1
|
Lameirinhas NS, Teixeira MC, Carvalho JPF, Valente BFA, Luís JL, Duarte IF, Pinto RJB, Oliveira H, Oliveira JM, Silvestre AJD, Vilela C, Freire CSR. Biofabrication of HepG2 Cells-Laden 3D Structures Using Nanocellulose-Reinforced Gelatin-Based Hydrogel Bioinks: Materials Characterization, Cell Viability Assessment, and Metabolomic Analysis. ACS Biomater Sci Eng 2025. [PMID: 40241282 DOI: 10.1021/acsbiomaterials.4c02148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The successful replication of the intricate architecture of human tissues remains a major challenge in the biomedical area. Three-dimensional (3D) bioprinting has emerged as a promising approach for the biofabrication of living tissue analogues, taking advantage of the use of adequate bioinks and printing methodologies. Here, a hydrogel bioink based on gelatin (Gel) and nanofibrillated cellulose (NFC), cross-linked with genipin, was developed for the 3D extrusion-based bioprinting of hepatocarcinoma cells (HepG2). This formulation combines the biological characteristics of Gel with the exceptional mechanical and rheological attributes of NFC. Gel/NFC ink formulations with different Gel/NFC mass compositions, viz., 90:10, 80:20, 70:30, and 60:40, were prepared and characterized. The corresponding cross-linked hydrogels were obtained using 1.5% (w/w) genipin as the cross-linking agent. The rheological and mechanical performances of the inks were enhanced by the addition of NFC, as evidenced by the rise in the yield stress from 70.9 ± 28.6 to 627.9 ± 74.8 Pa, compressive stress at 80% strain from 0.5 ± 0.1 to 1.5 ± 0.2 MPa, and Young's modulus from 4.7 ± 0.9 to 12.1 ± 1.1 MPa, for 90:10 and 60:40 inks, respectively. Moreover, higher NFC contents translated into 3D structures with better shape fidelity and the possibility of printing more intricate structures. These hydrogels were noncytotoxic toward HepG2 cells for up to 48 h, with cell viabilities consistently above 80%. The ink 70:30 was loaded with HepG2 cells (2 × 106 cells mL-1) and bioprinted. Cell viability remained elevated (90 ± 4%) until day 14 postbioprinting, with cells maintaining their metabolic activity shown by 1H NMR metabolomics, proving the enormous potential of Gel/NFC-based bioinks for bioprinting HepG2 cells without jeopardizing their viability and metabolism.
Collapse
Affiliation(s)
- Nicole S Lameirinhas
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Maria C Teixeira
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - João P F Carvalho
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Bruno F A Valente
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Jorge L Luís
- EMaRT Group─Emerging: Materials, Research, Technology, School of Design, Management and Production Technologies Northern Aveiro, University of Aveiro, 3720-509 Oliveira de Azeméis, Portugal
| | - Iola F Duarte
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
- LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo J B Pinto
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Helena Oliveira
- CESAM─Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José M Oliveira
- EMaRT Group─Emerging: Materials, Research, Technology, School of Design, Management and Production Technologies Northern Aveiro, University of Aveiro, 3720-509 Oliveira de Azeméis, Portugal
| | - Armando J D Silvestre
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Carla Vilela
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Carmen S R Freire
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
2
|
Peixoto D, Ravasco JM, Blanco-Fernandez B, Veiga F, Concheiro A, Conde J, Paiva-Santos AC, Alvarez-Lorenzo C. Enzyme-responsive vitamin D-based micelles for paclitaxel-controlled delivery and synergistic pancreatic cancer therapy. Mater Today Bio 2025; 31:101555. [PMID: 40026626 PMCID: PMC11869029 DOI: 10.1016/j.mtbio.2025.101555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/20/2024] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most feared diseases worldwide owing to its poor prognosis, negligible therapeutic advances, and high mortality. Herein, multifunctional enzyme-responsive micelles for the controlled delivery of paclitaxel (PTX) were prepared to circumvent its current clinical challenges. Accordingly, two enzyme-responsive structural units composed of Vitamin D3 (VD3) conjugated with polyethylene glycol of different molecular weights (600 Da and 2000 Da) were synthesized and characterized using different analytical methods. By applying the solvent evaporation method, these bioactive structural units self-assembled into sub-100 nm VD3 micelles with minimal batch-to-batch variation, monomodal particle size distribution, and high encapsulation efficiency. The enzyme-triggered disassembly of PTX-loaded VD3 micelles was demonstrated by release studies in the presence of a high esterase content typically featured by PDAC cells. PTX-loaded VD3 micelles also exhibited prominent cell internalization and induced a considerable cytotoxic synergistic effect against human PDAC cells (BxPC-3 cells) in 2D and 3D cell culture models compared with free PTX. The PTX-loaded VD3 micelles were hemocompatible and stable after long-term storage in the presence of biorelevant media, and showed higher efficiency to inhibit the tumor growth compared to the approved clinical nanoformulation (Abraxane®) in an in ovo tumor model. The findings reported here indicate that VD3S-PEG micelles may have a promising role in PDAC therapy, since VD3 could act not only as a hydrophobic core of the micelles but also as a therapeutic agent that provides synergetic therapeutic effects with the encapsulated PTX.
Collapse
Affiliation(s)
- Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782, Santiago, Spain
| | - João M. Ravasco
- Comprehensive Health Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169, Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649, Lisbon, Portugal
| | - Barbara Blanco-Fernandez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782, Santiago, Spain
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782, Santiago, Spain
| | - João Conde
- Comprehensive Health Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169, Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649, Lisbon, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782, Santiago, Spain
| |
Collapse
|
3
|
Bilginer-Kartal R, Çoban B, Yildirim-Semerci Ö, Arslan-Yildiz A. Recent Advances in Hydrogel-Based 3D Disease Modeling and Drug Screening Platforms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40095242 DOI: 10.1007/5584_2025_851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Three-dimensional (3D) disease modeling and drug screening systems have become important in tissue engineering, drug screening, and development. The newly developed systems support cell and extracellular matrix (ECM) interactions, which are necessary for the formation of the tissue or an accurate model of a disease. Hydrogels are favorable biomaterials due to their properties: biocompatibility, high swelling capacity, tunable viscosity, mechanical properties, and their ability to biomimic the structure and function of ECM. They have been used to model various diseases such as tumors, cancer diseases, neurodegenerative diseases, cardiac diseases, and cardiovascular diseases. Additive manufacturing approaches, such as 3D printing/bioprinting, stereolithography (SLA), selective laser sintering (SLS), and fused deposition modeling (FDM), enable the design of scaffolds with high precision; thus, increasing the accuracy of the disease models. In addition, the aforementioned methodologies improve the design of the hydrogel-based scaffolds, which resemble the complicated structure and intricate microenvironment of tissues or tumors, further advancing the development of therapeutic agents and strategies. Thus, 3D hydrogel-based disease models fabricated through additive manufacturing approaches provide an enhanced 3D microenvironment that empowers personalized medicine toward targeted therapeutics, in accordance with 3D drug screening platforms.
Collapse
Affiliation(s)
| | - Başak Çoban
- