that of their physical mixture (0.30 mmol g-1 h-1) and Pt-based counterpart (11.84 mmol g-1 h-1). This work provides a rational approach to the construction of noble-metal-free photocatalytic systems based on COFs to enhance hydrogen evolution performance.
Collapse
Affiliation(s)
- Meiying Wang
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, 300130, Tianjin, China
| | - Haowei Lv
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Beibei Dong
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, 300130, Tianjin, China
| | - Wenhao He
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, 300130, Tianjin, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, Fujian, China
| | - Ruihu Wang
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, 300130, Tianjin, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Yu Y, Zhu Z, Huang H. Surface Engineered Single-atom Systems for Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311148. [PMID: 38197471 DOI: 10.1002/adma.202311148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/17/2023] [Indexed: 01/11/2024]
Abstract
Single-atom catalysts (SACs) are demonstrated to show exceptional reactivity and selectivity in catalytic reactions by effectively utilizing metal species, making them a favorable choice among the different active materials for energy conversion. However, SACs are still in the early stages of energy conversion, and problems like agglomeration and low energy conversion efficiency are hampering their practical applications. Substantial research focus on support modifications, which are vital for SAC reactivity and stability due to the intimate relationship between metal atoms and support. In this review, a category of supports and a variety of surface engineering strategies employed in SA systems are summarized, including surface site engineering (heteroatom doping, vacancy introducing, surface groups grafting, and coordination tunning) and surface structure engineering (size/morphology control, cocatalyst deposition, facet engineering, and crystallinity control). Also, the merits of support surface engineering in single-atom systems are systematically introduced. Highlights are the comprehensive summary and discussions on the utilization of surface-engineered SACs in diversified energy conversion applications including photocatalysis, electrocatalysis, thermocatalysis, and energy conversion devices. At the end of this review, the potential and obstacles of using surface-engineered SACs in the field of energy conversion are discussed. This review aims to guide the rational design and manipulation of SACs for target-specific applications by capitalizing on the characteristic benefits of support surface engineering.
Collapse
Affiliation(s)
- Yutang Yu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Zijian Zhu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hongwei Huang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
12
|
Li J, Chen G, Chen C, Lou Y, Xing Z, Zhang T, Gong C, Peng Y. Kagome-topology 2D covalent organic frameworks assembled from D2h-symmetric and non-centrosymmetric C2-symmetric blocks for photothermal imaging. Chem Commun (Camb) 2023; 59:13191-13194. [PMID: 37850458 DOI: 10.1039/d3cc04502a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
In this study, we synthesized two new two-dimensional (2D) covalent organic frameworks (COFs), COF-TA and COF-DP, by combining 4-connected D2h-symmetric and 2-connected non-centrosymmetric C2-symmetric building blocks. Unlike the typical sql topology, these COFs exhibit an unconventional kgm topology characterized by a favorable anti-parallel stacking arrangement, which results in a lower energy configuration. Notably, COF-DP, with its unique D-A-D structural motif and photosensitive properties, demonstrates a narrow band gap and excellent photothermal conversion capabilities, making it a promising material for photothermal imaging applications.
Collapse
Affiliation(s)
- Jiahao Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Guinan Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Chunhong Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yuanyuan Lou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Zhihao Xing
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Tao Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
13
|
Li CF, Pan WG, Zhang ZR, Wu T, Guo RT. Recent Progress of Single-Atom Photocatalysts Applied in Energy Conversion and Environmental Protection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300460. [PMID: 36855324 DOI: 10.1002/smll.202300460] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Indexed: 06/02/2023]
Abstract
Photocatalysis driven by solar energy is a feasible strategy to alleviate energy crises and environmental problems. In recent years, significant progress has been made in developing advanced photocatalysts for efficient solar-to-chemical energy conversion. Single-atom catalysts have the advantages of highly dispersed active sites, maximum atomic utilization, unique coordination environment, and electronic structure, which have become a research hotspot in heterogeneous photocatalysis. This paper introduces the potential supports, preparation, and characterization methods of single-atom photocatalysts in detail. Subsequently, the fascinating effects of single-atom photocatalysts on three critical steps of photocatalysis (the absorption of incident light to produce electron-hole pairs, carrier separation and migration, and interface reactions) are analyzed. At the same time, the applications of single-atom photocatalysts in energy conversion and environmental protection (CO2 reduction, water splitting, N2 fixation, organic macromolecule reforming, air pollutant removal, and water pollutant degradation) are systematically summarized. Finally, the opportunities and challenges of single-atom catalysts in heterogeneous photocatalysis are discussed. It is hoped that this work can provide insights into the design, synthesis, and application of single-atom photocatalysts and promote the development of high-performance photocatalytic systems.
Collapse
Affiliation(s)
- Chu-Fan Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
- Key Laboratory of Environmental Protection Technology for Clean Power Generation in Machinery Industry, Shanghai, 200090, P. R. China
| | - Zhen-Rui Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Tong Wu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
- Key Laboratory of Environmental Protection Technology for Clean Power Generation in Machinery Industry, Shanghai, 200090, P. R. China
| |
Collapse
|
14
|
Chen J, Wang Y, Yu Y, Wang J, Liu J, Ihara H, Qiu H. Composite materials based on covalent organic frameworks for multiple advanced applications. EXPLORATION (BEIJING, CHINA) 2023; 3:20220144. [PMID: 37933382 PMCID: PMC10624394 DOI: 10.1002/exp.20220144] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
Covalent organic frameworks (COFs) stand for a class of emerging crystalline porous organic materials, which are ingeniously constructed with organic units through strong covalent bonds. Their excellent design capabilities, and uniform and tunable pore structure make them potential materials for various applications. With the continuous development of synthesis technique and nanoscience, COFs have been successfully combined with a variety of functional materials to form COFs-based composites with superior performance than individual components. This paper offers an overview of the development of different types of COFs-based composites reported so far, with particular focus on the applications of COFs-based composites. Moreover, the challenges and future development prospects of COFs-based composites are presented. We anticipate that the review will provide some inspiration for the further development of COFs-based composites.
