1
|
Wang Z, Liu C, Zou X, Chi W, Zhang Y, Luo X, Xu Y, Liu J, Zhao N, Zhang W, Zu M, Yin W, Meng L, Dang D. Turning Lemons into Lemonade: One-Step Synthesized Dual-Acceptor Organic Photosensitizer to Boost the Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411643. [PMID: 40123250 DOI: 10.1002/smll.202411643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/26/2025] [Indexed: 03/25/2025]
Abstract
Reactive oxygen species (ROS) are crucial in photodynamic therapy (PDT), but their generation is highly dependent on the S-T bandgap (ΔEST), spin-orbit coupling (SOC), intersystem crossing rate (kISC), and also excited triplet-states lifetime (τTriplet) in organic photosensitizers (PSs). In contrast to the widely reported donor-acceptor-donor (D-A-D) type PSs, D-A-A-D typed PSs are seldomly developed for the time-consuming and complicated synthesis, but show great potential in enhancing ROS generation in phototheranostics. This work here presents a one-step synthetic procedure of D-A-A-D type 2DMeTPA-2BT with a high yield of 47%, which is significantly different from the previously reported dual-acceptor cases. In contrast to 2DMeTPA-BT, the dual-acceptor PSs of 2DMeTPA-2BT display a much smaller ΔEST value but large SOC constants. Also, the intersystem crossing (ISC) dynamics indicate that fast kISC, long τTriplet, and large triplet population are observed in 2DMeTPA-2BT-based nanoparticles (NPs), contributing to a superior generation of ROS. 2DMeTPA-2BT NPs are then finally utilized for the imaging-guided PDT in vivo with a tumor inhibition rate of 90%. This method offers an efficient way to produce dual-acceptor typed PSs via a one-step reaction, providing new avenues in high-performance phototheranostics.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Chunyan Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Xianshao Zou
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, Shandong, 266000, P. R. China
| | - Weijie Chi
- Department of Chemistry, School of Science, Hainan University, Haikou, 570228, P. R. China
| | - Youming Zhang
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China
| | - Xuwei Luo
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Yanzi Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Jia Liu
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Ningjiu Zhao
- Songshan Lake Materials Laboratory, Dongguan, 523808, P. R. China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Meiyuan Zu
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, Shandong, 266000, P. R. China
| | - Wenping Yin
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, Shandong, 266000, P. R. China
| | - Lingjie Meng
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Dongfeng Dang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| |
Collapse
|
2
|
Lv Y, Pu L, Ran B, Xiang B. Targeting tumor angiogenesis and metabolism with photodynamic nanomedicine. Front Cell Dev Biol 2025; 13:1558393. [PMID: 40235732 PMCID: PMC11996804 DOI: 10.3389/fcell.2025.1558393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/24/2025] [Indexed: 04/17/2025] Open
Abstract
Photodynamic therapy (PDT) holds considerable promise as a tumor treatment modality, characterized by its targeted action, compatibility with other therapeutic approaches, and non - invasive features. PDT can achieve remarkable spatiotemporal precision in tumor ablation through the generation of reactive oxygen species (ROS). Nevertheless, despite its potential in tumor treatment, PDT encounters multiple challenges in practical applications. PDT is highly oxygen - dependent, and thus the effectiveness of PDT can be markedly influenced by tumor hypoxia. The co-existence of abnormal vasculature and metabolic deregulation gives rise to a hypoxic microenvironment, which not only sustains tumor survival but also undermines the therapeutic efficacy of PDT. Consequently, targeting tumor angiogenesis and metabolism is essential for revitalizing PDT. This review emphasizes the mechanisms and strategies for revitalizing PDT in tumor treatment, predominantly concentrating on interfering with tumor angiogenesis and reprogramming tumor cell metabolism. Lastly, the outlining future perspectives and current limitations of PDT are also summarized. This could provide new insights and methodologies for overcoming the challenges associated with PDT in tumor treatment, ultimately advancing the field of PDT.
Collapse
Affiliation(s)
- Yong Lv
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lihui Pu
- Department of Critical Care, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Ran
- School of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Bo Xiang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Saczuk K, Kassem A, Dudek M, Sánchez DP, Khrouz L, Allain M, Welch GC, Sabouri N, Monnereau C, Josse P, Cabanetos C, Deiana M. Organelle-Specific Thiochromenocarbazole Imide Derivative as a Heavy-Atom-Free Type I Photosensitizer for Biomolecule-Triggered Image-Guided Photodynamic Therapy. J Phys Chem Lett 2025; 16:2273-2282. [PMID: 39988904 PMCID: PMC11891978 DOI: 10.1021/acs.jpclett.5c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Modern photodynamic therapy (PDT) demands next-generation photosensitizers (PSs) that overcome heavy-atom dependency and enhance efficacy beyond traditional, highly oxygen-dependent type II mechanisms. We introduce herein TCI-NH, as a thiochromenocarbazole imide derivative designed for type I photodynamic action. Upon light activation, TCI-NH efficiently favors superoxide (O2•-) and PS-centered radical formation instead of singlet oxygen (1O2) generation. Its high luminescence efficiency and selective localization in both the endoplasmic reticulum and mitochondria enable precise, image-guided PDT. Notably, interactions with biomolecules, such as serum albumin or DNA, enhance TCI-NH's emission by up to 40-fold and amplify radical generation by up to 5-fold. With negligible dark toxicity, this results in ∼120 nM photocytotoxicity along with an impressive phototherapeutic index exceeding 200. Real-time live-cell imaging revealed rapid, light-triggered cytotoxicity characterized by apoptotic body formation and extensive cellular damage. With its small size, heavy-atom-free structure, exceptional, organelle specificity, and therapeutic efficacy, TCI-NH sets a new benchmark for anticancer type I PDT.
Collapse
Affiliation(s)
- Karolina Saczuk
- Institute
of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ahmad Kassem
- CNRS,
MOLTECH-ANJOU, SFR-MATRIX, F-49000 Angers, France
| | - Marta Dudek
- Institute
of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | - Lhoussain Khrouz
- ENS
de Lyon, CNRS, Laboratoire de Chimie, UMR 5182, 46 allée d’Italie, F-69342 Lyon, France
| | - Magali Allain
- CNRS,
MOLTECH-ANJOU, SFR-MATRIX, F-49000 Angers, France
| | - Gregory C. Welch
- Department
of Chemistry, University of Calgary, 731 Campus Place NW, Calgary, Alberta T2N 1N4, Canada
| | - Nasim Sabouri
- Department
of Medical Biochemistry and Biophysics, Science for Life Laboratory, Umeå University, 90187 Umeå, Sweden
| | - Cyrille Monnereau
- ENS
de Lyon, CNRS, Laboratoire de Chimie, UMR 5182, 46 allée d’Italie, F-69342 Lyon, France
| | - Pierre Josse
- CNRS,
MOLTECH-ANJOU, SFR-MATRIX, F-49000 Angers, France
| | | | - Marco Deiana
- Institute
of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
- Department
of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
4
|
Cui X, Fang F, Chen H, Cao C, Xiao Y, Tian S, Zhang J, Li S, Lee CS. Using a stable radical as an "electron donor" to develop a radical photosensitizer for efficient type-I photodynamic therapy. MATERIALS HORIZONS 2025; 12:1002-1007. [PMID: 39560293 DOI: 10.1039/d4mh00952e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Among type I photosensitizers, stable organic radicals are superior candidate molecules for hypoxia-overcoming photodynamic therapy. However, their wide applications are limited by complicated preparation processes and poor stabilities. Herein, a nitroxide radical was simply synthesized by introducing a commercially available "TEMPO" moiety. The radical exhibits efficient type-I ROS generation and appreciable photo-cytotoxicity under hypoxia, which open up a new avenue for the exploration of a novel and efficient type-I photosensitizer.
Collapse
Affiliation(s)
- Xiao Cui
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | - Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Huan Chen
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | - Chen Cao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | - Yafang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | - Shuang Tian
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China.
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| |
Collapse
|
5
|
Zhen S, Xu Z, Suo M, Zhang T, Lyu M, Li T, Zhang T, Li M, Zhao Z, Tang BZ. NIR-II AIE Liposomes for Boosting Type-I Photodynamic and Mild-Temperature Photothermal Therapy in Breast Cancer Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411133. [PMID: 39600034 DOI: 10.1002/adma.202411133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/06/2024] [Indexed: 11/29/2024]
Abstract
Phototheranositcs has recently aroused extreme attention due to its exceptional advantages. However, the poor photothernostic efficiency, limited penetration depth, strong oxygen-dependence, and inevitable damage to normal tissue of conventional photothernostic materials severely hindered their total theranostic efficacy. Herein, a series of near-infrared second (NIR-II) photosensitizers (PSs) featuring aggregation-induced emission (AIE), NIR-II fluorescence imaging (FLI), type I photodynamic therapy (PDT) and mild-temperature photothermal therapy (PTT) are constructed through dual-strategy methods combining donor group engineering and fluorination engineering. Profiting from sufficient molecular rotors and high electronegativity of fluorine, the developed 2-(2-((5-(4-((4-(diphenylamino)phenyl)(phenyl)amino)phenyl)thiophen-2-yl)methylene)-5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (BTS-2F) and 2-(2-((5-(4-(bis(4-(diphenylamino)phenyl)amino)phenyl)thiophen-2-yl)methylene)-5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (TTS-2F) are endowed with NIR-II AIE property, high radical reactive oxygen species (ROS) generation ability and mild-temperature photothermal conversion. Through thin film hydration method, the prepared BTS-2F and TTS-2F loaded liposomes exhibit significant NIR-II FLI and improved type-I PDT/mild-temperature PTT therapy under laser irradiation both in vitro and orthotopic 4T1 mice models.
