1
|
Huang W, Wang A, Wang W, Lin L, Rong J, Tian J, Zhang W. A Bacteria-Targeting Supramolecular Nanophotosensitizer for Combating Multidrug Resistant Bacteria. ACS Biomater Sci Eng 2025; 11:1741-1750. [PMID: 39961745 DOI: 10.1021/acsbiomaterials.4c02047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
The increasing prevalence of multidrug-resistant bacteria is a significant global health threat. In contrast to conventional antibiotic treatments, photodynamic therapy (PDT) offers a promising alternative by reducing the bacterial adaptability to antibiotics and bactericides. However, traditional photosensitizers encounter poor antimicrobial efficacy due to poor hydrophilicity of photosensitizers, short lifespan, narrow diffusion radius of reactive oxygen species (ROS), and the risk of exacerbating inflammation. In this study, we report a bacterial-targeting supramolecular nanophotosensitizer for combating multidrug resistant bacteria. The nanophotosensitizer, formed through host-guest interactions and self-assembly of tetra-cyclodextrin-modified silver porphyrin (AgTPP-CD4), adamantyl-modified phenylboronic acid (Ad-PBA), and curcumin (Cur), can effectively target and kill methicillin-resistant Staphylococcus aureus (MRSA). Moreover, it reduces inflammation and promotes wound healing in MRSA-infected wounds without inducing drug resistance. The combination of supramolecular chemistry and targeted PDT offers a promising strategy for combating multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Wenlong Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Anan Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Wenchen Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Lihong Lin
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jianyu Rong
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
2
|
Li K, Ru Y, Zheng H, Qin X, Li Z, Xia X, Dong Q, Ma Y. Advancements in photodynamic inactivation: A comprehensive review of photosensitizers, mechanisms, and applications in food area. Compr Rev Food Sci Food Saf 2025; 24:e370127. [PMID: 39898886 DOI: 10.1111/1541-4337.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/02/2025] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
Food microbial contamination results in serious food safety issues and numerous food loss and waste, presenting one of the most significant challenges facing the global food system. Photodynamic inactivation (PDI) technology, which combines light and photosensitizers (PS) to provide antimicrobial effects, is an ideal nonthermal antimicrobial technique for the food industry. This review provides a comprehensive overview of PDI technology, beginning with the fundamental photoactivation principles of PS and the pathways of photoinduced reactive oxygen species (ROS) generation. PS is the most critical factor affecting PDI efficiency, which is categorized into three types: organic, metal oxide-, and carbon-based. This review systemically summarizes the photophysical properties, in vitro PDI performances, potential enhancement strategies, and the advantages and limitations of each type of PS. Furthermore, the antimicrobial mechanisms of the PDI technologies are analyzed at both microscopic and molecular levels. Finally, the current applications of PDI in various food systems are discussed, along with the associated challenges and opportunities. Overall, this review offers crucial insights into optimizing and advancing PDI technology, highlighting key challenges and suggesting future research directions to enhance the effectiveness and scalability of PDI for diverse food applications.
Collapse
Affiliation(s)
- Kexin Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yibo Ru
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hao Zheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xuejuan Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yue Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Mei L, Zhang Y, Wang K, Chen S, Song T. Nanomaterials at the forefront of antimicrobial therapy by photodynamic and photothermal strategies. Mater Today Bio 2024; 29:101354. [PMID: 39655165 PMCID: PMC11626539 DOI: 10.1016/j.mtbio.2024.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
In the face of the increasing resistance of microorganisms to traditional antibiotics, the development of innovative treatment methods is becoming increasingly urgent. Nanophototherapy technology can precisely target the infected area and achieve synergistic antibacterial effects in multiple modes. This phototherapy method has shown significant efficacy in treating diseases caused by drug-resistant bacteria, especially in the elimination of biofilms, where it has demonstrated strong dissolution capabilities. PTT utilizes photothermal agents to convert near-infrared light into heat, effectively killing bacteria and promoting tissue regeneration. Similarly, PDT utilizes photosensitizers, which produce reactive oxygen species (ROS) when activated by light, destroying the structure and function of bacterial cells. This review summarizes photothermal agents and photosensitizers used for antibacterial purposes. In conducting our literature review, we employed a systematic approach to ensure a comprehensive and representative selection of studies. Additionally, this article explores the potential of phototherapy in regulating wound microenvironments, promoting wound healing, and activating the immune system. Nanophototherapeutic materials show great potential for application in antibacterial treatment and are expected to provide innovative solutions for drug-resistant bacterial infections that traditional antibiotics are struggling to address.
Collapse
Affiliation(s)
- Ling Mei
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yifan Zhang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Kaixi Wang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Sijing Chen
- Sichuan Electric Power Hospital, Chengdu, Sichuan Province, China
| | - Tao Song
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
4
|
Ning XF, Zhu YQ, Sun H, Yang Y, Liu MX. The Latest Applications of Carbon-Nitride-Based Materials for Combination Treatment of Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64410-64423. [PMID: 39530540 DOI: 10.1021/acsami.4c12350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Carbon-nitride-based (CN-based) materials have shown great potential in combination therapy in recent years. Due to their outstanding biocompatibility, ease of modification, and adjustable band-gap position, CN-based materials can be applied as photosensitizers in photodynamic therapy (PDT) and light-driven water-splitting catalysts in gas therapy. After doping with other elements, the photocatalytic performance of CN-based materials will be enhanced, and more interesting functions will be obtained. In addition, the large specific surface area also promotes CN-based materials as drug carriers combined with other therapeutic modalities to achieve combination therapy. This Review analyzes and summarizes the latest research on CN-based materials in combined therapies, such as PDT with photothermal therapy (PTT), PDT with sonodynamic therapy (SDT), PDT with drug therapy, PDT with gene therapy, gas therapy with PDT, and bioimaging-guided combined therapy. In particular, the applications of CN-based materials in gas and gene combination therapy are summarized for the first time. Finally, the current challenges faced by CN-based materials in combination therapy are further discussed.
