1
|
Yu M, Qiu Y, Wang Y, Wang Y, Ma Z, Wang Y, Liu S. Engineering multifunctional high-entropy oxide nanozymes for robust marine antifouling. J Colloid Interface Sci 2025; 693:137604. [PMID: 40245833 DOI: 10.1016/j.jcis.2025.137604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/09/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
High-performance interfacial antifouling coatings are crucial for sustainable marine resource utilization. This work reports a novel high-entropy oxide (HEO) nanozyme, CrMnFeNiCuOX nanoparticles, where the synergistic interplay of polymetallic cations and defect engineering yield remarkable multi-enzyme mimetic activity combined with a photothermal conversion efficiency of 40.06%. Under simulated solar irradiation, the HEO nanozyme exhibited complete (100%) bactericidal activity against both Escherichia coli and Staphylococcus aureus, and effectively suppresses biofilm formation in a simulated marine environment. Mechanistic investigations demonstrated that the HEO nanozyme exhibits a tailored electronic structure and adsorption properties, enabling disruption of bacterial membrane integrity, perturbation of intracellular redox homeostasis, and suppression of quorum sensing signaling. This multifaceted approach offers a promising strategy for developing durable and environmentally friendly antifouling coatings for diverse marine applications.
Collapse
Affiliation(s)
- Miao Yu
- Faculty of Life Science and Medicine, School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Harbin 150001, China
| | - Yunfeng Qiu
- Faculty of Life Science and Medicine, School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Harbin 150001, China.
| | - Yuhang Wang
- Faculty of Life Science and Medicine, School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Harbin 150001, China
| | - Yanxia Wang
- Faculty of Life Science and Medicine, School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Harbin 150001, China
| | - Zhuo Ma
- Faculty of Life Science and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Youshan Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China.
| | - Shaoqin Liu
- Faculty of Life Science and Medicine, School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
2
|
Zhong H, Jiang C, Zou J, Zhu G, Cheng M, Huang Y. Self-assembly of CuAuTA nanozymes for intelligent detection of ginkgolic acids. Anal Bioanal Chem 2024; 416:6091-6102. [PMID: 38416157 DOI: 10.1007/s00216-024-05221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/20/2024] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
Toxic ginkgolic acids (GAs) are a challenge for Ginkgo biloba-related food. Although a detection method for GAs is available, bulky instruments limit the field testing of GAs. Herein, by assembling gold nanoclusters with copper tannic acid (CuTA), CuAuTA nanocomposites were designed as peroxidase mimics for the colorimetric determination of GAs. Compared with single CuTA, the obtained CuAuTA nanocomposites possessed enhanced peroxidase-like properties. Based on the inhibitory effect of GAs for the catalytic activity of CuAuTA nanozymes, CuAuTA could be utilized for the colorimetric sensing of GAs with a low limit of quantitation of 0.17 μg mL-1. Using a smartphone and the ImageJ software in conjunction, a nanozyme-based intelligent detection platform was developed with a detection limit of 0.86 μg mL-1. This sensing system exhibited good selectivity against other potential interferents. Experimental data demonstrated that GAs might bind to the surface of CuAuTA, blocking the catalytically active sites and resulting in decreased catalytic activity. Our CuAuTA nanozyme-based system could also be applied to detect real ginkgo nut and ginkgo powder samples with recoveries of 93.12-111.6% and relative standard deviations less than 0.3%. Our work may offer a feasible strategy for the determination of GAs and expand the application of nanozymes in food safety detection.
Collapse
Affiliation(s)
- Huimin Zhong
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Cong Jiang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiahui Zou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Guancheng Zhu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Mengyue Cheng
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yanyan Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
3
|
Zhao K, Zhao Y, Wang Y, Han B, Lian M. Progress in antibacterial applications of nanozymes. Front Chem 2024; 12:1478273. [PMID: 39376729 PMCID: PMC11456495 DOI: 10.3389/fchem.2024.1478273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Bacterial infections are a growing problem, and antibiotic drugs can be widely used to fight bacterial infections. However, the overuse of antibiotics and the evolution of bacteria have led to the emergence of drug-resistant bacteria, severely reducing the effectiveness of treatment. Therefore, it is very important to develop new effective antibacterial strategies to fight multi-drug resistant bacteria. Nanozyme is a kind of enzyme-like catalytic nanomaterials with unique physical and chemical properties, high stability, structural diversity, adjustable catalytic activity, low cost, easy storage and so on. In addition, nanozymes also have excellent broad-spectrum antibacterial properties and good biocompatibility, showing broad application prospects in the field of antibacterial. In this paper, we reviewed the research progress of antibacterial application of nanozymes. At first, the antibacterial mechanism of nanozymes was summarized, and then the application of nanozymes in antibacterial was introduced. Finally, the challenges of the application of antibacterial nanozymes were discussed, and the development prospect of antibacterial nanozymes was clarified.