Collapse
Affiliation(s)
- Shijie Zhen
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, P. R. China
| | - Zhe Xu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, P. R. China
| | - Meng Suo
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510182, P. R. China
| | - Teng Zhang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, P. R. China
| | - Meng Lyu
- Division of Gastrointestinal Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
| | - Tianwei Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, P. R. China
| | - Tianfu Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510182, P. R. China
| | - Meijing Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, P. R. China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
| |
Collapse
|
6
|
Chen WC, Liu XL, Liu Q, Zheng F, Xing L, Wu QE, Lian ZX, Zheng PY, Zhang Y, Ji S, Huo Y. A new dicyanophenanthrene-based thermally activated delayed fluorophore: Design, synthesis, photophysical study, and electroluminescence application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124808. [PMID: 39024786 DOI: 10.1016/j.saa.2024.124808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
A novel thermally activated delayed fluorescence (TADF) emitter, DCNP-SCF, is developed based on a dicyanophenanthrene acceptor. DCNP-SCF is prepared by a simple C-N coupling reaction. Its thermal, theoretical, photophysical, and electroluminescent properties are investigated, emphasizing its potential in organic electroluminescence devices. DCNP-SCF demonstrates highly distorted donor-acceptor conformation, facilitating significant TADF for efficient triplet harvesting in electroluminescence devices. Additionally, due to the moderate electron push-pull effect, DCNP-SCF exhibits appropriate intramolecular charge transfer for considerable photoluminescence quantum yield for electroluminescence applications.
Collapse
Affiliation(s)
- Wen-Cheng Chen
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China.
| | - Xiao-Long Liu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Qiang Liu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Fan Zheng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Longjiang Xing
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Qiao-Er Wu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Zi-Xian Lian
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Pei-Yan Zheng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Yuzhen Zhang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, PR China
| | - Shaomin Ji
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Yanping Huo
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China; Analytical & Testing Center, Guangdong University of Technology, Guangzhou, PR China.
| |
Collapse
|
7
|
Liu J, Cong Y, Wang X, Wei Y, Wang J, Zhang P, Kang Y, Li L. Modular Assembly of Photoactive Lipid Nanoparticles on Red Blood Cells toward Enhanced Phototherapy Efficacy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63306-63316. [PMID: 39508470 DOI: 10.1021/acsami.4c14725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Photodynamic therapy has been developed as a promising treatment for malignant tumors, which inspires research into photosensitizers. However, the therapeutic efficacy of individual photosensitizers is often hampered by the physiological environment. The assembly of biological materials with synthetic molecules offers a strategy to enhance functionality while improving tolerance to varying physiological conditions. Herein, we present a biohybrid system for enhanced phototherapy efficacy through a simple two-step assembly process. Photoactive lipid nanoparticles were assembled based on synthesized conjugated molecules and lipophilic prodrugs, which were then modularly assembled with red blood cells (RBCs). Driven by hydrophobic and electrostatic interactions, hydrophobic conjugated molecules were efficiently incorporated into the RBCs, while lipophilic prodrugs were simultaneously inserted into the cell membranes. The engineered RBCs harnessed the natural oxygen transport capability, enabling the internal conjugated molecules to effectively produce reactive oxygen species (ROSs) even under oxygen-poor conditions. Meanwhile, the use of ROS-cleavable linkers in prodrugs enhanced drug release for chemotherapy, which is a perfect complement to photodynamic therapy. In vitro and in vivo experiments proved the improved phototherapy efficacy of the biohybrid system. Furthermore, the changes in aggregation directed Förster resonance energy transfer between conjugated molecules and fluorescent drugs provided a mechanism to track drug release from engineered RBCs. Therefore, the modular assembly of biohybrid systems can offer multiple functionalities required for phototherapy, on-demand drug release, and imaging.
Collapse
Affiliation(s)
- Jiaren Liu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yujie Cong
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiaoyu Wang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yi Wei
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jinshan Wang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Pengbo Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yuetong Kang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lidong Li
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
8
|
Chen WC, Su Y, Wu X, Wang R, Jin JM, Zheng F, Liu XL, Zhang Y, He N, Sun Y, Zeng Q, Huo Y. An Azaryl-Ketone-Based Thermally Activated Delayed Fluorophore with Aggregation-Induced Emission for Efficient Organic Light-Emitting Diodes with Slow Efficiency Roll-Offs. Chem Asian J 2024; 19:e202400741. [PMID: 39058306 DOI: 10.1002/asia.202400741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
Achieving the concurrent manifestation of thermally activated delayed fluorescence (TADF) and aggregation-induced emission (AIE) within a single molecular system is highly sought after for organic light-emitting diodes (OLEDs), yet remains rare. In this study, we present a novel TADF-AIE dye, named PQMO-PXZ, which has been designed, synthesized, and systematically characterized. Our comprehensive investigation, which includes structural analysis, theoretical calculations, and optical studies, evaluates the potential of PQMO-PXZ for integration into OLEDs. Unlike existing azaryl-ketone-based emitters, PQMO-PXZ exhibits red-shifted emission and enhanced luminescence efficiency, due to its rigid structure and strong intramolecular charge transfer characteristics. Significantly, PQMO-PXZ demonstrates pronounced AIE properties and TADF with a short delayed lifetime. When utilized as the emissive core, OLED devices based on PQMO-PXZ achieve a respectable external quantum efficiency of up to 11.8 % with minimal efficiency roll-off, underscoring PQMO-PXZ's promise as a highly efficient candidate for OLED applications.
Collapse
Affiliation(s)
- Wen-Cheng Chen
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, People's Republic of China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Yaozu Su
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, People's Republic of China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Xiaohui Wu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, People's Republic of China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Ruicheng Wang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, People's Republic of China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Jia-Ming Jin
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, People's Republic of China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Fan Zheng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, People's Republic of China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Xiao-Long Liu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, People's Republic of China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Yuzhen Zhang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, People's Republic of China
| | - Nian He
- Guangdong Shuo Cheng Technology Co. Ltd., Shaoguan, 512600, People's Republic of China
| | - Yuxi Sun
- Guangdong Shuo Cheng Technology Co. Ltd., Shaoguan, 512600, People's Republic of China
| | - Qingming Zeng
- Guangdong Shuo Cheng Technology Co. Ltd., Shaoguan, 512600, People's Republic of China
| | - Yanping Huo
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, People's Republic of China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
- Analytical & Testing Center, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
9
|
Oroojalian F, Azizollahi F, Kesharwani P, Sahebkar A. Stimuli-responsive nanotheranostic systems conjugated with AIEgens for advanced cancer bio-imaging and treatment. J Control Release 2024; 373:766-802. [PMID: 39047871 DOI: 10.1016/j.jconrel.2024.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Aggregation-induced emission (AIE) is a unique phenomenon observed in various materials such as organic luminophores, carbon dots (CDs), organic-inorganic nanocomposites, fluorescent dye molecules, and nanoparticles (NPs). These AIE-active materials, or AIEgens, are ideal for balancing multifunctional phototheranostics and energy dissipation. AIE properties can manifest in organic fluorescent probes, rendering them effective for cancer treatment due to their ability to penetrate deeply and provide high therapeutic efficacy. This efficacy is attributed to their high photobleaching thresholds, ability to induce Stokes shifts, and capacity to activate fluorophores. Therefore, the development of innovative AIE-based materials for disease diagnosis and treatment, particularly for cancer, is both important and promising. Recent years have seen successful demonstrations of nanoparticles with AIE properties being used for photodynamic therapy (PDT) and multimodal imaging of tumor cells. These fluorophores have been shown to impact mitochondria and lysosomes, generate reactive oxygen species (ROS), activate the immune system, load and release drugs, and ultimately induce apoptosis in tumor cells. In this review, we examine previous studies on the manufacturing methods and effects of AIEgens on cancer cells, with a theranostic strategy of simultaneous treatment and imaging. We also investigate the factors affecting drug delivery on different cancer cells, including internal stimuli such as pH, ROS, enzymes, and external stimuli like near-infrared (NIR) light and ultrasound waves.
Collapse
Affiliation(s)
- Fatemeh Oroojalian
- Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Fatemeh Azizollahi
- Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Liu S, Sun T, Chou W, Gao C, Wang Y, Zhao H, Zhao Y. Molecular engineering design of twisted-backbone pure Type-I organic photosensitizers for hypoxic photodynamic therapy. Eur J Med Chem 2024; 273:116503. [PMID: 38762917 DOI: 10.1016/j.ejmech.2024.116503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Photodynamic therapy (PDT), an emerging tumor therapeutic strategy has received tremendous attention. Enslaved by the high dependence of oxygen, Type-II photosensitizers (PSs) mediated PDT is restricted by the hypoxic environment of tumors. By transferring electrons to water or other substrates instead of oxygen, Type-I PSs hold the promise of achieving an ideal therapeutic effect under hypoxic conditions. In this study, three twisted-backbone PSs (CBz-TQs-1, CBz-TQs-2 and CBz-TQs-3) are synthesized and studied. Owing to different substituent effects, the ROS generation mechanism transfers from pure Type-II of their prototype PSs (TQs-1, TQs-2 and TQs-3) to mixed Type-I/II of CBz-TQs-1 and CBz-TQs-2 to pure Type-I of CBz-TQs-3. Moreover, CBz-TQs-3 exhibits an ultra-high ROS quantum yield (∼1.0). The in vitro and in vivo PDT effects of water-dissolvable nanoparticles (NPs) of CBz-TQs-3 are investigated. The results show that the phototoxicity of CBz-TQs-3 is not affected by hypoxic environments. In addition, a remarkable tumor ablation can be found after CBz-TQs-3 NPs mediated PDT on Balb/c mice with xenograft tumors. It proves that a twisted backbone strategy is beneficial for designing pure Type-I PSs with high-efficient hypoxic PDT.