Collapse
Affiliation(s)
- Xu-Feng Ning
- School of Pharmacy and Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Ya-Qi Zhu
- School of Pharmacy and Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
| | - Hao Sun
- School of Pharmacy and Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
| | - Yuan Yang
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Ming-Xuan Liu
- School of Pharmacy and Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
5
|
Chang Y, Xu KQ, Yang XL, Xie MH, Mo Z, Li ML, Ju HX. Zinc hexacyanoferrate/g-C 3N 4 nanocomposites with enhanced photothermal and photodynamic properties for rapid sterilization and wound healing. Colloids Surf B Biointerfaces 2024; 240:113998. [PMID: 38823340 DOI: 10.1016/j.colsurfb.2024.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Photoactivated therapy has gradually emerged as a promising and rapid method for combating bacteria, aimed at overcoming the emergence of drug-resistant strains resulting from the inappropriate use of antibiotics and the subsequent health risks. In this work, we report the facile fabrication of Zn3[Fe(CN)6]/g-C3N4 nanocomposites (denoted as ZHF/g-C3N4) through the in-situ loading of zinc hexacyanoferrate nanospheres onto two-dimensional g-C3N4 sheets using a simple metal-organic frameworks construction method. The ZHF/g-C3N4 nanocomposite exhibits enhanced antibacterial activity through the synergistic combination of the excellent photothermal properties of ZHF and the photodynamic capabilities of g-C3N4. Under dual-light irradiation (420 nm + 808 nm NIR), the nanocomposites achieve remarkable bactericidal efficacy, eliminating 99.98% of Escherichia coli and 99.87% of Staphylococcus aureus within 10 minutes. Furthermore, in vivo animal experiments have demonstrated the outstanding capacity of the composite in promoting infected wound healing, achieving a remarkable wound closure rate of 99.22% after a 10-day treatment period. This study emphasizes the potential of the ZHF/g-C3N4 nanocomposite in effective antimicrobial applications, expanding the scope of synergistic photothermal/photodynamic therapy strategies.
Collapse
Affiliation(s)
- Yi Chang
- The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng 224001, PR China
| | - Ke-Qiang Xu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China.
| | - Xiu-Li Yang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Ming-Hua Xie
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Zhao Mo
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Meng-Lin Li
- Department of Basic Medical, Jiangsu Vocational College of Medicine, Yancheng 224005, PR China
| | - Hui-Xiang Ju
- The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng 224001, PR China.
| |
Collapse
|
6
|
Xu B, Yu D, Xu C, Gao Y, Sun H, Liu L, Yang Y, Qi D, Wu J. Study on synergistic mechanism of molybdenum disulfide/sodium carboxymethyl cellulose composite nanofiber mats for photothermal/photodynamic antibacterial treatment. Int J Biol Macromol 2024; 266:130838. [PMID: 38521322 DOI: 10.1016/j.ijbiomac.2024.130838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Innovative antibacterial therapies using nanomaterials, such as photothermal (PTT) and photodynamic (PDT) treatments, have been developed for treating wound infections. However, creating secure wound dressings with these therapies faces challenges. The primary focus of this study is to prepare an antibacterial nanofiber dressing that effectively incorporates stable loads of functional nanoparticles and demonstrates an efficient synergistic effect between PTT and PDT. Herein, a composite nanofiber mat was fabricated, integrating spherical molybdenum disulfide (MoS2) nanoparticles. MoS2 was deposited onto polylactic acid (PLA) nanofiber mats using vacuum filtration, which was further stabilized by sodium carboxymethyl cellulose (CMC) adhesion and glutaraldehyde (GA) cross-linking. The composite nanofibers demonstrated synergistic antibacterial effects under NIR light irradiation, and the underlying mechanism was explored. They induce bacterial membrane permeability, protein leakage, and intracellular reactive oxygen species (ROS) elevation, ultimately leading to >95 % antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), which is higher than that of single thermotherapy (almost no antibacterial activity) or ROS therapy (about 80 %). In addition, the composite nanofiber mats exhibited promotion effects on infected wound healing in vivo. This study demonstrates the great prospects of composite nanofiber dressings in clinical treatment of bacterial-infected wounds.
Collapse
Affiliation(s)
- Bingjie Xu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dan Yu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chenlu Xu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yujie Gao
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hengqiu Sun
- Department of Pediatric Surgery, Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou 318000, China.
| | - Lei Liu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yang Yang
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongming Qi
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, China.
| | - Jindan Wu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, China.
| |
Collapse
|
7
|
Miao L, Wei Y, Lu X, Jiang M, Liu Y, Li P, Ren Y, Zhang H, Chen W, Han B, Lu W. Interaction of 2D nanomaterial with cellular barrier: Membrane attachment and intracellular trafficking. Adv Drug Deliv Rev 2024; 204:115131. [PMID: 37977338 DOI: 10.1016/j.addr.2023.115131] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
The cell membrane serves as a barrier against the free entry of foreign substances into the cell. Limited by factors such as solubility and targeting, it is difficult for some drugs to pass through the cell membrane barrier and exert the expected therapeutic effect. Two-dimensional nanomaterial (2D NM) has the advantages of high drug loading capacity, flexible modification, and multimodal combination therapy, making them a novel drug delivery vehicle for drug membrane attachment and intracellular transport. By modulating the surface properties of nanocarriers, it is capable of carrying drugs to break through the cell membrane barrier and achieve precise treatment. In this review, we review the classification of various common 2D NMs, the primary parameters affecting their adhesion to cell membranes, and the uptake mechanisms of intracellular transport. Furthermore, we discuss the therapeutic potential of 2D NMs for several major disorders. We anticipate this review will deepen researchers' understanding of the interaction of 2D NM drug carriers with cell membrane barriers, and provide insights for the subsequent development of novel intelligent nanomaterials capable of intracellular transport.
Collapse
Affiliation(s)
- Li Miao
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Yaoyao Wei
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Xue Lu
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Min Jiang
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China; State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yixuan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peishan Li
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuxin Ren
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China.
| | - Wen Chen
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China.