Collapse
Affiliation(s)
- Keyuan Zhao
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, China
| | - Ye Zhao
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, China
| | - Yuwei Wang
- Tianjin Fire Science and Technology Research Institute of MEM, Tianjin, China
| | - Bo Han
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, China
| | - Meiling Lian
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, China
| |
Collapse
|
4
|
Xing J, Shan J, Xue H, Zhang H, Cheng L, Hao J, Wang X. Multifunctional Adaptable Injectable TiN-Based Hydrogels for Antitumor and Antidrug-Resistant Bacterial Therapy. Adv Healthc Mater 2024; 13:e2400297. [PMID: 38877613 DOI: 10.1002/adhm.202400297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/04/2024] [Indexed: 06/16/2024]
Abstract
The close relationship between bacteria and tumors has recently attracted increasing attention, and an increasing number of resources are being invested in the research and development of biomedical materials designed for the treatment of both. In this study, prefabricated TiN nanodots (NDs) and Fe(CO)5 nanoparticles are combined into sodium alginate (ALG) hydrogels to create a biomedical material for the topical treatment of breast cancer and subcutaneous abscesses, and a pseudocatalytic hydrogel with intrinsic photothermal and antibacterial activities is synthesized. TiN+Fe(CO)5+ALG hydrogels are used to determine the ability of Fe(CO)5 to promote CO production. Moreover, TiN NDs catalyze the production of reactive oxygen species (ROS) from hydrogen peroxide in tumor microenvironments and exhibit excellent photothermal conversion properties. After local injection of the TiN+Fe(CO)5+ALG hydrogel into subcutaneous tumors and subcutaneous abscesses, and two-zone near-infrared (NIR-II) irradiation, tumor cells and methicillin-resistant Staphylococcus aureus are effectively removed by the hydrogel, the mouse epidermis exhibiting complete recovery within 8 d, indicating that this hydrogel exhibits better antibacterial efficacy than the small-molecule antibiotic penicillin. This study demonstrates the potential of novel hydrogels for antitumor and antimicrobial combination therapy and aims to provide design ideas for the research and development of multifunctional antitumor and antimicrobial drug combinations.
Collapse
Affiliation(s)
- Jianghao Xing
- Research Center for Translational Ledicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Jie Shan
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Haowei Xue
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Hengguo Zhang
- College and Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Jiqing Hao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xianwen Wang
- Research Center for Translational Ledicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
5
|
Li Y, Yu J, Zhang W, Shan J, Chen H, Ma Y, Wang X. Copper selenide nanosheets with photothermal therapy-related properties and multienzyme activity for highly effective eradication of drug resistance. J Colloid Interface Sci 2024; 666:434-446. [PMID: 38608638 DOI: 10.1016/j.jcis.2024.03.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Bacterial infections are among the most significant causes of death in humans. Chronic misuse or uncontrolled use of antibiotics promotes the emergence of multidrug-resistant superbugs that threaten public health through the food chain and cause environmental pollution. Based on the above considerations, copper selenide nanosheets (CuSe NSs) with photothermal therapy (PTT)- and photodynamic therapy (PDT)-related properties have been fabricated. These CuSe NSs possess enhanced PDT-related properties and can convert O2 into highly toxic reactive oxygen species (ROS), which can cause significant oxidative stress and damage to bacteria. In addition, CuSe NSs can efficiently consume glutathione (GSH) at bacterial infection sites, thus further enhancing their sterilization efficacy. In vitro antibacterial experiments with near-infrared (NIR) irradiation have shown that CuSe NSs have excellent photothermal bactericidal properties. These experiments also showed that CuSe NSs exerted excellent bactericidal effects on wounds infected with methicillin-resistant Staphylococcus aureus (MRSA) and significantly promoted the healing of infected wounds. Because of their superior biological safety, CuSe NSs are novel copper-based antimicrobial agents that are expected to enter clinical trials, serving as a modern approach to the major problem of treating bacterially infected wounds.
Collapse
Affiliation(s)
- Yongsheng Li
- Department of Vascular Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jiajia Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wei Zhang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China
| | - Jie Shan
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hongrang Chen
- Department of Hepatobiliary Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Ma
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China.
| | - Xianwen Wang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
6
|
Xu K, Cui Y, Guan B, Qin L, Feng D, Abuduwayiti A, Wu Y, Li H, Cheng H, Li Z. Nanozymes with biomimetically designed properties for cancer treatment. NANOSCALE 2024; 16:7786-7824. [PMID: 38568434 DOI: 10.1039/d4nr00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nanozymes, as a type of nanomaterials with enzymatic catalytic activity, have demonstrated tremendous potential in cancer treatment owing to their unique biomedical properties. However, the heterogeneity of tumors and the complex tumor microenvironment pose significant challenges to the in vivo catalytic efficacy of traditional nanozymes. Drawing inspiration from natural enzymes, scientists are now using biomimetic design to build nanozymes from the ground up. This approach aims to replicate the key characteristics of natural enzymes, including active structures, catalytic processes, and the ability to adapt to the tumor environment. This achieves selective optimization of nanozyme catalytic performance and therapeutic effects. This review takes a deep dive into the use of these biomimetically designed nanozymes in cancer treatment. It explores a range of biomimetic design strategies, from structural and process mimicry to advanced functional biomimicry. A significant focus is on tweaking the nanozyme structures to boost their catalytic performance, integrating them into complex enzyme networks similar to those in biological systems, and adjusting functions like altering tumor metabolism, reshaping the tumor environment, and enhancing drug delivery. The review also covers the applications of specially designed nanozymes in pan-cancer treatment, from catalytic therapy to improved traditional methods like chemotherapy, radiotherapy, and sonodynamic therapy, specifically analyzing the anti-tumor mechanisms of different therapeutic combination systems. Through rational design, these biomimetically designed nanozymes not only deepen the understanding of the regulatory mechanisms of nanozyme structure and performance but also adapt profoundly to tumor physiology, optimizing therapeutic effects and paving new pathways for innovative cancer treatment.
Collapse
Affiliation(s)
- Ke Xu
- School of Medicine, Tongji University, Shanghai 200092, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Yujie Cui
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Bin Guan
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Linlin Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
- Department of Thoracic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200081, China
| | - Dihao Feng
- School of Art, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Abudumijiti Abuduwayiti
- School of Medicine, Tongji University, Shanghai 200092, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Yimu Wu
- School of Medicine, Tongji University, Shanghai 200092, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Hao Li
- Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, Fujian, China
| | - Hongfei Cheng
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Zhao Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| |
Collapse
|
7
|
Yang XC, Ding Y, Song SN, Wang WH, Huang S, Pang XY, Li B, Yu YY, Xia YM, Gao WW. Biocompatible N-carbazoleacetic acid decorated Cu xO nanoparticles as self-cascading platforms for synergistic single near-infrared triggered phototherapy treating microbial infections. Biomater Sci 2024; 12:1558-1572. [PMID: 38305728 DOI: 10.1039/d3bm01873c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
In this work, positively charged N-carbazoleacetic acid decorated CuxO nanoparticles (CuxO-CAA NPs) as novel biocompatible nanozymes have been successfully prepared through a one-step hydrothermal method. CuxO-CAA can serve as a self-cascading platform through effective GSH-OXD-like and POD-like activities, and the former can induce continuous generation of H2O2 through the catalytic oxidation of overexpressed GSH in the bacterial infection microenvironment, which in turn acts as a substrate for the latter to yield ˙OH via Fenton-like reaction, without introducing exogenous H2O2. Upon NIR irradiation, CuxO-CAA NPs possess a high photothermal conversion effect, which can further improve the enzymatic activity for increasing the production rate of H2O2 and ˙OH. Besides, the photodynamic performance of CuxO-CAA NPs can produce 1O2. The generated ROS and hyperthermia have synergetic effects on bacterial mortality. More importantly, CuxO-CAA NPs are more stable and biosafe than Cu2O, and can generate electrostatic adsorption with negatively charged bacterial cell membranes and accelerate bacterial death. Antibacterial results demonstrate that CuxO-CAA NPs are lethal against methicillin-resistant Staphylococcus aureus (MRSA) and ampicillin-resistant Escherichia coli (AREC) through destroying the bacterial membrane and disrupting the bacterial biofilm formation. MRSA-infected animal wound models show that CuxO-CAA NPs can efficiently promote wound healing without causing toxicity to the organism.
Collapse
Affiliation(s)
- Xiao-Chan Yang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yong Ding
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Sheng-Nan Song
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Wen-Hui Wang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shan Huang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
- The Third Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Xue-Yao Pang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Bo Li
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Ya-Ya Yu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Ya-Mu Xia
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Wei-Wei Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
8
|
Wu J, Xiang S, Zhang M, Zhou N, Wang M, Li L, Shen J. Self-Assembled Nanoflowers Realizes Synergistic Sterilization with Photothermal and Chemical Kinetics Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2591-2600. [PMID: 38265289 DOI: 10.1021/acs.langmuir.3c02838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Wounds caused by bacterial infections have become a major challenge in the medical field; however, the overuse of antibiotics has led to increased resistance and bioaccumulation. Therefore, it is urgent to develop an antibacterial agent with excellent antibacterial properties and biosafety. Here, we designed an antibacterial platform that combines photothermal and chemical kinetics therapies. Platinum-cobalt (PtCo) bimetallic nanoparticles (NPs) were first prepared, and then PtCo@MnO2 nanoflowers were obtained by adding MES buffer solution and KMnO4 to the PtCo bimetallic nanoparticle suspension using ultrasound. When light strikes metal NPs, they can strongly absorb the photon energy, resulting in photothermal properties. In addition, Pt and Co were used as the oxidase mimics, and MnO2 was used as the catalase mimic. In summary, the photothermal capacity of PtCo@MnO2 nanoflowers with rough surfaces can effectively disrupt the permeability of the bacterial cell membranes. Further, by catalyzing H2O2, PtCo@MnO2 nanoflowers can generate large amounts of hydroxyl free radicals, which can damage bacterial cell membranes, proteins, and DNA. In addition, MnO2 can effectively alleviate the hypoxic environment of the bacterially infected areas and activate deep bacteria, thus achieving the goal of complete sterilization. The in vitro and in vivo results showed that PtCo@MnO2 displayed excellent antibacterial properties and good biocompatibility.
Collapse
Affiliation(s)
- Jing Wu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shuqing Xiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ming Zhang
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Ninglin Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mingqian Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Li Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| |
Collapse
|
9
|
Qin K, Chu Y, Xu C, Li G, Zhu X, Fan G, Yang Z, Liu Q. In situ Hg 2+ improved the peroxidase-like activity and triggered "ON" the oxidase-like activity of yolk-shell Co 3S 4 microspheres for the detection of Hg 2. Analyst 2024; 149:824-835. [PMID: 38131268 DOI: 10.1039/d3an01705b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Exploring highly active nanozymes is an important task to realize the real-time detection of some heavy metal ions in water. In this work, yolk-shell Co3S4 microspheres have been verified to possess excellent peroxidase-like activity, which can be further improved by adding Hg2+. Very interestingly, Hg2+ can trigger "ON" the oxidase-like activity of Co3S4 microspheres. The dual peroxidase-/oxidase-like activity of the yolk-shell Co3S4 microspheres is evaluated by using the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB). Furthermore, comprehensive studies verify that the enhanced peroxidase-like activity, together with the "ON" oxidase-like activity of the yolk-shell Co3S4 microspheres, is attributed to the in situ generation of HgS on the surface of Co3S4 microspheres and then the release of more active sites. Importantly, the in situ generated HgS on the surface of Co3S4 microspheres can form a heterojunction, which also accelerates the catalytic process. During the catalytic reaction, some active species (O2- and h+) can be detected by ESR. Thus, a colorimetric sensing platform based on Hg2+-triggered signal amplification has been successfully constructed, which can be validated by the detection of Hg2+ residue in environmental water.
Collapse
Affiliation(s)
- Kang Qin
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Ying Chu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Chang Xu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Guijiang Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Xixi Zhu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Gaochao Fan
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhongdong Yang
- Shandong University of Science and Technology Hospital, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
10
|
Zhang D, Zhang H, Sun H, Yang Y, Zhong W, Chen Q, Ren Q, Jin G, Zhang Y. Differential identification of GSH for acute coronary syndrome using a colorimetric sensor based on nanoflower-like artificial nanozymes. Talanta 2024; 266:124967. [PMID: 37536104 DOI: 10.1016/j.talanta.2023.124967] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
The ability to detect glutathione (GSH) concentrations in human blood offered a simple and non-invasive method to monitor changes associated with cardiovascular diseases, cancers and diabetes. We showed the potential of employing catalytically active protein-directed nanoflower-like artificial nanozymes (apo-TF-MnOx NFs) by bio-mineralization method to produce simple and visible colorimetric sensor for GSH. The experiments proved that apo-TF-MnOx NFs exhibited peroxidase, catalase- and superoxide dismutase-like activities, but the most notable feature was the excellent peroxidase-like activity, which could efficiently catalyze the oxidation reaction of 3,3',5,5'- tetramethylbenzidine (TMB) in the existence of hydrogen peroxide (H2O2) to generate a blue product. Some outcomes also indicated that the apo-TF-MnOx NFs had stronger peroxidase-like activity, which was proved by the Michaelis-Menten constant (Km) and maximum initial velocity (Vmax). Hence, we used the peroxidase-like activity to develop a GSH colorimetric biosensor. Fortunately, the colorimetric platform exhibited a sensitive response to H2O2 and GSH in the range of 5 μМ to 300 μМ and 0.5 μМ to 35 μМ with a limit of detection of 3.29 μM and 0.15 μM (S/N = 3) under optimal conditions. The feasibility of the simple method was confirmed by qualitative detection of H2O2 and GSH in blood samples from acute coronary syndrome patients. A key outcome of our study was the ability to realized differential identification of GSH for acute coronary syndrome and healthy human without invasive treatment which was an advantage over other methods. This work not only proposed a new type of nanozymes, but also showed the multiple advantages of the apo-TF-MnOx NFs for the construction of biosensors. Thus, we believe that apo-TF-MnOx NFs with strong peroxidase-like activity can be employed as nanozymes and be widely applied in the fields of medicine and biological sensors.