Collapse
Affiliation(s)
- Shiyang Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Tianzhen Sun
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Wenxin Chou
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Chen Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Ying Wang
- Department of Laser Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hongyou Zhao
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Street, Zhongguancun, Haidian District, Beijing, 100081, China.
| | - Yuxia Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
11
|
Niu H, Liu Y, Wang Y, Yang Y, Wang G, James TD, Sessler JL, Zhang H. Photochemical and biological dual-effects enhance the inhibition of photosensitizers for tumour growth. Chem Sci 2024; 15:7757-7766. [PMID: 38784735 PMCID: PMC11110147 DOI: 10.1039/d4sc00874j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Photosensitizers typically rely on a singular photochemical reaction to generate reactive oxygen species, which can then inhibit or eradicate lesions. However, photosensitizers often exhibit limited therapeutic efficiency due to their reliance on a single photochemical effect. Herein, we propose a new strategy that integrates the photochemical effect (type-I photochemical effect) with a biological effect (proton sponge effect). To test our strategy, we designed a series of photosensitizers (ZZ-sers) based on the naphthalimide molecule. ZZ-sers incorporate both a p-toluenesulfonyl moiety and weakly basic groups to activate the proton sponge effect while simultaneously strengthening the type-I photochemical effect, resulting in enhanced apoptosis and programmed cell death. Experiments confirmed near-complete eradication of the tumour burden after 14 days (Wlight/Wcontrol ≈ 0.18, W represents the tumour weight). These findings support the notion that the coupling of a type-I photochemical effect with a proton sponge effect can enhance the tumour inhibition by ZZ-sers, even if the basic molecular backbones of the photosensitizers exhibit nearly zero or minimal tumour inhibition ability. We anticipate that this strategy can be generalized to develop additional new photosensitizers with improved therapeutic efficacy while overcoming limitations associated with systems relying solely on single photochemical effects.
Collapse
Affiliation(s)
- Huiyu Niu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Organic Functional Molecules and Drug Innovation Key Laboratory of Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China +86-373-3329030 +86-373-3329030
| | - Yang Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Organic Functional Molecules and Drug Innovation Key Laboratory of Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China +86-373-3329030 +86-373-3329030
| | - Yafu Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Organic Functional Molecules and Drug Innovation Key Laboratory of Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China +86-373-3329030 +86-373-3329030
| | - Yonggang Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Organic Functional Molecules and Drug Innovation Key Laboratory of Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China +86-373-3329030 +86-373-3329030
| | - Ge Wang
- College of Basic Medicine, Xinxiang Medical University Xinxiang Henan 453007 P. R. China
| | - Tony D James
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Organic Functional Molecules and Drug Innovation Key Laboratory of Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China +86-373-3329030 +86-373-3329030
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin Austin 78712 USA
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Organic Functional Molecules and Drug Innovation Key Laboratory of Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China +86-373-3329030 +86-373-3329030
| |
Collapse
|
12
|
Ojha M, Banerjee M, Mandal M, Singha T, Ray S, Datta PK, Mandal M, Anoop A, Singh NDP. Two-Photon-Responsive "TICT + AIE" Active Naphthyridine-BF 2 Photoremovable Protecting Group: Application for Specific Staining and Killing of Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21486-21497. [PMID: 38640485 DOI: 10.1021/acsami.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
The combined effects of twisted intramolecular charge transfer (TICT) and aggregation-induced emission (AIE) phenomena have demonstrated a significant influence on excited-state chemistry. These combined TICT and AIE features have been extensively utilized to enhance photodynamic and photothermal therapy. Herein, we demonstrated the synergistic capabilities of TICT and AIE phenomena in the design of the photoremovable protecting group (PRPG), namely, NMe2-Napy-BF2. This innovative PRPG incorporates TICT and AIE characteristics, resulting in four remarkable properties: (i) red-shifted absorption wavelength, (ii) strong near-infrared (NIR) emission, (iii) viscosity-sensitive emission property, and (iv) accelerated photorelease rate. Inspired by these intriguing attributes, we developed a nanodrug delivery system (nano-DDS) using our PRPG for cancer treatment. In vitro studies showed that our nano-DDS manifested effective cellular internalization, specific staining of cancer cells, high-resolution confocal imaging of cancerous cells in the NIR region, and controlled release of the anticancer drug chlorambucil upon exposure to light, leading to cancer cell eradication. Most notably, our nano-DDS exhibited a substantially increased two-photon (TP) absorption cross section (435 GM), exhibiting its potential for in vivo applications. This development holds promise for significant advancements in cancer treatment strategies.
Collapse
Affiliation(s)
- Mamata Ojha
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Moumita Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Madhurima Mandal
- Department of School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Tara Singha
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Souvik Ray
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Prasanta K Datta
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mahitosh Mandal
- Department of School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
13
|
Fan X, Lv S, Lv F, Feng E, Liu D, Zhou P, Song F. Type-I Photodynamic Therapy Induced by Pt-Coordination of Type-II Photosensitizers into Supramolecular Complexes. Chemistry 2024; 30:e202304113. [PMID: 38182543 DOI: 10.1002/chem.202304113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
Platinum supramolecular complexes based on photosensitizers have garnered great interest in photodynamic therapy (PDT) due to Pt (II) centers as chemotherapeutic agents to eliminate tumor cells completely, which greatly improve the antitumor efficacy of PDT. However, in comparison to precursor photosensitizer ligand, the formed platinum supramolecular complexes typically exhibit inferior outcomes in terms of reactive oxygen species (ROS) generation. How to boost ROS generation in the formed platinum supramolecular complexes for enhanced PDT is an enticing yet highly challenging task. Here we report a Pt-coordination-based dimeric photosensitizer complex (Cz-BTZ-Py)2Pt(OTf)2. It is found that comparing with photosensitizer ligand Cz-BTZ-Py, the formed supramolecular complex exhibit redshifts of absorption wavelength as well as enhanced ROS generation efficiency. Moreover, type-I ROS generation (O2⋅-) is produced in the formed platinum supramolecular complexes mainly due to a reduced energy gap ΔEST resulting from exciton coupling between two photosensitizer ligands. And type-I ROS (O2⋅-) generation significantly amplifies the photodynamic therapy (PDT) outcomes. In vitro evaluation shows excellent photochemotherapy performance of (Cz-BTZ-Py)2Pt(OTf)2 nanoparticles. We anticipate this work would provide a novel approach to design type-I photosensitizers for efficient PDT.
Collapse
Affiliation(s)
- Xiaoxue Fan
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Shibo Lv
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen, 518057, China
| | - Fangyuan Lv
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen, 518057, China
| | - Erting Feng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Dapeng Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen, 518057, China
| | - Panwang Zhou
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Fengling Song
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
14
|
Feng W, Qian Y. Water-soluble red fluorescent protein dimers for hypoxic two-photon photodynamic therapy. J Mater Chem B 2024; 12:2413-2424. [PMID: 38354026 DOI: 10.1039/d3tb02621c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
In this study, two water-soluble red fluorescent protein (RFP) dimers, FP2R' and FP2R'', were synthesized by linking two phenothiazine-based RFP chromophore analogues through alkyl chains or alkoxy chains for hypoxic two-photon photodynamic therapy. RFP dimers are heavy-atom-free two-photon photosensitizers in which the intersystem crossing process is boosted by S and N heteroatoms. In terms of the aqueous solubility, the saturation concentration of FP2R'' was 3.5 mM, the emission wavelength was 677 nm, the singlet oxygen yield was 18%, and the two-photon absorption coefficient (β) was 2.1 × 10-11 cm W-1. Further, the RFP dimer FP2R'' showed excellent biocompatibility, negligible dark toxicity, and could produce 1O2 and O2˙- simultaneously. Under 460 nm illumination, the photosensitizer FP2R'' showed high phototoxicity with an IC50 value of 4.08 μM in an hypoxia environment, indicating that the photosensitizer FP2R'' has an excellent anti-hypoxia ability. In addition, the photosensitizer FP2R'' demonstrated a precise localization ability to lysosomes and its Pearson's colocalization coefficient was 0.94, which could guide the aggregation of photosensitizers in the lysosomes of tumor cells to effectively improve its photodynamic therapy (PDT) effect. In particular, when exposed to 800 nm two-photon excitation, FP2R'' effectively produced 1O2 and O2˙- in zebrafish and exhibited a bright two-photon fluorescence imaging capability. At the same time, the efficacy of two-photon photodynamic therapy mediated by the photosensitizer FP2R'' was verified in the tumor zebrafish model, and the growth of tumor cells in zebrafish was significantly inhibited under a two-photon laser irradiation. The water-soluble two-photon photosensitizer FP2R'' that was reasonably constructed in this study can be used as a high-efficiency hypoxic two-photon photosensitizer to inhibit deep tumor tissues.
Collapse
Affiliation(s)
- Wan Feng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Ying Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
15
|
Peng Y, Da X, Zhou W, Xu Y, Liu X, Wang X, Zhou Q. A photo-degradable BODIPY-modified Ru(II) photosensitizer for safe and efficient PDT under both normoxic and hypoxic conditions. Dalton Trans 2024; 53:3579-3588. [PMID: 38314620 DOI: 10.1039/d3dt04063a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Photodynamic therapy (PDT) is promising for cancer treatment but still suffers from some limitations. For instance, PDT based on 1O2 generation (in a type-II mechanism) is heavily dependent on high oxygen concentrations and will be significantly depressed in hypoxic tumors. In addition, the residual photosensitizers after PDT treatment may cause severe side-effects under light irradiation. To solve these problems, herein a BODIPY (boron dipyrromethene)-modified Ru(II) complex [Ru(dip)2(tpy-BODIPY)]2+ (complex 1, dip = 4,7-diphenyl-1,10-phenanthroline, tpy = 2,2':6',2''-terpyridine) was designed and synthesized. Complex 1 exhibited both high singlet oxygen quantum yield (Φ = 0.7 in CH3CN) and excellent superoxide radical (O2˙-) generation, and thus demonstrated efficient PDT activity under both normoxic and hypoxic conditions. Moreover, complex 1 is photo-degradable in water, and greatly loses its ROS generation ability after PDT treatment. These novel properties of complex 1 make it promising for efficient PDT under both normoxic and hypoxic conditions with reduced side-effects.
Collapse
Affiliation(s)
- Yatong Peng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuwen Da
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Wanpeng Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yunli Xu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiulian Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuesong Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qianxiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
16
|
Sobhanan J, Ono K, Okamoto T, Sawada M, Weiss PS, Biju V. Photosensitizer-singlet oxygen sensor conjugated silica nanoparticles for photodynamic therapy and bioimaging. Chem Sci 2024; 15:2007-2018. [PMID: 38332815 PMCID: PMC10848760 DOI: 10.1039/d3sc03877g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/10/2023] [Indexed: 02/10/2024] Open
Abstract
Intracellular singlet oxygen (1O2) generation and detection help optimize the outcome of photodynamic therapy (PDT). Theranostics programmed for on-demand phototriggered 1O2 release and bioimaging have great potential to transform PDT. We demonstrate an ultrasensitive fluorescence turn-on sensor-sensitizer-RGD peptide-silica nanoarchitecture and its 1O2 generation-releasing-storing-sensing properties at the single-particle level or in living cells. The sensor and sensitizer in the nanoarchitecture are an aminomethyl anthracene (AMA)-coumarin dyad and a porphyrin or CdSe/ZnS quantum dots (QDs), respectively. The AMA in the dyad quantitatively quenches the fluorescence of coumarin by intramolecular electron transfer, the porphyrin or QD moiety generates 1O2, and the RGD peptide facilitates intracellular delivery. The small size, below 200 nm, as verified by scanning electron microscopy and differential light scattering measurements, of the architecture within the 1O2 diffusion length enables fast and efficient intracellular fluorescence switching by the tandem ultraviolet (UV)-visible or visible-near-infrared (NIR) photo-triggering. While the red emission and 1O2 generation by the porphyrin are continually turned on, the blue emission of coumarin is uncaged into 230-fold intensity enhancement by on-demand photo-triggering. The 1O2 production and release by the nanoarchitecture enable spectro-temporally controlled cell imaging and apoptotic cell death; the latter is verified from cytotoxic data under dark and phototriggering conditions. Furthermore, the bioimaging potential of the TCPP-based nanoarchitecture is examined in vivo in B6 mice.
Collapse
Affiliation(s)
- Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University Sapporo Hokkaido 060-0810 Japan
- Department of Chemistry, Rice University Houston Texas 77005 USA
| | - Kenji Ono
- Research Institute of Environmental Medicine, Nagoya University Nagoya 464-8601 Japan
| | - Takuya Okamoto
- Graduate School of Environmental Science, Hokkaido University Sapporo Hokkaido 060-0810 Japan
- Research Institute for Electronic Science, Hokkaido University Sapporo Hokkaido 001-0020 Japan
| | - Makoto Sawada
- Research Institute of Environmental Medicine, Nagoya University Nagoya 464-8601 Japan
| | - Paul S Weiss
- California NanoSystems Institute and the Departments of Chemistry and Biochemistry, Bioengineering, and Materials Science and Engineering, University of California Los Angeles CA 90095-1487 USA
| | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University Sapporo Hokkaido 060-0810 Japan
- Research Institute for Electronic Science, Hokkaido University Sapporo Hokkaido 001-0020 Japan
| |
Collapse
|
17
|
Liu S, Sun T, Chou W, Zhao H, Zhao Y. A design strategy of pure Type-I thiadiazolo[3,4-g]quinoxaline-based photosensitizers for photodynamic therapy. Eur J Med Chem 2024; 265:116059. [PMID: 38134744 DOI: 10.1016/j.ejmech.2023.116059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Most photosensitizers (PSs) for photodynamic therapy (PDT) can generate singlet oxygen through transferring energy with oxygen, called Type-II PSs. However, the microenvironment of solid tumor is usually anoxic. Type-I PSs can generate reactive oxygen species (ROS) through transferring electron to substrate, showing more efficient in PDT. But pure Type-I PSs are very rare. The relationship between PSs' chemical structure and Type-I mechanism has not been explicitly stated. In this study, two thiadiazolo [3,4-g]quinoxaline (TQ) PSs (PsCBz-1 and PsCBz-2) are synthesized through introducing carbazole groups to the 4,9-position of TQ backbone. Comparing with their prototype PS, 4,9-dibrominated TQ (TQs-4), the introduction of carbazole groups reverses the reaction mechanism of PSs from pure Type-II to pure Type-I. Excitingly, the water-dispersible nanoparticles (NPs) of PsCBz-1 can achieve strong phototoxicity in vitro under both normoxia and hypoxia through Type-I mechanism. In addition, PsCBz-1 NPs also exhibits remarkable PDT antitumor effect in vivo. This study provides a feasible design strategy for pure Type-I PSs.
Collapse
Affiliation(s)
- Shiyang Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Tianzhen Sun
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Wenxin Chou
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Hongyou Zhao
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Street, Zhongguancun, Haidian District, Beijing, 100081, China.
| | - Yuxia Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
18
|
Sun H, Li L, Guo R, Wang Z, Guo Y, Li Z, Song F. Suppressing ACQ of molecular photosensitizers by distorting the conjugated-plane for enhanced tumor photodynamic therapy. Chem Sci 2024; 15:940-952. [PMID: 38239684 PMCID: PMC10793593 DOI: 10.1039/d3sc05041f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Non-AIE-type molecular photosensitizers (PSs) suffer from the aggregation-caused-quenching (ACQ) effect in an aqueous medium due to the strong hydrophobic and π-π interactions of their conjugated planes, which significantly hinders the enhancement of tumor photodynamic therapy (PDT). So far, some ionic PSs have been reported with good water-solubility, though the ACQ effect can still be induced in a biological environment rich in ions, leading to unsatisfactory in vivo delivery and fluorescence imaging performance. Hence, designing molecular PSs with outstanding anti-ACQ properties in water is highly desirable, but it remains a tough challenge for non-AIE-type fluorophores. Herein, we demonstrated a strategy for the design of porphyrin-type molecular PSs with remarkable solubility and anti-ACQ properties in an aqueous medium, which was assisted by quantum chemical simulations. It was found that cationic branched side chains can induce serious plane distortion in diphenyl porphyrin (DPP), which was not observed for tetraphenyl porphyrin (TPP) with the same side chains. Moreover, the hydrophilicity of the chain spacer is also crucial to the plane distortion for attaining the desired anti-ACQ properties. Compared to ACQ porphyrin, anti-ACQ porphyrin displayed type-I ROS generation in hypoxia and much higher tumor accumulation efficacy by blood circulation, leading to highly efficient in vivo PDT for hypoxic tumors. This study demonstrates the power of sidechain chemistry in tuning the configuration and aggregation behaviors of porphyrins in water, offering a new path to boost the performance of PSs to fulfill the increasing clinical demands on cancer theranostics.
Collapse
Affiliation(s)
- Han Sun
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao Shandong 266237 China
| | - Lukun Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao Shandong 266237 China
| | - Ruihua Guo
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao Shandong 266237 China
| | - Zhe Wang
- Department of Materials Science and Engineering, Hainan University Haikou Hainan 570228 China
| | - Yanhui Guo
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao Shandong 266237 China
| | - Zhiliang Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao Shandong 266237 China
| | - Fengling Song
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao Shandong 266237 China
| |
Collapse
|
19
|
Golomb BA, Berg BK, Han JH. Susceptibility to radiation adverse effects in veterans with Gulf War illness and healthy civilians. Sci Rep 2024; 14:874. [PMID: 38195674 PMCID: PMC10776672 DOI: 10.1038/s41598-023-50083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
We evaluated whether veterans with Gulf War illness (VGWI) report greater ionizing radiation adverse effects (RadAEs) than controls; whether radiation-sensitivity is tied to reported chemical-sensitivity; and whether environmental exposures are apparent risk factors for reported RadAEs (rRadAEs). 81 participants (41 VGWI, 40 controls) rated exposure to, and rRadAEs from, four radiation types. The relations of RadAE-propensity (defined as the ratio of rRadAEs to summed radiation exposures) to Gulf War illness (GWI) presence and severity, and to reported chemical-sensitivity were assessed. Ordinal logistic regression evaluated exposure prediction of RadAE-propensity in the full sample, in VGWI, and stratified by age and chemical-sensitivity. RadAE-propensity was increased in VGWI (vs. controls) and related to GWI severity (p < 0.01) and chemical-sensitivity (p < 0.01). Past carbon monoxide (CO) exposure emerged as a strong, robust predictor of RadAE-propensity on univariable and multivariable analyses (p < 0.001 on multivariable assessment, without and with adjustment for VGWI case status), retaining significance in age-stratified and chemical-sensitivity-stratified replication analyses. Thus, RadAE-propensity, a newly-described GWI-feature, relates to chemical-sensitivity, and is predicted by CO exposure-both features reported for nonionizing radiation sensitivity, consistent with shared mitochondrial/oxidative toxicity across radiation frequencies. Greater RadAE vulnerability fits an emerging picture of heightened drug/chemical susceptibility in VGWI.
Collapse
Affiliation(s)
- Beatrice Alexandra Golomb
- Department of Medicine, UC San Diego School of Medicine, University of California, San Diego, 9500 Gilman Dr. #0995, La Jolla, CA, 92093-0995, USA.
| | - Brinton Keith Berg
- Department of Medicine, UC San Diego School of Medicine, University of California, San Diego, 9500 Gilman Dr. #0995, La Jolla, CA, 92093-0995, USA
| | - Jun Hee Han
- Department of Medicine, UC San Diego School of Medicine, University of California, San Diego, 9500 Gilman Dr. #0995, La Jolla, CA, 92093-0995, USA
| |
Collapse
|
20
|
Cole HD, Vali A, Roque JA, Shi G, Kaur G, Hodges RO, Francés-Monerris A, Alberto ME, Cameron CG, McFarland SA. Ru(II) Phenanthroline-Based Oligothienyl Complexes as Phototherapy Agents. Inorg Chem 2023; 62:21181-21200. [PMID: 38079387 PMCID: PMC10754219 DOI: 10.1021/acs.inorgchem.3c03216] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Ru(II) polypyridyl complexes have gained widespread attention as photosensitizers for photodynamic therapy (PDT). Herein, we systematically investigate a series of the type [Ru(phen)2(IP-nT)]2+, featuring 1,10-phenanthroline (phen) coligands and imidazo[4,5-f][1,10]phenanthroline ligands tethered to n = 0-4 thiophene rings (IP-nT). The complexes were characterized and investigated for their electrochemical, spectroscopic, and (photo)biological properties. The electrochemical oxidation of the nT unit shifted by -350 mV as n = 1 → 4 (+920 mV for Ru-1T, +570 mV for Ru-4T); nT reductions were observed in complexes Ru-3T (-2530 mV) and Ru-4T (-2300 mV). Singlet oxygen quantum yields ranged from 0.53 to 0.88, with Ru-3T and Ru-4T being equally efficient (∼0.88). Time-resolved absorption spectra of Ru-0T-1T were dominated by metal-to-ligand charge-transfer (3MLCT) states (τTA = 0.40-0.85 μs), but long-lived intraligand charge-transfer (3ILCT) states were observed in Ru-2T-4T (τTA = 25-148 μs). The 3ILCT energies of Ru-3T and Ru-4T were computed to be 1.6 and 1.4 eV, respectively. The phototherapeutic efficacy against melanoma cells (SK-MEL-28) under broad-band visible light (400-700 nm) increases as n = 0 → 4: Ru-0T was inactive up to 300 μM, Ru-1T-2T were moderately active (EC50 ∼ 600 nM, PI = 200), and Ru-3T (EC50 = 57 nM, PI > 1100) and Ru-4T (EC50 = 740 pM, PI = 114,000) were the most phototoxic. The activity diminishes with longer wavelengths of light and is completely suppressed for all complexes except Ru-3T and Ru-4T in hypoxia. Ru-4T is the more potent and robust PS in 1% O2 over seven biological replicates (avg EC50 = 1.3 μM, avg PI = 985). Ru-3T exhibited hypoxic activity in five of seven replicates, underscoring the need for biological replicates in compound evaluation. Singlet oxygen sensitization is likely responsible for phototoxic effects of the compounds in normoxia, but the presence of redox-active excited states may facilitate additional photoactive pathways for complexes with three or more thienyl groups. The 3ILCT state with its extended lifetime (30-40× longer than the 3MLCT state for Ru-3T and Ru-4T) implicates its predominant role in photocytotoxicity.
Collapse
Affiliation(s)
- Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - Abbas Vali
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - John A. Roque
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402 USA
| | - Ge Shi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - Gurleen Kaur
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - Rachel O. Hodges
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402 USA
| | | | - Marta E. Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| |
Collapse
|
21
|
Negi M, Dixit T, Venkatesh V. Ligand Dictated Photosensitization of Iridium(III) Dithiocarbamate Complexes for Photodynamic Therapy. Inorg Chem 2023; 62:20080-20095. [PMID: 37994001 DOI: 10.1021/acs.inorgchem.3c02942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Organelle-targeted photosensitizers (PSs) for photodynamic therapy (PDT) are considered as an effective therapeutic strategy for the development of next generation PSs with the least side effects and high therapeutic efficacy. However, multiorganelle targeted PSs eliciting PDT via both type I and type II mechanisms are scarce. Herein, a series of cyclometalated iridium(III) complexes were formulated [Ir(C∧N)2(S∧S)] (C∧N = 2-phenylpyridine (ppy) and 2-(thiophen-2-yl)pyridine (thpy); S∧S = diethyldithiocarbamate (DEDTC), morpholine-N-dithiocarbamate (MORDTC) and methoxycarbonodithioate (MEDTC)) and the newly designed complexes Ir2@DEDTC and Ir1@MEDTC were characterized by single crystal X-ray crystallography. Complexes containing thpy as C∧N ligand exhibit excellent photophysical properties such as red-shifted emission, high singlet oxygen quantum yield (ϕΔ) and longer photoluminescence lifetime when compared with complexes containing ppy ligands. Ir2@DEDTC exhibits the highest ϕΔ and photoluminescence lifetimes among the synthesized complexes. Therefore, Ir2@DEDTC was chosen to evaluate the photosensitizing ability to produce reactive oxygen species (ROS). Upon blue light irradiation (456 nm), it efficiently produces ROS, i.e., hydroxy radical (•OH) and singlet oxygen (1O2), which was confirmed by electron paramagnetic resonance (EPR) spectroscopy. In vitro photocytotoxicity toward HCT116, HeLa, and PC3 cell lines showed that out of all the synthesized complexes, Ir2@DEDTC has the highest photocytotoxic index (PI > 400) value. Ir2@DEDTC is efficiently taken up by the HCT116 cell line and accumulated mainly in the lysosome and mitochondria of the cells, and after PDT treatment, it elicits cell shrinkage, membrane blebbing, and DNA fragmentation. The phototherapeutic efficacy of Ir2@DEDTC has been investigated against 3D spheroids considering its ability to mimic some of the basic features of solid tumors. The morphology was drastically altered in the Ir2@DEDTC treated 3D spheroid after the light irradiation unleashed the potential of the Ir(III) dithiocarbamate complex as a superior PS for PDT. Hence, mitochondria and lysosome targeted photoactive cyclometalated Ir(III) dithiocarbamate complex exerting oxidative stress via both type I and type II PDT can be regarded as a dual-organelle targeted two-pronged approach for enhanced PDT.
Collapse
Affiliation(s)
- Monika Negi
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Tejal Dixit
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - V Venkatesh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
22
|
Xu Z, Zhao H, Zhu J, Qian J, Tao W, Xie X, Ji D, Chen S, Gao G, Li P, Yang Y, Ling Y. Rational design of β-carboline as an efficient type I/II photosensitizer to enable hypoxia-tolerant chemo-photodynamic therapy. Bioorg Chem 2023; 141:106875. [PMID: 37757670 DOI: 10.1016/j.bioorg.2023.106875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Photodynamic therapy (PDT) is a clinically approved treatment for cancer due to its high spatiotemporal selectivity and non-invasive modality. However, its therapeutic outcomes are always limited to the severe hypoxia environment of the solid tumor. Herein, two novel photosensitizers HY and HYM based on naturally antitumor alkaloids β-carboline were designed and synthesized. Through a series of experiments, we found HY and HYM can produce type II ROS (singlet oxygen) after light irradiation. HYM had higher singlet oxygen quantum yield and molar extinction coefficient than HY, as well as type I PDT behavior, which further let us find that HYM could exhibit robust phototoxicity activities in both normoxia and hypoxia. Meanwhile, HYM showed tumor-selective cytotoxicity with minimal toxicity toward normal cells. Notably, thanks to HYM's hypoxia-tolerant type I/II PDT and tumor selective chemotherapy, HYM showed synergistic inhibitory effect on tumor growth (inhibition rate > 91%). Our research provides a promising photosensitizer for hypoxia-tolerant chemo-photodynamic therapy, and may also give a novel molecular skeleton for photosensitizer design.
Collapse
Affiliation(s)
- Zhongyuan Xu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Huimin Zhao
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Jian Zhu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Jianqiang Qian
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Weizhi Tao
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Xudong Xie
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Dongliang Ji
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China; Department of General Surgery, Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Shuyue Chen
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Ge Gao
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Peng Li
- Department of General Surgery, Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, PR China.
| | - Yumin Yang
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, Jiangsu, PR China.
| | - Yong Ling
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China.
| |
Collapse
|
23
|
Hu J, Zhu J, Chai J, Zhao Y, Luan J, Wang Y. Application of exosomes as nanocarriers in cancer therapy. J Mater Chem B 2023; 11:10595-10612. [PMID: 37927220 DOI: 10.1039/d3tb01991h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Cancer remains the most common lethal disease in the world. Although the treatment choices for cancer are still limited, significant progress has been made over the past few years. By improving targeted drug therapy, drug delivery systems promoted the therapeutic effects of anti-cancer medications. Exosome is a kind of natural nanoscale delivery system with natural substance transport properties, good biocompatibility, and high tumor targeting, which shows great potential in drug carriers, thereby providing novel strategies for cancer therapy. In this review, we present the formation, distribution, and characteristics of exosomes. Besides, extraction and isolation techniques are discussed. We focus on the recent progress and application of exosomes in cancer therapy in four aspects: exosome-mediated gene therapy, chemotherapy, photothermal therapy, and combination therapy. The current challenges and future developments of exosome-mediated cancer therapy are also discussed. Finally, the latest advances in the application of exosomes as drug delivery carriers in cancer therapy are summarized, which provide practical value and guidance for the development of cancer therapy.
Collapse
Affiliation(s)
- Jiawei Hu
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Junfei Zhu
- China-Japan Friendship Hospital, No. 2 Sakura East Street, Chaoyang District, Beijing, China
| | - Jingjing Chai
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Yudie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| |
Collapse
|
24
|
Li J, Du X, Zhou X, Yoon J. Self-Assembly Induced Photosensitization of Long-Tailed Heavy-Atom-Free BODIPY Derivatives for Photodynamic Therapy. Adv Healthc Mater 2023; 12:e2301022. [PMID: 37209386 DOI: 10.1002/adhm.202301022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/09/2023] [Indexed: 05/22/2023]
Abstract
Type I photosensitizers (PSs) are a promising approach for photodynamic therapy (PDT) since they can generate radicals that are tolerant to hypoxia. Thus, the development of highly efficient type I PSs is essential. Self-assembly is a promising strategy for developing novel PSs with desirable properties. Here, a simple and effective approach is developed to create heavy-atom-free PSs for PDT by self-assembling long-tailed boron dipyrromethene dyes (BODIPYs). The resulting aggregates BY-I16 and BY-I18 can efficiently convert their excited energy to the triplet state, producing reactive oxygen species that are essential for PDT. Furthermore, the aggregation and PDT performance can be regulated by adjusting the length of the tailed alkyl chains. As proof of concept, the efficacy of these heavy-atom-free PSs both in vitro and in vivo under both normoxic and hypoxic conditions is demonstrated.
Collapse
Affiliation(s)
- Jigai Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Xianfa Du
- Department of Orthopedics, the Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Xin Zhou
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, South Korea
| |
Collapse
|
25
|
Wang H, He Z, Gao Y, Feng D, Wei X, Huang Y, Hou J, Li S, Zhang W. Dual-Pronged Attack: pH-Driven Membrane-Anchored NIR Dual-Type Nano-Photosensitizer Excites Immunogenic Pyroptosis and Sequester Immune Checkpoint for Enhanced Prostate Cancer Photo-Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302422. [PMID: 37544896 PMCID: PMC10558672 DOI: 10.1002/advs.202302422] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Indexed: 08/08/2023]
Abstract
Prostate cancer (PCa) is a frustrating immunogenic "cold" tumor and generally receives unsatisfied immunotherapy outcomes in the clinic. Pyroptosis is an excellent immunogenic cell death form that can effectively activate the antitumor immune response, promote cytotoxic T-lymphocyte infiltration, and convert tumors from "cold" to "hot." However, the in vivo application of pyroptosis drugs is seriously limited, and the upregulation of tumor PD-L1 caused by photo-immunotherapy further promotes immune escape. Herein, a new nano-photosensitizer (YBS-BMS NPs-RKC) with pH-response integrating immunogenic pyroptosis induction and immune checkpoint blockade is developed. The pH-responsive polymer equipped with the cell membrane anchoring peptide RKC is used as the carrier and further encapsulated with the near-infrared-activated semiconductor polymer photosensitizer YBS and a PD-1/PD-L1 complex small molecule inhibitor BMS-202. The pH-driven membrane-anchoring and pyroptosis activation of YBS-BMS NPs-RKC is clearly demonstrated. In vitro and in vivo studies have shown that this dual-pronged therapy stimulates a powerful antitumor immune response to suppress primary tumor progression and evokes long-term immune memory to inhibit tumor relapse and metastasis. This work provides an effective self-synergistic platform for PCa immunotherapy and a new idea for developing more biocompatible photo-controlled pyroptosis inducers.
Collapse
Affiliation(s)
- He Wang
- Department of UrologyThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Zhangxin He
- Department of UrologyDushu Lake Hospital Affiliated to Soochow UniversityMedical Center of Soochow UniversitySuzhou Dushu Lake HospitalSuzhou215000China
| | - Yijian Gao
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215000China
| | - Dexiang Feng
- Department of UrologyDushu Lake Hospital Affiliated to Soochow UniversityMedical Center of Soochow UniversitySuzhou Dushu Lake HospitalSuzhou215000China
| | - Xuedong Wei
- Department of UrologyThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Yuhua Huang
- Department of UrologyThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Jianquan Hou
- Department of UrologyThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
- Department of UrologyDushu Lake Hospital Affiliated to Soochow UniversityMedical Center of Soochow UniversitySuzhou Dushu Lake HospitalSuzhou215000China
| | - Shengliang Li
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215000China
| | - Weijie Zhang
- Department of UrologyThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
- Department of UrologyDushu Lake Hospital Affiliated to Soochow UniversityMedical Center of Soochow UniversitySuzhou Dushu Lake HospitalSuzhou215000China
| |
Collapse
|
26
|
Liu L, Li C, Gong J, Zhang Y, Ji W, Feng L, Jiang G, Wang J, Tang BZ. A Highly Water-Soluble Aggregation-Induced Emission Luminogen with Anion-π + Interactions for Targeted NIR Imaging of Cancer Cells and Type I Photodynamic Therapy. Angew Chem Int Ed Engl 2023; 62:e202307776. [PMID: 37358791 DOI: 10.1002/anie.202307776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
The low oxygen dependence of type I photosensitizers (PSs) has made them a popular choice for treating solid tumors. However, the drawbacks of poor water solubility, short emission wavelength, poor stability, and inability to distinguish cancer cells from normal cells limit the application of most type I PSs in clinical therapy. Thereby, developing novel type I PSs for overcoming these problems is an urgent but challenging task. Herein, by utilizing the distinctive structural characteristics of anion-π+ interactions, a highly water-soluble type I PS (DPBC-Br) with aggregation-induced emission (AIE) characteristic and near-infrared (NIR) emission is fabricated for the first time. DPBC-Br displays remarkable water solubility (7.3 mM) and outstanding photobleaching resistance, enabling efficient and precise differentiation between tumor cells and normal cells in a wash-free and long-term tracking manner via NIR-I imaging. Additionally, the superior type I reactive oxygen species (ROS) produced by DPBC-Br provide both specific killing of cancer cells in vitro and inhibition of tumor growth in vivo, with negligible systemic toxicity. This study rationally constructs a highly water-soluble type I PS, which has higher reliability and controllability compared with conventional nanoparticle formulating procedures, offering great potential for clinical cancer treatment.
Collapse
Affiliation(s)
- Lingxiu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Chunbin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jianye Gong
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Ying Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Weiwei Ji
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Lina Feng
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
27
|
Zhang S, Yang W, Lu X, Zhang X, Pan Z, Qu DH, Mei D, Mei J, Tian H. Near-infrared AIEgens with high singlet-oxygen yields for mitochondria-specific imaging and antitumor photodynamic therapy. Chem Sci 2023; 14:7076-7085. [PMID: 37389256 PMCID: PMC10306102 DOI: 10.1039/d3sc00588g] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023] Open
Abstract
AIE-active photosensitizers (PSs) are promising for antitumor therapy due to their advantages of aggregation-promoted photosensitizing properties and outstanding imaging ability. High singlet-oxygen (1O2) yield, near-infrared (NIR) emission, and organelle specificity are vital parameters to PSs for biomedical applications. Herein, three AIE-active PSs with D-π-A structures are rationally designed to realize efficient 1O2 generation, by reducing the electron-hole distribution overlap, enlarging the difference on the electron-cloud distribution at the HOMO and LUMO, and decreasing the ΔEST. The design principle has been expounded with the aid of time-dependent density functional theory (TD-DFT) calculations and the analysis of electron-hole distributions. The 1O2 quantum yields of AIE-PSs developed here can be up to 6.8 times that of the commercial photosensitizer Rose Bengal under white-light irradiation, thus among the ones with the highest 1O2 quantum yields reported so far. Moreover, the NIR AIE-PSs show mitochondria-targeting capability, low dark cytotoxicity but superb photo-cytotoxicity, and satisfactory biocompatibility. The in vivo experimental results demonstrate good antitumor efficacy for the mouse tumour model. Therefore, the present work will shed light on the development of more high-performance AIE-PSs with high PDT efficiency.
Collapse
Affiliation(s)
- Shasha Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Wenfang Yang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Xiao Lu
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health 56 South Lishi Road, Xicheng District Beijing 100045 P. R. China
| | - Xinyi Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Zhichao Pan
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Dong Mei
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health 56 South Lishi Road, Xicheng District Beijing 100045 P. R. China
| | - Ju Mei
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
28
|
Lu B, Wang L, Tang H, Cao D. Recent advances in type I organic photosensitizers for efficient photodynamic therapy for overcoming tumor hypoxia. J Mater Chem B 2023; 11:4600-4618. [PMID: 37183673 DOI: 10.1039/d3tb00545c] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Photodynamic therapy (PDT) with an oxygen-dependent character is a noninvasive therapeutic method for cancer treatment. However, its clinical therapeutic effect is greatly restricted by tumor hypoxia. What's more, both PDT-mediated oxygen consumption and microvascular damage aggravate tumor hypoxia, thus, further impeding therapeutic outcomes. Compared to type II PDT with high oxygen dependence and high oxygen consumption, type I PDT with less oxygen consumption exhibits great potential to overcome the vicious hypoxic plight in solid tumors. Type I photosensitizers (PSs) are significantly important for determining the therapeutic efficacy of PDT, which performs an electron transfer photochemical reaction with the surrounding oxygen/substrates to generate highly cytotoxic free radicals such as superoxide radicals (˙O2-) as type I ROS. In particular, the primary precursor (˙O2-) would progressively undergo a superoxide dismutase (SOD)-mediated disproportionation reaction and a Haber-Weiss/Fenton reaction, yielding higher cytotoxic species (˙OH) with better anticancer effects. As a result, developing high-performance type I PSs to treat hypoxic tumors has become more and more important and urgent. Herein, the latest progress of organic type I PSs (such as AIE-active cationic/neutral PSs, cationic/neutral PSs, polymer-based PSs and supramolecular self-assembled PSs) for monotherapy or synergistic therapeutic modalities is summarized. The molecular design principles and strategies (donor-acceptor system, anion-π+ incorporation, polymerization and cationization) are highlighted. Furthermore, the future challenges and prospects of type I PSs in hypoxia-overcoming PDT are proposed.
Collapse
Affiliation(s)
- Bingli Lu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| |
Collapse
|
29
|
Jia F, Li Y, Gao Y, Wang X, Lu J, Cui X, Pan Z, Xu C, Deng X, Wu Y. Long-acting anti-colorectal cancer by nanocomplex co-regulating Bmi1 through miR-218 and siCCAT1. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
30
|
Li G, Wu M, Xu Y, Wang Q, Liu J, Zhou X, Ji H, Tang Q, Gu X, Liu S, Qin Y, Wu L, Zhao Q. Recent progress in the development of singlet oxygen carriers for enhanced photodynamic therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Ding Y, Pan Q, Gao W, Pu Y, Luo K, He B. Reactive oxygen species-upregulating nanomedicines towards enhanced cancer therapy. Biomater Sci 2023; 11:1182-1214. [PMID: 36606593 DOI: 10.1039/d2bm01833k] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) play a crucial role in physiological and pathological processes, emerging as a therapeutic target in cancer. Owing to the high concentration of ROS in solid tumor tissues, ROS-based treatments, such as photodynamic therapy and chemodynamic therapy, and ROS-responsive drug delivery systems have been widely explored to powerfully and specifically suppress tumors. However, their anticancer efficacy is still hampered by the heterogeneous ROS levels, and thus comprehensively upregulating the ROS levels in tumor tissues can ensure an enhanced therapeutic effect, which can further sensitize and/or synergize with other therapies to inhibit tumor growth and metastasis. Herein, we review the recently emerging drug delivery strategies and technologies for increasing the H2O2, ˙OH, 1O2, and ˙O2- concentrations in cancer cells, including the efficient delivery of natural enzymes, nanozymes, small molecular biological molecules, and nanoscale Fenton-reagents and semiconductors and neutralization of intracellular antioxidant substances and localized input of mechanical and electromagnetic waves (such as ultrasound, near infrared light, microwaves, and X-rays). The applications of these ROS-upregulating nanosystems in enhancing and synergizing cancer therapies including chemotherapy, chemodynamic therapy, phototherapy, and immunotherapy are surveyed. In addition, we discuss the challenges of ROS-upregulating systems and the prospects for future studies.