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China.
| | - Wanliang Lu
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
8
|
Zeng W, Qian J, Wang Y, Shou M, Kai G. Bletilla Striata polysaccharides thermosensitive gel for photothermal treatment of bacterial infection. Int J Biol Macromol 2023; 253:127430. [PMID: 37838114 DOI: 10.1016/j.ijbiomac.2023.127430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Skin is the most important defense shield which touched external environment directly. Effectively clearing microbes in infected wound via non-antibiotic therapy is crucial for the promotion of recovery in complex biological environments, and the wound healing is a crucial process after sterilization to avoid superinfection. Herein, a kind of Prussian blue-based photothermal responsive gel, Bletilla striata polysaccharide-mingled, isatin-functionalized Prussian blue gel (PB-ISA/BSP gel) was reported for effective treatment of bacterial infection and wound healing. The introduction of effective components of traditional Chinese medicine (TCM), isatin (ISA), enhanced the efficiency of sterilization synergistically. Furthermore, the process of wound healing was promoted by Bletilla striata polysaccharides (BSP). PB-ISA@BSP had a considerable antibacterial rate with 98.5 % under an 808 nm laser for 10 min in vitro. Besides, PB-ISA/BSP gel showed an effective antibacterial efficacy in vivo and a fast wound healing rate as well. The as-prepared functional particles can invade and destroy bacteria membrane to kill microbes. This work highlights that PB-ISA/BSP gel is a promising antibacterial agent based on synergistically enhanced photothermal effect and wound healing promotion ability and provides inspiration for future therapy based on the synergy between photothermal agent and active components in TCM.
Collapse
Affiliation(s)
- Weihuan Zeng
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Jun Qian
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Yue Wang
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Minyu Shou
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Guoyin Kai
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, PR China.
| |
Collapse
|
9
|
Zhai Y, Wang N, Ma H, Li L, Feng X, Shi X, Zhou B, Li W. Feathery Tellurium-Selenium Heterostructural Nanoadjuvant for the Synergistic Treatment of Bacterial Infections. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53827-53834. [PMID: 37944101 DOI: 10.1021/acsami.3c12209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Antibacterial nanoagents with well-controlled structures are greatly desired to address the challenges of bacterial infections. In this study, a featherlike tellurium-selenium heterostructural nanoadjuvant (TeSe HNDs) was created. TeSe HNDs produced 1O2 and had high photothermal conversion efficiency when stimulated with 808 nm near-infrared (NIR) light. To create a synergistic treatment system (TeSe-ICG) with better photothermal and photodynamic capabilities, the photosensitizer indocyanine green (ICG) was then added. With a bactericidal rate of more than 99%, the NIR-mediated TeSe-ICG demonstrated an efficient bactericidal action against both Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus). In addition, TeSe-ICG was also effective in treating wound infections and could effectively promote wound healing without obvious toxic side effects. In conclusion, TeSe-ICG is expected to be a good candidate for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Yutong Zhai
- Changchun University of Science and Technology, Changchun 130022, China
| | - Ningning Wang
- Changchun University of Science and Technology, Changchun 130022, China
| | - Hongda Ma
- Changchun University of Science and Technology, Changchun 130022, China
| | - Leijiao Li
- Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528400, China
| | - Xiangru Feng
- Changchun University of Science and Technology, Changchun 130022, China
| | - Xincui Shi
- Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528400, China
| | - Bo Zhou
- Academy of Military Medical Sciences Institute of Military Veterinary Medicine, Changchun 130122, China
| | - Wenliang Li
- Changchun University of Science and Technology, Changchun 130022, China
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin 132013, China
| |
Collapse
|
10
|
Youshi M, Farahpour MR, Tabatabaei ZG. Facile fabrication of carboxymethylcellulose/ZnO/g-C3N4 containing nutmeg extract with photocatalytic performance for infected wound healing. Sci Rep 2023; 13:18704. [PMID: 37907545 PMCID: PMC10618236 DOI: 10.1038/s41598-023-45921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
New topical antibacterial agents are required to inhibit and development of bacteria and also promoting the wound healing process. This study was evaluating the healing effect of Myristica fragrans extract coated with carboxymethyl cellulose, zinc oxide and graphite carbon nitride (CMC/ZnO/g-C3N4/MyR) by photocatalytic process on the healing process of full-thickness infectious excision wounds in mice. Nanosheets were prepared and physicochemical properties were evaluated. Safety, in vitro release, antibacterial activities under in vitro and in vivo condition, wound contraction, histopathological properties and the protein expressions of tumor necrosis factor-α (TNF-α), collagen 1A (COL1A) and CD31 were also evaluated. Physicochemical properties confirmed their successful synthesis. Nanosheets exhibited antibacterial activity under in vitro and in vivo conditions. The formulations containing CMC/ZnO/g-C3N4/MyR, significantly (P < 0.05) competed with standard ointment of mupirocin for accelerating the wound healing process due to their effects on bacterial count and the expression of TNF-α and also accelerating the proliferative phase. This structure can be used as a safe structure in combination with other agents for accelerating the wound healing process following future clinical studies.
Collapse
Affiliation(s)
- Maysa Youshi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Mohammad Reza Farahpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran.
| | | |
Collapse
|
11
|
Liu R, Shi X. Preparation of β-Cyclodextrin Functionalized Platform for Monitoring Changes in Potassium Content in Perspiration. Molecules 2023; 28:7000. [PMID: 37836843 PMCID: PMC10574319 DOI: 10.3390/molecules28197000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
The monitoring of potassium ion (K+) levels in human sweat can provide valuable insights into electrolyte balance and muscle fatigue non-invasively. However, existing laboratory techniques for sweat testing are complex, while wearable sensors face limitations like drift, fouling and interference from ions such as Na+. This work develops printed electrodes using β-cyclodextrin functionalized reduced graphene oxide (β-CD-RGO) for selective K+ quantification in sweat. The β-CD prevents the aggregation of RGO sheets while also providing selective binding sites for K+ capture. Electrodes were fabricated by screen printing the β-CD-RGO ink onto conductive carbon substrates. Material characterization confirmed the successful functionalization of RGO with β-CD. Cyclic voltammetry (CV) showed enhanced electrochemical behavior for β-CD-RGO-printed electrodes compared with bare carbon and RGO. Sensor optimization resulted in a formulation with 30% β-CD-RGO loading. The printed electrodes were drop-casted with an ion-selective polyvinyl chloride (PVC) membrane. A linear range from 10 μM to 100 mM was obtained along with a sensitivity of 54.7 mV/decade. The sensor showed good reproducibility over 10 cycles in 10 mM KCl. Minimal interference from 100 mM Na+ and other common sweat constituents validated the sensor's selectivity. On-body trials were performed by mounting the printed electrodes on human subjects during exercise. The K+ levels measured in sweat were found to correlate well with serum analysis, demonstrating the sensor's ability for non-invasive electrolyte monitoring. Overall, the facile synthesis of stable β-CD-RGO inks enables the scalable fabrication of wearable sensors for sweat potassium detection.