Collapse
Affiliation(s)
- Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
| | - Yuting Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina
| | - Yongliang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntarioCanada
| | - Hirotaka Ihara
- Department of Applied Chemistry and BiochemistryKumamoto UniversityChuo‐kuKumamotoJapan
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
| |
Collapse
|
15
|
Sun W, Xu Q, Liu Q, Wang T, Liu Z. Post-synthetic modification of a magnetic covalent organic framework with alkyne linkages for efficient magnetic solid-phase extraction and determination of trace basic orange II in food samples. J Chromatogr A 2023; 1690:463777. [PMID: 36640681 DOI: 10.1016/j.chroma.2023.463777] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Efficient magnetic solid phase extraction using covalent organic frameworks (COFs) can find important applications in food safety. In this work, a sulfonate-functionalized magnetic COF (Fe3O4@COF-SO3Na) was synthesized by self-polycondensation of two-in-one monomer 1,6-bis(4-formylphenyl)-3,8-bis((4-aminophenyl) ethynyl)) pyrene (BFBAEPy) on the surface of aminated Fe3O4 and a thiol-yne click reaction. It was further adopted as an adsorbent for the efficient magnetic solid-phase extraction (MSPE) of basic orange II. The selective adsorption experiment indicated that it displayed selective adsorption ability to basic orange II due to the ion exchange, hydrogen bonds, and π-π interactions. Under the optimized conditions, the proposed MSPE method coupled with HPLC-DAD showed excellent linearity in the range of 0.05-0.5 µg/mL (R2 = 0.9997) for basic orange II. The lower limits of detection (LODs) for basic orange II were 1.0-1.4 µg/L for three food samples: yellow croaker, paprika and dried bean curd. The recoveries were 90.1-98.8% with relative standard deviations (RSDs) below 4.2%. Therefore, this work provides an effective strategy to modify magnetic COFs as absorbents in MSPE. Due to the tunability of functional groups in thiol‑yne click reactions, the functional groups of magnetic COFs can be readily designed to enrich their multifunctional applications. Meanwhile, this work proposed a new method to detect trace amounts of basic orange II in food samples.
Collapse
Affiliation(s)
- Wei Sun
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Qing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Qili Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Tianliang Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Zhaixin Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
16
|
Liu T, Deng C, Meng D, Zhang Y, Duan R, Ji H, Sheng H, Li J, Chen C, Zhao J, Song W. Aligning Metal Coordination Sites in Metal-Organic Framework-Enabled Metallaphotoredox Catalysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5139-5147. [PMID: 36688925 DOI: 10.1021/acsami.2c18378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Construction of catalytic metal centers, the key modules in artificial photosynthetic systems, lies at the heart to explore unpaved reactivity patterns powered by light. Here, we disclose that the amino (-NH2) and carboxylic (-COO) functionalities, aligned in various visible-light-harvesting metal-organic frameworks (MOFs) (NH2-UiO-66, (NH2)2-UiO-67, and NH2-MIL-125), provide N/O-ligated Ni featuring different configurations and valence states. Of note, these Ni centers, in situ formed or preimplanted, demonstrated coordination units' spatial arrangement-dependent activity in cross-coupling of aryl halides and various nucleophiles. Our work provides a novel approach to construct and to regulate metal center(s) by MOFs' skeleton defined coordination environments, highlighting exclusive potential in exploring the reactivity pattern of the hosted metals.
Collapse
Affiliation(s)
- Tianjiao Liu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoyuan Deng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Meng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufan Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Duan
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Sheng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jikun Li
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Song
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Gong YN, Guan X, Jiang HL. Covalent organic frameworks for photocatalysis: Synthesis, structural features, fundamentals and performance. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Feliczak-Guzik A. Nanomaterials as Photocatalysts-Synthesis and Their Potential Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010193. [PMID: 36614532 PMCID: PMC9822232 DOI: 10.3390/ma16010193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 05/25/2023]
Abstract
Increasing demand for energy and environmental degradation are the most serious problems facing the man. An interesting issue that can contribute to solving these problems is the use of photocatalysis. According to literature, solar energy in the presence of a photocatalyst can effectively (i) be converted into electricity/fuel, (ii) break down chemical and microbial pollutants, and (iii) help water purification. Therefore, the search for new, efficient, and stable photocatalysts with high application potential is a point of great interest. The photocatalysts must be characterized by the ability to absorb radiation from a wide spectral range of light, the appropriate position of the semiconductor energy bands in relation to the redox reaction potentials, and the long diffusion path of charge carriers, besides the thermodynamic, electrochemical, and photoelectrochemical stabilities. Meeting these requirements by semiconductors is very difficult. Therefore, efforts are being made to increase the efficiency of photo processes by changing the electron structure, surface morphology, and crystal structure of semiconductors. This paper reviews the recent literature covering the synthesis and application of nanomaterials in photocatalysis.
Collapse
Affiliation(s)
- Agnieszka Feliczak-Guzik
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
19
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
20
|
Zhang Y, Liu H, Gao F, Tan X, Cai Y, Hu B, Huang Q, Fang M, Wang X. Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. ENERGYCHEM 2022; 4:100078. [DOI: doi.org/10.1016/j.enchem.2022.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|