Collapse
Affiliation(s)
- Yuanyuan Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
32
|
Wang L, Qian Y. Modification of a SOCT-ISC type triphenylamine-BODIPY photosensitizer by a multipolar dendrimer design for photodynamic therapy and two-photon fluorescence imaging. Biomater Sci 2023; 11:1459-1469. [PMID: 36602169 DOI: 10.1039/d2bm01838a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, a series of multipolar triphenylamine-BODIPY photosensitizers T-BDPn (n = 1, 2, 3) was synthesized. Compared with T-BDP1 of D-A configuration, the multipolar T-BDP3 dendrimer have higher singlet oxygen efficiency (44%), better fluorescence quantum yield (7.45%), and could be used in the simulated photodynamic therapy in A-549 cells and two-photon fluorescence imaging in zebrafish. The theoretical calculation and fs-transient absorption spectra indicated that the reason of its higher singlet oxygen efficiency was that the multipolar T-BDP3 dendrimer could generate more nearly degenerate charge transfer (CT) states and triplet states, which could further increase the possibility of spin-orbit charge-transfer intersystem crossing (SOCT-ISC) process. In the simulated photodynamic therapy of A-549 cells, T-BDP3 shows good cytocompatibility, great phototoxicity with its IC50 value of 3.17 μM, and could kill cancer cells effectively with the dosage of 5 μM under 10 min irradiation in the AO/EB double-staining experiment. In the fluorescence imaging of zebrafish, the experiment results indicate that T-BDP3 could generate superoxide radical (O2˙-) in the body of zebrafish and could be applied to the two-photon fluorescence imaging under 800 nm excitation. The above experiment results shown that the multipolar dendrimer design was an effective approach to improve the key parameters of SOCT-ISC-type BODIPY photosensitizer and was ready for further two-photon photodynamic therapy in organisms.
Collapse
Affiliation(s)
- Lingfeng Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Ying Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
33
|
Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm (Beijing) 2023; 4:e187. [PMID: 36654533 PMCID: PMC9834710 DOI: 10.1002/mco2.187] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2023] Open
Abstract
Cancer is a complex disease associated with a combination of abnormal physiological process and exhibiting dysfunctions in multiple systems. To provide effective treatment and diagnosis for cancer, current treatment strategies simultaneously focus on various tumor targets. Based on the rapid development of nanotechnology, nanocarriers have been shown to exhibit excellent potential for cancer therapy. Compared with nanoparticles with single functions, multifunctional nanoparticles are believed to be more aggressive and potent in the context of tumor targeting. However, the development of multifunctional nanoparticles is not simply an upgraded version of the original function, but involves a sophisticated system with a proper backbone, optimized modification sites, simple preparation method, and efficient function integration. Despite this, many well-designed multifunctional nanoparticles with promising therapeutic potential have emerged recently. Here, to give a detailed understanding and analyzation of the currently developed multifunctional nanoparticles, their platform structures with organic or inorganic backbones were systemically generalized. We emphasized on the functionalization and modification strategies, which provide additional functions to the nanoparticle. We also discussed the application combination strategies that were involved in the development of nanoformulations with functional crosstalk. This review thus provides an overview of the construction strategies and application advances of multifunctional nanoparticles.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Xingmei Duan
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuan ProvinceChina
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
34
|
Wang J, Li H, Zhu Y, Yang M, Huang J, Zhu X, Yu ZP, Lu Z, Zhou H. Unveiling upsurge of photogenerated ROS: control of intersystem crossing through tuning aggregation patterns. Chem Sci 2023; 14:323-330. [PMID: 36687347 PMCID: PMC9811492 DOI: 10.1039/d2sc06445f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Photo-induced reactive oxygen species (ROS) generation by organic photosensitizers (PSs), which show potential in significant fields such as photodynamic therapy (PDT), are highly dependent on the formation of the excited triplet state through intersystem crossing (ISC). The current research on ISC of organic PSs generally focuses on molecular structure optimization. In this manuscript, the influence of aggregation patterns on ISC was investigated by constructing homologous monomers (S-TPA-PI and L-TPA-PI) and their homologous dimers (S-2TPA-2PI and L-2TPA-2PI). In contrast to J-aggregated S-TPA-PI, S-2TPA-2PI-aggregate forming "end-to-end" stacking through π-π interaction could generate ROS more efficiently, due to a prolonged exciton lifetime and enhanced ISC rate constant (k ISC), which were revealed by femtosecond transient absorption spectroscopy and theoretical calculations. This finding was further validated by the regulation of aggregation patterns induced by host-guest interaction. Moreover, S-2TPA-2PI could target mitochondria and achieve rapid mitophagy to cause more significant cancer cell suppression. Overall, the delicate supramolecular dimerization tactics not only revealed the structure-property relationship of organic PSs but also shed light on the development of a universal strategy in future PDT and photocatalysis fields.
Collapse
Affiliation(s)
- Junjun Wang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| | - Hao Li
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology School of Physics and Electronic Information, Anhui Normal UniversityWuhu 241002China
| | - Yicai Zhu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| | - Mingdi Yang
- School of Materials and Chemical Engineering, Anhui Jianzhu UniversityHefei 230601P. R. China
| | - Jing Huang
- School of Materials and Chemical Engineering, Anhui Jianzhu UniversityHefei 230601P. R. China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| | - Zhi-Peng Yu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| | - Zhou Lu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology School of Physics and Electronic Information, Anhui Normal UniversityWuhu 241002China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| |
Collapse
|
35
|
Sun H, Guo R, Guo Y, Song J, Li Z, Song F. Boosting Type-I and Type-II ROS Production of Water-Soluble Porphyrin for Efficient Hypoxic Tumor Therapy. Mol Pharm 2023; 20:606-615. [PMID: 36398863 DOI: 10.1021/acs.molpharmaceut.2c00822] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
As the most successful clinically approved photosensitizers, porphyrins have been extensively employed in the photodynamic therapy (PDT) of cancers. However, their poor water solubility, aggregation-induced self-quenching on ROS generation, and a low tolerance for a hypoxic condition usually result in unsatisfied therapeutic outcomes. Therefore, great efforts have been dedicated to improving the PDT efficacy of porphyrin-type photosensitizers in treating hypoxic tumors, including combination with additional active components or therapies, which can significantly complicate the therapeutic process. Herein, we report a novel water-soluble porphyrin with O-linked cationic side chains, which exhibits good water solubility, high photostability, and significantly enhanced ROS generation efficacy in both type-I and type-II photodynamic pathways. We have also found that the end charges of side chains can dramatically affect the ROS generation of the porphyrin. The cationic porphyrin exhibited high in vitro PDT efficacy with low IC50 values both in normoxia and hypoxia. Hence, during in vivo PDT study, the cationic porphyrin displayed highly effective tumor ablation capability. This study demonstrates the power of side-chain chemistry in tuning the photodynamic property of porphyrin, which offers a new effective strategy to enhance the anticancer performance of photosensitizers for fulfilling the increasing demands for cancer therapy in clinics.
Collapse
Affiliation(s)
- Han Sun
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong266237, China
| | - Ruihua Guo
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong266237, China
| | - Yanhui Guo
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong266237, China
| | - Jitao Song
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong266237, China
| | - Zhiliang Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong266237, China
| | - Fengling Song
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong266237, China
| |
Collapse
|
36
|
Su L, Xian J, Fu S, Zhu Y, Cao H, Feng Z, Tian Y, Tian X. Nanoscopic evaluation on mitochondrial ultrastructures by regulating reactive oxygen species productivity within terpyridyl Zn(II) complexes with different alkyl chain lengths. NANOSCALE 2022; 15:350-355. [PMID: 36504372 DOI: 10.1039/d2nr04088c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mitochondria targeting complexes are widely utilized as photosensitizers in photodynamic therapy. However, the mechanisms by which they regulate reactive oxygen species (ROS) production at the molecular level and their influence on intracellular mitochondrial signaling and ultrastructures remain rarely studied. Herein, we present two terpyridyl Zn(II) complexes with different side alkyl chain lengths (Zn-2C and Zn-6C) that lead to low and high ROS productivities in vitro, respectively. Both complexes could enter live cells effectively with minimal dark toxicity and accumulate preferably in the mitochondria. We also demonstrated that Zn-6C, with more efficient ROS productivity, could significantly downregulate the caspase signaling pathway but showed no evident influence on mitochondrial membrane proteins. We also highlighted and compared the mitochondrial ultrastructural variations during such a process by stimulated emission depletion (STED) super-resolution nanoscopy.
Collapse
Affiliation(s)
- Liping Su
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Centre (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Jinghong Xian
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shiqin Fu
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Centre (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Yuhan Zhu
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Hefei 230039, China
| | - Hongzhi Cao
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Hefei 230039, China
| | - Zhihui Feng
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Hefei 230039, China
| | - Yupeng Tian
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Hefei 230039, China
| | - Xiaohe Tian
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Centre (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610000, China
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Hefei 230039, China
| |
Collapse
|
37
|
Li J, Wang J, Zhu Y, Zhu X, Yu Z, Zhang J, Wang L, Yu J, Liu Z, Zhou H. A FLIM photosensitizer: Targeting “Affinal” suborganelles to accelerate cancer cell oxidative stress and apoptosis. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
38
|
Rational design of a water-soluble TICT-AIEE-active fluorescent probe for mercury ion detection. Anal Chim Acta 2022; 1230:340337. [DOI: 10.1016/j.aca.2022.340337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/23/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
|
39
|
Wang S, Zhao Z, Yao J, Jiang S, Li ZT, Ma D. Reactive oxygen specie-induced photodynamic therapy activation by supramolecular strategy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Meng Z, Xue H, Wang T, Chen B, Dong X, Yang L, Dai J, Lou X, Xia F. Aggregation-induced emission photosensitizer-based photodynamic therapy in cancer: from chemical to clinical. J Nanobiotechnology 2022; 20:344. [PMID: 35883086 PMCID: PMC9327335 DOI: 10.1186/s12951-022-01553-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer remains a serious threat to human health owing to the lack of effective treatments. Photodynamic therapy (PDT) has emerged as a promising non-invasive cancer treatment that consists of three main elements: photosensitizers (PSs), light and oxygen. However, some traditional PSs are prone to aggregation-caused quenching (ACQ), leading to reduced reactive oxygen species (ROS) generation capacity. Aggregation-induced emission (AIE)-PSs, due to their distorted structure, suppress the strong molecular interactions, making them more photosensitive in the aggregated state instead. Activated by light, they can efficiently produce ROS and induce cell death. PS is one of the core factors of efficient PDT, so proceeding from the design and preparation of AIE-PSs, including how to manipulate the electron donor (D) and receptor (A) in the PSs configuration, introduce heavy atoms or metal complexes, design of Type I AIE-PSs, polymerization-enhanced photosensitization and nano-engineering approaches. Then, the preclinical experiments of AIE-PSs in treating different types of tumors, such as ovarian cancer, cervical cancer, lung cancer, breast cancer, and its great potential clinical applications are discussed. In addition, some perspectives on the further development of AIE-PSs are presented. This review hopes to stimulate the interest of researchers in different fields such as chemistry, materials science, biology, and medicine, and promote the clinical translation of AIE-PSs.