Collapse
Affiliation(s)
- Ruixiang Liu
- College of Physical Education, Shanxi University, Taiyuan 030006, China;
| | | |
Collapse
|
12
|
Wang F, Wu Q, Jia G, Kong L, Zuo R, Feng K, Hou M, Chai Y, Xu J, Zhang C, Kang Q. Black Phosphorus/MnO 2 Nanocomposite Disrupting Bacterial Thermotolerance for Efficient Mild-Temperature Photothermal Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303911. [PMID: 37698584 PMCID: PMC10602513 DOI: 10.1002/advs.202303911] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/31/2023] [Indexed: 09/13/2023]
Abstract
The emergence of multi-drug resistant (MDR) pathogens is a major public health concern, posing a substantial global economic burden. Photothermal therapy (PTT) at mild temperature presents a promising alternative to traditional antibiotics due to its biological safety and ability to circumvent drug resistance. However, the efficacy of mild PTT is limited by bacterial thermotolerance. Herein, a nanocomposite, BP@Mn-NC, comprising black phosphorus nanosheets and a manganese-based nanozyme (Mn-NZ) is developed, which possesses both photothermal and catalytic properties. Mn-NZ imparts glucose oxidase- and peroxidase-like properties to BP@Mn-NC, generating reactive oxygen species (ROS) that induce lipid peroxidation and malondialdehyde accumulation across the bacterial cell membrane. This process disrupts unprotected respiratory chain complexes exposed on the bacterial cell membrane, leading to a reduction in the intracellular adenosine triphosphate (ATP) content. Consequently, mild PTT mediated by BP@Mn-NC effectively eliminates MDR infections by specifically impairing bacterial thermotolerance because of the dependence of bacterial heat shock proteins (HSPs) on ATP molecules for their proper functioning. This study paves the way for the development of a novel photothermal strategy to eradicate MDR pathogens, which targets bacterial HSPs through ROS-mediated inhibition of bacterial respiratory chain activity.
Collapse
Affiliation(s)
- Feng Wang
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Qinghe Wu
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Guoping Jia
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Lingchi Kong
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Rongtai Zuo
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Kai Feng
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Mengfei Hou
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Yimin Chai
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Jia Xu
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Chunfu Zhang
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Qinglin Kang
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
13
|
Jin C, Zhi C, Sun Z, Rao S, Liu Q, Jiang Y, Liu L, Sun Y, Yang J. In Situ Fabrication of a 2D/2D MXene/CN Heterojunction for Photothermally Assisted Photocatalytic Sterilization under Visible Light Irradiation. Inorg Chem 2023; 62:15700-15710. [PMID: 37705217 DOI: 10.1021/acs.inorgchem.3c02523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Constructing an efficient visible light-responsive antibacterial material for water treatment remains a principal goal yet is a huge challenge. Herein, a 2D/2D heterojunction composite with robust interfacial contact, named MXene/CN (MCN), was controllably fabricated by using a urea molecule intercalated into MXene following an in situ calcination method, which can realize the rapid separation and migration of photogenerated carriers under visible light irradiation and significantly improve the carrier concentration of the MXene surface, thus generating more reactive oxygen species. The generation of heat induced by MXene could also increase photogenic electron activity to facilitate the photocatalytic reaction using in situ time-resolved photoluminescence characterization. The visible light-activated germicide exhibits a sterilization efficacy against Escherichia coli of 99.70%, higher than those of pure CN (60.21%) and MXene (31.75%), due to the effect of photothermally assisted photocatalytic treatment. This work is an attempt to construct a visible light-driven antimicrobial material using Schottky junctions achieving photothermally assisted photocatalytic disinfection.
Collapse
Affiliation(s)
- Cheng Jin
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chuang Zhi
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhongti Sun
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shaosheng Rao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qinqin Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yexin Jiang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lei Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yingjie Sun
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Juan Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
14
|
Shen Y, Nie C, Pan T, Zhang W, Yang H, Ye Y, Wang X. A multifunctional cascade nanoreactor based on Fe-driven carbon nanozymes for synergistic photothermal/chemodynamic antibacterial therapy. Acta Biomater 2023; 168:580-592. [PMID: 37451659 DOI: 10.1016/j.actbio.2023.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Healing bacterial chronic wounds caused by hyperglycemia is of great significance to protect the physical and mental health of diabetic patients. In this context, emerging chemodynamic therapy (CDT) and photothermal therapy (PTT) with broad antibacterial spectra and high spatiotemporal controllability have flourished. However, CDT was challenged by the near-neutral pH and inadequate H2O2 surrounding the chronic wound site, while PTT showed overheating-triggered side effects (e.g., damaging the normal tissue) and poor effects on thermotolerant bacterial biofilms. Therefore, we engineered an all-in-one glucose-responsive photothermal nanozyme, GOX/MPDA/Fe@CDs, consisting of glucose oxidase (GOX), Fe-doped carbon dots (Fe@CDs), and mesoporous polydopamine (MPDA), to efficiently treat chronic diabetic wound bacterial infections and eradicate biofilms without impacting the surrounding normal tissues. Specifically, GOX/MPDA/Fe@CDs produced a local temperature (∼ 45.0°C) to enhance the permeability of the pathogenic bacterium and its biofilm upon near-infrared (NIR) 808 nm laser irradiation, which was seized to initiate endogenous high blood glucose to activate the catalytic activity of GOX on the GOX/MPDA/Fe@CD surface to achieve the simultaneous self-supplying of H2O2 and H+, cascade catalyzing •OH production via a subsequent peroxidase-mimetic activity-induced Fenton/Fenton-like reaction. As such, the in vivo diabetic wound infected with methicillin-resistant Staphylococcus aureus was effectively healed after 12.0 days of treatment. This work was expected to provide an innovative approach to the clinical treatment of bacterially infected diabetic chronic wounds. STATEMENT OF SIGNIFICANCE: An all-in-one glucose-responsive photothermal nanozyme GOX/MPDA/Fe@CDs was constructed. Cascade nanozyme GOX/MPDA/Fe@CDs self-supply H2O2 and H+ to break H2O2 and pH limits to fight bacterial infections. Synergistic chemotherapy and photothermal therapy with nanozyme GOX/MPDA/Fe@CDs accelerates healing of biofilm-infected diabetic wounds.
Collapse
Affiliation(s)
- Yizhong Shen
- School of Food & Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Chao Nie
- School of Food & Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Ting Pan
- School of Food & Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Wei Zhang
- School of Biomedical Engineering, Research and Engineering Center of Anhui Medical University, Hefei 230032, China.
| | - Hui Yang
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Yingwang Ye
- School of Food & Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
15
|
Morsi RE, Gentili D, Corticelli F, Morandi V, Figoli A, Russo F, Galiano F, Gentilomi GA, Bonvicini F, Manet I, Ventura B. Cellulose acetate membranes loaded with combinations of tetraphenylporphyrin, graphene oxide and Pluronic F-127 as responsive materials with antibacterial photodynamic activity. RSC Adv 2023; 13:26550-26562. [PMID: 37692352 PMCID: PMC10483373 DOI: 10.1039/d3ra04193j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023] Open
Abstract
The development of polymeric fabrics with photoinduced antibacterial activity is important for different emerging applications, ranging from materials for medical and clinical practices to disinfection of objects for public use. In this work we prepared a series of cellulose acetate membranes, by means of phase inversion technique, introducing different additives in the starting polymeric solution. The loading of 5,10,15,20-tetraphenylporphyrin (TPP), a known photosensitizer, was considered to impart antibacterial photodynamic properties to the produced membranes. Besides, the addition of a surfactant (Pluronic F-127) allowed to modify the morphology of the membranes whereas the use of graphene oxide (GO) enabled further photo-activated antibacterial activity. The three additives were tested in various concentrations and in different combinations in order to carefully explore the effects of their mixing on the final photophysical and photodynamic properties. A complete structural/morphologycal characterization of the produced membranes has been performed, together with a detailed photophysical study of the TPP-containing samples, including absorption and emission features, excited state lifetime, singlet oxygen production, and confocal analysis. Their antibacterial activity has been assessed in vitro against S. aureus and E. coli, and the results demonstrated excellent bacterial inactivation for the membranes containing a combination of the three additives, revealing also a non-innocent role of the membrane porous structure in the final antibacterial capacity.
Collapse
Affiliation(s)
- Rania E Morsi
- Egyptian Petroleum Research Institute (EPRI) PO Box 11727 Nasr City Cairo Egypt
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR) Via P. Gobetti 101 40129 Bologna Italy
| | - Denis Gentili
- Institute of Nanostructured Materials (ISMN), National Research Council (CNR) Via P. Gobetti 101 40129 Bologna Italy
| | - Franco Corticelli
- Institute for Microelectronics and Microsystems (IMM), National Research Council (CNR) Via P. Gobetti 101 40129 Bologna Italy
| | - Vittorio Morandi
- Institute for Microelectronics and Microsystems (IMM), National Research Council (CNR) Via P. Gobetti 101 40129 Bologna Italy
| | - Alberto Figoli
- Institute on Membrane Technology (ITM), National Research Council (CNR) Via P. Bucci 17/C 87036 Rende (CS) Italy
| | - Francesca Russo
- Institute on Membrane Technology (ITM), National Research Council (CNR) Via P. Bucci 17/C 87036 Rende (CS) Italy
| | - Francesco Galiano
- Institute on Membrane Technology (ITM), National Research Council (CNR) Via P. Bucci 17/C 87036 Rende (CS) Italy
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, University of Bologna Via Massarenti 9 40138 Bologna Italy
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna Via Massarenti 9 40138 Bologna Italy
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, University of Bologna Via Massarenti 9 40138 Bologna Italy
| | - Ilse Manet
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR) Via P. Gobetti 101 40129 Bologna Italy
| | - Barbara Ventura
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR) Via P. Gobetti 101 40129 Bologna Italy
| |
Collapse
|
16
|
Liu M, Xu L, Jiang J, Dong H, Zhu P, Cao L, Chen J, Zhang X. Light controlled self-escape capability of non-cationic carbon nitride-based nanosheets in lysosomes for hepatocellular carcinoma targeting stimulus-responsive gene delivery. Bioeng Transl Med 2023; 8:e10558. [PMID: 37693059 PMCID: PMC10486340 DOI: 10.1002/btm2.10558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/06/2023] [Accepted: 05/21/2023] [Indexed: 09/12/2023] Open
Abstract
High positive charge-induced toxicity, easy lysosomal degradation of nucleic acid drugs, and poor lesion sites targeting are major problems faced in the development of gene carriers. Herein, we proposed the concept of self-escape non-cationic gene carriers for targeted delivery and treatment of photocontrolled hepatocellular carcinoma (HCC) with sufficient lysosome escape and multiple response capacities. Functional DNA was bound to the surface of biotin-PEG2000-modified graphitic carbon nitride (Bio-PEG-CN) nanosheets to form non-cationic nanocomplexes Bio-PEG-CN/DNA. These nanocomposites could actively target HCC tissue. Once these nanocomplexes were taken up by tumor cells, the accumulated reactive oxygen species (ROS) generated by Bio-PEG-CN under LED irradiation would disrupt the lysosome structure, thereby facilitating nanocomposites escape. Due to the acidic microenvironment and lipase in the HCC tissue, the reversible release of DNA could be promoted to complete the transfection process. Meanwhile, the fluorescence signal of Bio-PEG-CN could be monitored in real time by fluorescence imaging technology to investigate the transfection process and mechanism. In vitro and in vivo results further demonstrated that these nanocomplexes could remarkably upregulate the expression of tumor suppressor protein P53, increased tumor sensitivity to ROS generated by nanocarriers, and realized effective gene therapy for HCC via loading P53 gene.