Collapse
Affiliation(s)
- Dandan Zhang
- School of Public Health, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Hongjin Zhang
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - He Sun
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Yuanzhen Yang
- School of Stomatology, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Wenbin Zhong
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Qing Chen
- School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Qunxiang Ren
- School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Ge Jin
- School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China.
| | - Yang Zhang
- School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China.
| |
Collapse
|
11
|
Zhou Y, Sun P, Cao Y, Yang J, Wu Q, Peng J. Biocompatible copper formate-based nanoparticles with strong antibacterial properties for wound healing. J Nanobiotechnology 2023; 21:474. [PMID: 38072979 PMCID: PMC10710715 DOI: 10.1186/s12951-023-02247-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Copper-based antibacterial materials have emerged as a potential alternative for combating bacterial infections, which continue to pose significant health risks. Nevertheless, the use of copper-based nanoparticles as antibacterial agents has faced challenges due to their toxicity towards cells and tissues. To overcome this obstacle, we propose a new approach using a contact-active copper-based nanoparticles called polydopamine (PDA)-coated copper-amine (Cuf-TMB@PDA). The positively charged surface of Cuf-TMB@PDA enables efficient targeting of negatively charged bacteria, allowing controlled release of Cu(II) into the bacterial cell membrane. Moreover, Cuf-TMB@PDA exhibits similar ·OH signals as Cuf-TMB suspensions in previous work. In cytotoxicity assays conducted over 72 h, Cuf-TMB@PDA demonstrated an efficacy of 98.56%, while releasing lower levels of Cu(II) that were less harmful to cells, resulting in enhanced antimicrobial effects. These antimicrobial properties are attributed to the synergistic effects of charge-contact activity of PDA, controlled release of Cu(II), and free radicals. Subsequent in vivo experiments confirmed the strong antimicrobial potency of Cuf-TMB@PDA and its ability to promote wound healing.
Collapse
Affiliation(s)
- Yue Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Ping Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Yongbin Cao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiahao Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan, 430070, China
- School of Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Qingzhi Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan, 430070, China.
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China.
- School of Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Jian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan, 430070, China.
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China.
- School of Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
12
|
Wang R, Huang Z, Xiao Y, Huang T, Ming J. Photothermal therapy of copper incorporated nanomaterials for biomedicine. Biomater Res 2023; 27:121. [PMID: 38001505 PMCID: PMC10675977 DOI: 10.1186/s40824-023-00461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Studies have reported on the significance of copper incorporated nanomaterials (CINMs) in cancer theranostics and tissue regeneration. Given their unique physicochemical properties and tunable nanostructures, CINMs are used in photothermal therapy (PTT) and photothermal-derived combination therapies. They have the potential to overcome the challenges of unsatisfactory efficacy of conventional therapies in an efficient and non-invasive manner. This review summarizes the recent advances in CINMs-based PTT in biomedicine. First, the classification and structure of CINMs are introduced. CINMs-based PTT combination therapy in tumors and PTT guided by multiple imaging modalities are then reviewed. Various representative designs of CINMs-based PTT in bone, skin and other organs are presented. Furthermore, the biosafety of CINMs is discussed. Finally, this analysis delves into the current challenges that researchers face and offers an optimistic outlook on the prospects of clinical translational research in this field. This review aims at elucidating on the applications of CINMs-based PTT and derived combination therapies in biomedicine to encourage future design and clinical translation.
Collapse
Affiliation(s)
| | | | | | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
13
|
Jiang Y, Xu J, Lin Q, Song J, Sheng M, Lee J, Shi J, Kong X, Tan Y. pH-Activated Scallop-Type Nanoenzymes for Oxidative Stress Amplification and Photothermal Enhancement of Antibacterial and Antibiofilm Effect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47866-47879. [PMID: 37796183 DOI: 10.1021/acsami.3c05351] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Ferric phosphate (FePOs) nanoenzymes can express peroxidase (POD) activity under the dual stimulation of an acidic environment and high H2O2 concentrations. In living organisms, this generates reactive oxygen species (ROS) in sites of lesion infection, and thus FePOs nanoenzymes can act as antimicrobial agents. Here, CeO2 and ZnO2 were immobilized in a scallop-type FePOs nanoenzyme material loaded with a photosensitizer, indocyanine green, to synthesize a multifunctional cascade nanoparticle system (FePOs-CeO2-ZnO2-ICG, FCZI NPs). H2O2 concentrations could be adjusted through the ZnO2 self-activation response to the slightly acidic environment in biofilms, further promoting the release of ROS from the POD-like reaction of FePOs, achieving amplification of oxidative stress, DNA and cell membrane damage, and exploiting the photodynamic/photothermal effects of indocyanine green to enhance the antibiofilm effects. CeO2 can remove redundant ROS by switching from Ce4+ to Ce3+ valence, enhancing its ability to fight chronic inflammation and oxidative stress and thus promoting the regeneration of tissues around infection. By maintaining the redox balance of normal cells, increasing ROS at the infection site, eliminating redundant ROS, and protecting normal tissues from damage, the synthesized system maximizes the elimination of biofilms and treatment at the infection site. Therefore, this work may pave the way for the application of biocompatible nanoenzymes.
Collapse
Affiliation(s)
- Yuping Jiang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, 266109 Qingdao, China
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, 266003 Qingdao, Shandong, China
| | - Jiaman Xu
- College of Food Science and Engineering, Qingdao Agricultural University, 266109 Qingdao, China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural AffairsQingdao Agricultural University, 266109 Qingdao, China
- Shandong Technology Innovation Center of Special Food, 266109 Qingdao, China
- Qingdao Special Food Research Institute, 266109 Qingdao, China
| | - Quan Lin
- College of Food Science and Engineering, Qingdao Agricultural University, 266109 Qingdao, China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural AffairsQingdao Agricultural University, 266109 Qingdao, China
- Shandong Technology Innovation Center of Special Food, 266109 Qingdao, China
- Qingdao Special Food Research Institute, 266109 Qingdao, China
| | - Junyao Song
- Bassars College of Future Agricultural Science and Technology, Qingdao Agricultural University, 700 Changcheng Road, 266109 Qingdao, China
| | - Maokun Sheng
- College of Food Science and Engineering, Qingdao Agricultural University, 266109 Qingdao, China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural AffairsQingdao Agricultural University, 266109 Qingdao, China
- Shandong Technology Innovation Center of Special Food, 266109 Qingdao, China
- Qingdao Special Food Research Institute, 266109 Qingdao, China
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 38541 Gyeongsan, South Korea
| | - Jinsheng Shi
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, 266109 Qingdao, China
- Department of Public Course Teaching, University of Health and Rehabilitation Sciences, 266109 Qingdao, China
| | - Xiaoying Kong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, 266109 Qingdao, China
| | - Yulong Tan
- College of Food Science and Engineering, Qingdao Agricultural University, 266109 Qingdao, China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural AffairsQingdao Agricultural University, 266109 Qingdao, China
- Shandong Technology Innovation Center of Special Food, 266109 Qingdao, China
- Qingdao Special Food Research Institute, 266109 Qingdao, China
| |
Collapse
|
14
|
Hou J, Xianyu Y. Tailoring the Surface and Composition of Nanozymes for Enhanced Bacterial Binding and Antibacterial Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302640. [PMID: 37322391 DOI: 10.1002/smll.202302640] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Indexed: 06/17/2023]
Abstract
With the advantages of diverse structures, tunable enzymatic activity, and high stability, nanozymes are widely used in medicine, chemistry, food, environment, and other fields. As an alternative to traditional antibiotics, nanozymes attract more and more attention from the scientific researchers in recent years. Developing nanozymes-based antibacterial materials opens up a new avenue for the bacterial disinfection and sterilization. In this review, the classification of nanozymes and their antibacterial mechanisms are discussed. The surface and composition of nanozymes are critical for the antibacterial efficacy, which can be tailored to enhance both the bacterial binding and the antibacterial activity. On the one hand, the surface modification of nanozymes enables binding and targeting of bacteria that improves the antibacterial performance of nanozymes including the biochemical recognition, the surface charge, and the surface topography. On the other hand, the composition of nanozymes can be modulated to achieve enhanced antibacterial performance including the single nanozyme-mediated synergistic and multiple nanozymes-mediated cascade catalytic antibacterial applications. In addition, the current challenges and future prospects of tailoring nanozymes for antibacterial applications are discussed. This review can provide insights into the design of future nanozymes-based materials for the antibacterial treatments.
Collapse
Affiliation(s)
- Jinjie Hou
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yunlei Xianyu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, 310016, P. R. China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, P. R. China
| |
Collapse
|
15
|
Ma T, Huang K, Cheng N. Recent Advances in Nanozyme-Mediated Strategies for Pathogen Detection and Control. Int J Mol Sci 2023; 24:13342. [PMID: 37686145 PMCID: PMC10487713 DOI: 10.3390/ijms241713342] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/13/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Pathogen detection and control have long presented formidable challenges in the domains of medicine and public health. This review paper underscores the potential of nanozymes as emerging bio-mimetic enzymes that hold promise in effectively tackling these challenges. The key features and advantages of nanozymes are introduced, encompassing their comparable catalytic activity to natural enzymes, enhanced stability and reliability, cost effectiveness, and straightforward preparation methods. Subsequently, the paper delves into the detailed utilization of nanozymes for pathogen detection. This includes their application as biosensors, facilitating rapid and sensitive identification of diverse pathogens, including bacteria, viruses, and plasmodium. Furthermore, the paper explores strategies employing nanozymes for pathogen control, such as the regulation of reactive oxygen species (ROS), HOBr/Cl regulation, and clearance of extracellular DNA to impede pathogen growth and transmission. The review underscores the vast potential of nanozymes in pathogen detection and control through numerous specific examples and case studies. The authors highlight the efficiency, rapidity, and specificity of pathogen detection achieved with nanozymes, employing various strategies. They also demonstrate the feasibility of nanozymes in hindering pathogen growth and transmission. These innovative approaches employing nanozymes are projected to provide novel options for early disease diagnoses, treatment, and prevention. Through a comprehensive discourse on the characteristics and advantages of nanozymes, as well as diverse application approaches, this paper serves as a crucial reference and guide for further research and development in nanozyme technology. The expectation is that such advancements will significantly contribute to enhancing disease control measures and improving public health outcomes.
Collapse
Affiliation(s)
- Tianyi Ma
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.M.); (K.H.)
| | - Kunlun Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.M.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.M.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| |
Collapse
|
16
|
Liu Y, Qian J, Zhao X, Lan T, Luo Y, Guo Q, Shen X. Dual-responsive antibiotic and baicalein co-delivery nanoparticles with enhanced synergistic antibacterial activity. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:1741-1757. [PMID: 36799915 DOI: 10.1080/09205063.2023.2182575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/18/2023]
Abstract
Globally, due to the rapid development of bacterial resistance, bacterial infections lead to significant mortality and morbidity which require efficient strategies to eradicate these infections. Herein, we prepared a dual-responsive synergistic drug delivery nanoparticle carrier (NPS@Bai/Cip), which responds to sub-acid bacterial microenvironments and targets phosphatase or phospholipase at infection sites. Nanoparticles surfaces were positively (10.0 mV) charged under acidic conditions, leading to good bacterial adhesion and enhanced drug accumulation. NPS@Bai/Cip showed good antibacterial and anti-biofilm activity against drug-resistant Pseudomonas aeruginosa. NPS@Bai/Cip could inhibit the biofilm formation via affecting the swimming, swarming, and twitching motilities of P. aeruginosa. NPS@Bai/Cip was used to treat drug-resistance P. aeruginosa-induced infection in rats by improving wound healing and reducing inflammatory responses. Thus, NPS@Bai/Cip functioned as an antibacterial and antibiofilm agent with good potential for treating bacteria-induced infections.