Collapse
Affiliation(s)
- Zijuan Meng
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Huiying Xue
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Tingting Wang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Xiyuan Dong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Lili Yang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
41
|
Wang Y, Li J, Zhang Y, Nan Y, Zhou X. Rational design of a meso phosphate-substituted pyronin as a type I photosensitizer for photodynamic therapy. Chem Commun (Camb) 2022; 58:7797-7800. [PMID: 35735141 DOI: 10.1039/d2cc02124b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Type I photodynamic therapy (PDT) with less oxygen consumption shows great potential to overcome the malignant hypoxia in solid tumors. Herein, a novel meso phosphate-substituted pyronin PY-P and its nanoparticles (PY-P NPs) were prepared as an efficient type I organic photosensitizer. The in vivo data prove that PY-P NPs have outstanding low dark toxicity but high photocytotoxicity under hypoxia (<1% O2).
Collapse
Affiliation(s)
- Yong Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Qingdao University, Shandong, China.
| | - Jigai Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, Qingdao University, Shandong, China.
| | - Yukun Zhang
- Cancer Institute, the Affiliated Hospital of Qingdao University, Shandong, China
| | - Yi Nan
- Department of Chemistry, Shandong University, Shandong, China
| | - Xin Zhou
- Department of Chemistry, College of Chemistry and Chemical Engineering, Qingdao University, Shandong, China. .,Cancer Institute, the Affiliated Hospital of Qingdao University, Shandong, China
| |
Collapse
|
42
|
Li P, He X, Li Y, Lam JWY, Kwok RTK, Wang CC, Xia LG, Tang BZ. Recent advances in aggregation-induced emission luminogens in photoacoustic imaging. Eur J Nucl Med Mol Imaging 2022; 49:2560-2583. [PMID: 35277741 DOI: 10.1007/s00259-022-05726-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/13/2022] [Indexed: 12/14/2022]
Abstract
Photoacoustic imaging (PAI) is a rapidly emerging modality in biomedical research with the advantages of noncontact operation, high optical resolution, and deep penetration. Great efforts and progress in the development of PAI agents with improved imaging resolution and sensitivity have been made over the past 2 decades. Among them, organic agents are the most promising candidates for preclinical/clinical applications due to their outstanding in vivo properties and facile biofunctionalities. Motivated by the unique properties of aggregation-induced emission (AIE) luminogens (AIEgens), various optical probes have been developed for bioanalyte detection, multimodal bioimaging, photodynamic/photothermal therapy, and imaging-guided therapeutics. In particular, AIE-active contrast agents have been demonstrated in PAI applications with excellent performance in imaging resolution and tissue permeability in vivo. This paper presents a brief overview of recent progress in AIE-based agents in the field of photoacoustic imaging. In particular, we focus on the basic concepts, data sorting and comparison, developing trends, and perspectives of photoacoustic imaging. Through numerous typical examples, the way each system realizes the desired photoacoustic performance in various biomedical applications is clearly illustrated. We believe that AIE-based PAI agents would be promising multifunctional theranostic platforms in clinical fields and will facilitate significant advancements in this research topic.
Collapse
Affiliation(s)
- Pei Li
- Department of Gastrointestinal Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital, Southern University of Science and Technology, 518020, Shenzhen, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
- Department of General Surgery, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Xuewen He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yang Li
- Department of Gastrointestinal Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital, Southern University of Science and Technology, 518020, Shenzhen, China
- Department of General Surgery, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Jacky Wing Yip Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan Tsz Kin Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Cun Chuan Wang
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
| | - Li Gang Xia
- Department of Gastrointestinal Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital, Southern University of Science and Technology, 518020, Shenzhen, China.
- Department of General Surgery, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China.
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, 518172, Guangdong, China
| |
Collapse
|
43
|
Locally twisted donor-π-acceptor fluorophore based on phenanthroimidazole-phenoxazine hybrid for electroluminescence. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Roque JA, Cole HD, Barrett PC, Lifshits LM, Hodges RO, Kim S, Deep G, Francés-Monerris A, Alberto ME, Cameron CG, McFarland SA. Intraligand Excited States Turn a Ruthenium Oligothiophene Complex into a Light-Triggered Ubertoxin with Anticancer Effects in Extreme Hypoxia. J Am Chem Soc 2022; 144:8317-8336. [PMID: 35482975 PMCID: PMC9098688 DOI: 10.1021/jacs.2c02475] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ru(II) complexes that undergo photosubstitution reactions from triplet metal-centered (3MC) excited states are of interest in photochemotherapy (PCT) due to their potential to produce cytotoxic effects in hypoxia. Dual-action systems that incorporate this stoichiometric mode to complement the oxygen-dependent photosensitization pathways that define photodynamic therapy (PDT) are poised to maintain antitumor activity regardless of the oxygenation status. Herein, we examine the way in which these two pathways influence photocytotoxicity in normoxia and in hypoxia using the [Ru(dmp)2(IP-nT)]2+ series (where dmp = 2,9-dimethyl-1,10-phenanthroline and IP-nT = imidazo[4,5-f][1,10]phenanthroline tethered to n = 0-4 thiophene rings) to switch the dominant excited state from the metal-based 3MC state in the case of Ru-phen-Ru-1T to the ligand-based 3ILCT state for Ru-3T and Ru-4T. Ru-phen-Ru-1T, having dominant 3MC states and the largest photosubstitution quantum yields, are inactive in both normoxia and hypoxia. Ru-3T and Ru-4T, with dominant 3IL/3ILCT states and long triplet lifetimes (τTA = 20-25 μs), have the poorest photosubstitution quantum yields, yet are extremely active. In the best instances, Ru-4T exhibit attomolar phototoxicity toward SKMEL28 cells in normoxia and picomolar in hypoxia, with phototherapeutic index values in normoxia of 105-1012 and 103-106 in hypoxia. While maximizing excited-state deactivation through photodissociative 3MC states did not result in bonafide dual-action PDT/PCT agents, the study has produced the most potent photosensitizer we know of to date. The extraordinary photosensitizing capacity of Ru-3T and Ru-4T may stem from a combination of very efficient 1O2 production and possibly complementary type I pathways via 3ILCT excited states.
Collapse
Affiliation(s)
- John A. Roque
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Patrick C. Barrett
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Liubov M. Lifshits
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Rachel O. Hodges
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | | | - Marta E. Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| |
Collapse
|
45
|
Liu Z, Wang Q, Qiu W, Lyu Y, Zhu Z, Zhao X, Zhu WH. AIE-active luminogens as highly efficient free-radical ROS photogenerator for image-guided photodynamic therapy. Chem Sci 2022; 13:3599-3608. [PMID: 35432854 PMCID: PMC8943840 DOI: 10.1039/d2sc00067a] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/22/2022] [Indexed: 12/23/2022] Open
Abstract
Image-guided photodynamic therapy (PDT) can realize highly precise and effective therapy via the integration of imaging and therapy, and has created high requirements for photosensitizers. However, the PDT modality usually utilizes conventional type II photosensitizers, resulting in unsatisfactory imaging and therapeutic outcomes due to aggregation-caused quenching (ACQ), "always on" fluorescence and strong oxygen dependence. Herein, we report the type I-based aggregation-induced emission (AIE) photosensitizer TCM-CPS with low oxygen dependence, near-infrared (NIR) emission and "off-on" fluorescence; in particular, it produces more reactive oxygen species (ROS) than commercially available Chlorin e6 and Rose Bengal. In the rational design of the AIE-based photosensitizer TCM-CPS, the strongly electron-donating carbazole unit and π-thiophene bridge distinctly extend the emission wavelength and decrease the autofluorescence interference in bio-imaging, and the hydrophilic pyridinium salt group guarantees good molecular dispersion and maintains the fluorescence-off state in the aqueous system to decrease the initial fluorescence background. Moreover, the strong donor-π-acceptor (D-π-A) character in TCM-CPS greatly separates the HOMO-LUMO distribution, enhancing the ROS generation, and TCM-CPS was constructed as a type I photosensitizer with the assistance of strong intramolecular charge transfer in the electron-rich anion-π+ structure. Based on its favorable hydrophilicity and photosensitivity, TCM-CPS was found to be a highly efficient free-radical ROS photogenerator for both visualizing cells using light-up NIR fluorescence and efficiently killing cancer cells upon light irradiation. The positively charged TCM-CPS could quickly bind to bacteria via electrostatic interactions to provide a light-up signal and kill bacteria at a low concentration. In the PDT treatment of bacteria-infected mice, the mice exhibited accelerated wound healing with low wound infection. Thus, the AIE-based type I photosensitizer TCM-CPS has great potential to replace commercially available photosensitizers in the image-guided PDT modality for the treatment of cancer and bacterial infection.
Collapse
Affiliation(s)
- Zhenxing Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Qi Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Wanshan Qiu
- Department of Cardiothoracic Surgery, Children's Hospital of Fudan University Shanghai 201102 China
| | - Yanting Lyu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Zhirong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Xiaolei Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Wei-Hong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|