Collapse
Affiliation(s)
| | - Li Xu
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouJiangsuP. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouJiangsuP. R. China
| | - Jia‐Yi Jiang
- School of PharmacyNantong UniversityNantongChina
| | | | - Peng‐Fei Zhu
- School of PharmacyNantong UniversityNantongChina
| | - Lei Cao
- School of PharmacyNantong UniversityNantongChina
| | - Jing Chen
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouJiangsuP. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouJiangsuP. R. China
| | | |
Collapse
|
17
|
Wu X, Zhou J, Liu Z, Shao W. Gentamicin Sulfate Grafted Magnetic GO Nanohybrids with Excellent Antibacterial Properties and Recyclability. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1416. [PMID: 37111001 PMCID: PMC10143482 DOI: 10.3390/nano13081416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
In this study, magnetic graphene oxide (MGO) nanohybrids were first prepared by loading Fe3O4 NPs onto graphene oxide (GO). Then, GS-MGO nanohybrids were prepared by grafting gentamicin sulfate (GS) onto MGO directly using a simple amidation reaction. The prepared GS-MGO had the same magnetism as MGO. They exhibited excellent antibacterial ability against Gram-negative bacteria and Gram-positive bacteria. The GS-MGO had excellent antibacterial performance against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Listeria monocytogenes (L. monocytogenes). When the addition concentration of GS-MGO was 1.25 mg/mL, the calculated bacteriostatic ratios against E. coli and S. aureus achieved 89.8% and 100%, respectively. For L. monocytogenes, only 0.05 mg/mL of GS-MGO had an antibacterial ratio as high as 99%. In addition, the prepared GS-MGO nanohybrids also exhibited excellent non-leaching activity with good recycling antibacterial ability. After eight times antibacterial tests, GS-MGO nanohybrids still exhibited an excellent inhibition effect on E. coli, S. aureus, and L. monocytogenes. Therefore, as a non-leaching antibacterial agent, the fabricated GS-MGO nanohybrid had dramatic antibacterial properties and also showed great recycling ability. Thus, it displayed great potential in the design of novel recycling antibacterial agents with non-leaching activity.
Collapse
|
18
|
Yang YY, Niu CG, Huang DW, Guo H, Feng HP, Li L, Liu HY, Fan QQ, Qin MZ. Appropriate oxygen vacancies and Mo-N bond synergistically modulate charge transfer dynamics of MoO 3-x/S-CN for superior photocatalytic disinfection: Unveiling synergistic effects and disinfection mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130481. [PMID: 36493653 DOI: 10.1016/j.jhazmat.2022.130481] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/05/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Highly efficient charge transfer is a critical factor to modulate the photocatalytic activity. However, the conscious modulation of charge transfer efficiency is still a great challenge. Herein, a novel interfacial Mo-N bond and appropriate oxygen vacancies (OVs) modulated S-scheme MoO3-x/S-CN heterojunction was rationally fabricated for efficient photocatalytic disinfection. The results of characterizations and density functional theory (DFT) calculations suggested that the enhanced charge transfer dynamics is ascribed to the optimizing oxygen vacancies density and forming interfacial Mo-N bond. It can improve charge transfer efficiency from 36.4% (MoO3-x) to 52.5% (MoO3-x/S-CN) and produce more reactive oxygen species (ROS), achieving entirely inactivate of 7.60-log E. coli and S. aureus within 50 min and 75 min. Besides, MoO3-x/S-CN can well resist the disturbance from the coexisting substances, and can be applied in a wide pH range, and even authentic water bodies. Monitoring of bacterial antioxidant systems and membrane integrity revealed that bacterial inactivation begins with the oxidation of cell membrane and dies from leakage of intracellular substances and destruction of cell structure. This work provides an inspiration on consciously modulating S-scheme charge transfer efficiency by optimizing oxygen vacancies density and atomic-level interface control for promoting the photocatalytic antibacterial activity.
Collapse
Affiliation(s)
- Ya-Ya Yang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Cheng-Gang Niu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China.
| | - Da-Wei Huang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China.
| | - Hai Guo
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Hao-Peng Feng
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Lu Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Hui-Yun Liu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Qian-Qian Fan
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Meng-Zhu Qin
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
19
|
Liu X, Zhang H, Yan B, Yeung KWK, Liao Y, Ouyang L, Liu X. On-Off Phagocytosis and Switchable Macrophage Activation Stimulated with NIR for Infected Percutaneous Tissue Repair of Polypyrrole-Coated Sulfonated PEEK. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205048. [PMID: 36515274 PMCID: PMC9929275 DOI: 10.1002/advs.202205048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Intelligent control of the immune response is essential for obtaining percutaneous implants with good sterilization and tissue repair abilities. In this study, polypyrrole (Ppy) nanoparticles enveloping a 3D frame of sulfonated polyether ether ketone (SP) surface are constructed, which enhance the surface modulus and hardness of the sulfonated layer by forming a cooperative structure of simulated reinforced concrete and exhibit a superior photothermal effect. Ppy-coated SP could quickly accumulate heat on the surface by responding to 808 nm near-infrared (NIR) light, thereby killing bacteria, and destroying biofilms. Under NIR stimulation, the phagocytosis and M1 activation of macrophages cultured on Ppy-coated SP are enhanced by activating complement 3 and its receptor, CD11b. Phagocytosis and M1 activation are impaired along with abolishment of NIR stimulation in the Ppy-coated SP group, which is favorable for tissue repair. Ppy-coated SP promotes Collagen-I, vascular endothelial growth factor, connective tissue growth factor, and α-actin (Acta2) expression by inducing M2 polarization owing to its higher surface modulus. Overall, Ppy-coated SP with enhanced mechanical properties could be a good candidate for clinical percutaneous implants through on-off phagocytosis and switchable macrophage activation stimulated with NIR.