Collapse
Affiliation(s)
- Yujia Liu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Jun Qian
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Xiufen Zhao
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Tianyu Lan
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Yongjun Luo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| |
Collapse
|
17
|
Chen J, Wang X, Wang Y, Zhang Y, Peng Z, Tang X, Hu Y, Qiu P. Colorimetric detection of uric acid based on enhanced catalytic activity of cobalt-copper bimetallic-modified molybdenum disulfide. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
18
|
He J, Hong M, Xie W, Chen Z, Chen D, Xie S. Progress and prospects of nanomaterials against resistant bacteria. J Control Release 2022; 351:301-323. [PMID: 36165865 DOI: 10.1016/j.jconrel.2022.09.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 12/18/2022]
Abstract
Drug-resistant bacterial infections are increasingly heightening, which lead to more severe illness, higher cost of treatment and increased risk of death. Nanomaterials-based therapy, an "outrider", serving as a kind of innovative antimicrobial therapeutics, showing promise in replacing antimicrobial agents and enhancing the activity of antibiotics, generally bases on the various inorganic and/or organic materials. When the size of those materials is below to a certain nano-level and the content of nanomaterials is above a certain amount, they are lethal to the resistant bacteria, which bypass the traditional bacterial resistance mechanisms. This review highlights the effect of nanomaterials in combating extracellular/intracellular bacteria and eradicating biofilms. Based on the studies searched on the Web of Science through relevant keywords, this review article starts with analyzing the current situation, resistance mechanisms, and treatment difficulties of bacteria resistance. Then, the efficacy of nanomaterials against resistant bacteria and their mechanisms (e.g., physical impairment, biofilm lysis, regulating bacterial metabolism, protein and DNA replication as well as enhancing the antibiotics concentration in infected cells) are collected. Lastly, the factors affecting the antibacterial efficacy are argued from the side of nanomatrials and bacterium, which followed by the emerging challenges and recent perspectives of achieving higher targeting released nanomaterials as antibacterial therapeutics.
Collapse
Affiliation(s)
- Jian He
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mian Hong
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, China
| | - Wenqing Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhen Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, China
| | - Dongmei Chen
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, China.
| |
Collapse
|
19
|
Zhou LJ, Wang YY, Li SL, Cao L, Jiang FL, Maskow T, Liu Y. Core-Shell Polydopamine/Cu Nanometer Rods Efficiently Deactivate Microbes by Mimicking Chloride-Activated Peroxidases. ACS OMEGA 2022; 7:29984-29994. [PMID: 36061688 PMCID: PMC9434747 DOI: 10.1021/acsomega.2c02986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Cu-modified nanoparticles have been designed to mimic peroxidase, and their potent antibacterial and anti-biofilm abilities have been widely investigated. In this study, novel core-shell polydopamine (PDA)/Cu4(OH)6SO4 crystal (PDA/Cu) nanometer rods were prepared. The PDA/Cu nanometer rods show similar kinetic behaviors to chloride-activated peroxidases, exhibit excellent photothermal properties, and are sensitive to the concentrations of pH values and the substrate (i.e., H2O2). PDA/Cu nanometer rods could adhere to the bacteria and catalyze hydrogen peroxide (H2O2) to generate more reactive hydroxy radicals (•OH) against Staphylococcus aureus and Escherichia coli, Furthermore, PDA/Cu nanometer rods show enhanced catalytic and photothermal synergistic antibacterial activity. This work provides a simple, inexpensive, and effective strategy for antibacterial applications.
Collapse
Affiliation(s)
- Lian-Jiao Zhou
- Department
of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yu-Ying Wang
- Department
of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Shu-Lan Li
- Department
of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- State
Key Laboratory of Membrane Separation and Membrane Process & Tianjin
Key Laboratory of Green Chemical Technology and Process Engineering,
School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Ling Cao
- Department
of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Feng-Lei Jiang
- Department
of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Thomas Maskow
- Department
of Environmental Microbiology, UFZ, Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Yi Liu
- Department
of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- State
Key Laboratory of Membrane Separation and Membrane Process & Tianjin
Key Laboratory of Green Chemical Technology and Process Engineering,
School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
20
|
Zhang Y, Hu X, Shang J, Shao W, Jin L, Quan C, Li J. Emerging nanozyme-based multimodal synergistic therapies in combating bacterial infections. Theranostics 2022; 12:5995-6020. [PMID: 35966582 PMCID: PMC9373825 DOI: 10.7150/thno.73681] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Pathogenic infections have emerged as major threats to global public health. Multidrug resistance induced by the abuse of antibiotics makes the anti-infection therapies to be a global challenge. Thus, it is urgent to develop novel, efficient and biosafe antibiotic alternatives for future antibacterial therapy. Recently, nanozymes have emerged as promising antibiotic alternatives for combating bacterial infections. More significantly, the multimodal synergistic nanozyme-based antibacterial systems open novel disinfection pathways. In this review, we are mainly focusing on the recent research progress of nanozyme-based multimodal synergistic therapies to eliminate bacterial infections. Their antibacterial mechanism, the synergistic antibacterial systems are systematically summarized and discussed according to the combination of mechanisms and the purpose to improve their antibacterial efficiency, biosafety and specificity. Finanly, the current challenges and prospects of the multimodal synergistic antibacterial systems are proposed.
Collapse
Affiliation(s)
- Yanmei Zhang
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Xin Hu
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Jing Shang
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Wenhui Shao
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Liming Jin
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Chunshan Quan
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Jun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, P. O. Box 110, Dalian 116023, China
| |
Collapse
|