Collapse
Affiliation(s)
- Xingdan Liu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Haifeng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub‐lane XiangshanHangzhou310024China
| | - Bangcheng Yan
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Kelvin W. K. Yeung
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic TraumaGuangdong Engineering Technology Research Center for Orthopaedic Trauma RepairDepartment of Orthopaedics and TraumatologyThe University of Hong Kong Shenzhen HospitalShenzhen518053China
| | - Yun Liao
- Department of PharmacyTongren HospitalShanghai Jiao Tong University School of MedicineShanghai200336China
| | - Liping Ouyang
- Department of PharmacyTongren HospitalShanghai Jiao Tong University School of MedicineShanghai200336China
- Hongqiao International Institute of MedicineShanghai Jiao Tong University School of MedicineShanghai200336China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub‐lane XiangshanHangzhou310024China
| |
Collapse
|
20
|
Yuan Z, Zhang L, Jiang S, Shafiq M, Cai Y, Chen Y, Song J, Yu X, Ijima H, Xu Y, Mo X. Anti-inflammatory, antibacterial, and antioxidative bioactive glass-based nanofibrous dressing enables scarless wound healing. SMART MATERIALS IN MEDICINE 2023; 4:407-426. [DOI: 10.1016/j.smaim.2023.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Ramos-Soriano J, Ghirardello M, Galan MC. Carbon-based glyco-nanoplatforms: towards the next generation of glycan-based multivalent probes. Chem Soc Rev 2022; 51:9960-9985. [PMID: 36416290 PMCID: PMC9743786 DOI: 10.1039/d2cs00741j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 11/24/2022]
Abstract
Cell surface carbohydrates mediate a wide range of carbohydrate-protein interactions key to healthy and disease mechanisms. Many of such interactions are multivalent in nature and in order to study these processes at a molecular level, many glycan-presenting platforms have been developed over the years. Among those, carbon nanoforms such as graphene and their derivatives, carbon nanotubes, carbon dots and fullerenes, have become very attractive as biocompatible platforms that can mimic the multivalent presentation of biologically relevant glycosides. The most recent examples of carbon-based nanoplatforms and their applications developed over the last few years to study carbohydrate-mediate interactions in the context of cancer, bacterial and viral infections, among others, are highlighted in this review.
Collapse
Affiliation(s)
- Javier Ramos-Soriano
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
- Departamento de Química, Universidad de La Rioja, Calle Madre de Dios 53, 26006 Logroño, Spain.
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
22
|
NiTi-layered double hydroxide as an efficient photocatalytic fungicide of Aspergillus fumigatus spores: Capacity and mechanism. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Hao S, Han H, Yang Z, Chen M, Jiang Y, Lu G, Dong L, Wen H, Li H, Liu J, Wu L, Wang Z, Wang F. Recent Advancements on Photothermal Conversion and Antibacterial Applications over MXenes-Based Materials. NANO-MICRO LETTERS 2022; 14:178. [PMID: 36001173 PMCID: PMC9402885 DOI: 10.1007/s40820-022-00901-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/26/2022] [Indexed: 05/04/2023]
Abstract
HIGHLIGHTS Fabrication, characterizations and photothermal properties of MXenes are systematically described. Photothermal-derived antibacterial performances and mechanisms of MXenes-based materials are summarized and reviewed. Recent advances in the derivative applications relying on antibacterial properties of MXenes-based materials, including in vitro and in vivo sterilization, solar water evaporation and purification, and flexible antibacterial fabrics, are investigated. ABSTRACT The pernicious bacterial proliferation and emergence of super-resistant bacteria have already posed a great threat to public health, which drives researchers to develop antibiotic-free strategies to eradicate these fierce microbes. Although enormous achievements have already been achieved, it remains an arduous challenge to realize efficient sterilization to cut off the drug resistance generation. Recently, photothermal therapy (PTT) has emerged as a promising solution to efficiently damage the integrity of pathogenic bacteria based on hyperthermia beyond their tolerance. Until now, numerous photothermal agents have been studied for antimicrobial PTT. Among them, MXenes (a type of two-dimensional transition metal carbides or nitrides) are extensively investigated as one of the most promising candidates due to their high aspect ratio, atomic-thin thickness, excellent photothermal performance, low cytotoxicity, and ultrahigh dispersibility in aqueous systems. Besides, the enormous application scenarios using their antibacterial properties can be tailored via elaborated designs of MXenes-based materials. In this review, the synthetic approaches and textural properties of MXenes have been systematically presented first, and then the photothermal properties and sterilization mechanisms using MXenes-based materials are documented. Subsequently, recent progress in diverse fields making use of the photothermal and antibacterial performances of MXenes-based materials are well summarized to reveal the potential applications of these materials for various purposes, including in vitro and in vivo sterilization, solar water evaporation and purification, and flexible antibacterial fabrics. Last but not least, the current challenges and future perspectives are discussed to provide theoretical guidance for the fabrication of efficient antimicrobial systems using MXenes. [Image: see text]
Collapse
Affiliation(s)
- Shuyan Hao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Hecheng Han
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Zhengyi Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Mengting Chen
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012, People's Republic of China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China.
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Nanshan High-Tech Zone, Shenzhen, 518057, People's Republic of China.
| | - Guixia Lu
- School of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Lun Dong
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, 250012, People's Republic of China.
| | - Hongling Wen
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012, People's Republic of China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China.
| | - Lili Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Zhou Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China.
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Nanshan High-Tech Zone, Shenzhen, 518057, People's Republic of China.
| |
Collapse
|
24
|
Yu H, Xu X, Xie Z, Huang X, Lin L, Jiao Y, Li H. High-Efficiency Near-Infrared Light Responsive Antibacterial System for Synergistic Ablation of Bacteria and Biofilm. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36947-36956. [PMID: 35929762 DOI: 10.1021/acsami.2c08406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacterial infection is seriously threatening human health, and the design of high-efficiency and good biocompatibility antibacterial agents is an urgent problem to be solved. However, with the emergence of drug-resistant bacteria, the existing antibacterial agents have low killing efficiency, and the formation of biofilms has further weakened the therapeutic effect. Herein, we constructed an efficient antibacterial system mediated by near-infrared light for synergistic antibacterial and biofilm dissipation. Specifically, the ZnO/Ti3C2Tx with heterojunction was synthesized by hydrothermal growth of ZnO on the surface of lamellar Ti3C2Tx-MXene. The prepared ZnO/Ti3C2Tx had better photothermal ability than ZnO and Ti3C2Tx, respectively. The local thermal effect can not only destroy the integrity of the bacterial membrane but also promote the release of Zn2+ ions and further improve the antibacterial performance. ZnO/Ti3C2Tx achieved a 100% sterilization rate (better than either ZnO or Ti3C2Tx) at 150 μg mL-1. The biofilm dissipation experiment further proved its excellent biofilm ablation effect. More importantly, the results of in vitro cell culture and animal experiments have demonstrated its good biological safety. In summary, this new type of nanomaterial shows strong local chemical photothermal sterilization ability and has great potential to replace traditional antibacterial agents.
Collapse
Affiliation(s)
- Hongbo Yu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xiaomu Xu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Zheng Xie
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xiuhong Huang
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Licheng Lin
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yanpeng Jiao
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Hong Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
25
|
Sun L, Xu G, Tu Y, Zhang W, Hu X, Yang P, Wu D, Liang Y, Wei D, Li A, Xie X. Multifunctional porous β-cyclodextrin polymer for water purification. WATER RESEARCH 2022; 222:118917. [PMID: 35961197 DOI: 10.1016/j.watres.2022.118917] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/17/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Keeping water clean is of vital significance for human health and environmental protection. In order to remove organic micro-pollutants and natural organic substances in water bodies and kill pathogenic microorganisms simultaneously, this study synthesized a multifunctional porous β-cyclodextrin polymer with a high specific surface area by introducing quaternary ammonium groups and rigid benzene rings, respectively, which was then polymerized with crosslinking agent-4,4'-bis (chloromethyl)-1,1'-biphenyl (BCMBP) in an ionic liquid system. The grafting of quaternary ammonium groups was beneficial for the removal of negative-charged humic acid (HA) and sterilization. The introduction of numerous rigid structures during benzylation and Friedel-Crafts alkylation reaction could significantly improve the porosity and specific surface area of the polymer, conducive to the exposure of cyclodextrin binding sites and contaminant adsorption. By changing the proportions of quaternization and benzylation, the structure and surface properties of the polymer could be adjusted, thus further regulating the adsorption performance. Compared with activated carbon, the polymer named BQCD-BP with a huge surface area of 1133 m2 g-1 prepared under optimized conditions showed outstanding adsorption performance and sterilization ability. The pseudo-second-order kinetic constant of BQCD-BP reached 1.2058 g·mg-1·min-1, which was approximately 50 times greater than that of activated carbon (0.0256 g·mg-1·min-1) under the same experimental condition. The adsorption capacity of BQCD-BP to HA was twice as high as that to AC, and the antibacterial ability of BQCD-BP was significant, achieving 90% at the dosage of 1g L-1. Moreover, the adsorption process was hardly affected by the hydrochemical conditions, and the polymer was easy to regenerate. In addition, the excellent adsorption and antibacterial performance of the polymer were also identified by natural water treatment. COD was almost completely removed, and the removal efficiency of TP reached 92% after contact with BQCD-BP. The sterilization rate of BQCD-BP to viable bacteria in complex water bodies reached 82%. Undoubtedly, BQCD-BP is a potential multifunctional water treatment material with reasonable design in the actual water purification.
Collapse
Affiliation(s)
- Lin Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guizhou Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yizhou Tu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenrui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xuejiao Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Pingping Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Ying Liang
- Nanjing Huachuang Institute of Environmental Technology Co., Ltd, China
| | - Dongyang Wei
- Environmental Development Center of the Ministry of Ecology and Environment, Beijing 100029, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Nanjing Huachuang Institute of Environmental Technology Co., Ltd, China; Jiangxi Nanxin Environmental Protection Technology Co. LTD, Jiujiang, Jiangxi 330300, China; Nanjing University and Yancheng Academy of Environment Protection Technology and Engineering, Nanjing 210023, China
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang 330031, China; Jiangxi Nanxin Environmental Protection Technology Co. LTD, Jiujiang, Jiangxi 330300, China; Nanjing University and Yancheng Academy of Environment Protection Technology and Engineering, Nanjing 210023, China.
| |
Collapse
|
26
|
On the interface between biomaterials and two-dimensional materials for biomedical applications. Adv Drug Deliv Rev 2022; 186:114314. [PMID: 35568105 DOI: 10.1016/j.addr.2022.114314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023]
Abstract
Two-dimensional (2D) materials have garnered significant attention due to their ultrathin 2D structures with a high degree of anisotropy and functionality. Reliable manipulation of interfaces between 2D materials and biomaterials is a new frontier for biomedical nanoscience and combining biomaterials with 2D materials offers a promising way to fabricate innovative 2D biomaterials composites with distinct functionality for biomedical applications. Here, we focus exclusively on a summary of the current work in the interface investigation of 2D biomaterials. Specifically, we highlight extraordinary features that make 2D materials so desirable, as well as the molecular level interactions between 2D materials and biomaterials that have been studied thus far. Furthermore, the approaches for investigating the interface characteristics of 2D biomaterials are presented and described in depth. To capture the emerging trend in mass manufacturing of 2D materials, we review the research progress on biomaterial-assisted exfoliation. Finally, we present a critical assessment of newly developed 2D biomaterials in biomedical applications.
Collapse
|
27
|
Yang GP, Meng XL, Xiao SJ, Zheng QQ, Tan QG, Liang RP, Zhang L, Zhang P, Qiu JD. Construction of D-A-Conjugated Covalent Organic Frameworks with Enhanced Photodynamic, Photothermal, and Nanozymatic Activities for Efficient Bacterial Inhibition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28289-28300. [PMID: 35675646 DOI: 10.1021/acsami.2c05953] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacterial infection causes serious threats to human life, especially with the appearance of antibiotic-resistant bacteria. Phototherapeutic approaches have become promising due to their noninvasiveness, few adverse effects, and high efficiency. Herein, a covalent organic framework (TAPP-BDP) with a conjugated donor-acceptor (D-A) structure has been constructed for efficient photoinduced bacteriostasis. Under the irradiation with a single near-infrared (NIR) light (λ = 808 nm), TAPP-BDP alone involves triple and synergistic bacterial inhibition based on the integration of photodynamic, photothermal, and peroxidase-like enzymatic activities. The unique D-A structure endows TAPP-BDP with a narrow energy band gap, improving its photodynamic and nanozyme activities to generate reactive oxygen species (ROS) to realize the broad-spectrum bactericidal activity. The extended π-conjugated skeleton of TAPP-BDP results in enhanced absorption in NIR, and the remarkable photothermal activity can increase the temperature up to 65 °C to cause efficient bacterial degeneration. TAPP-BDP shows excellent antibacterial efficiency against both Gram-negative and Gram-positive bacteria. Animal experiments further suggest that TAPP-BDP can effectively heal wounds infected with Staphylococcus aureus in living systems.
Collapse
Affiliation(s)
- Gui-Ping Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xiao-Lin Meng
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Sai-Jin Xiao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang 330013, China
| | - Qiong-Qing Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Quan-Gen Tan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Pu Zhang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| |
Collapse
|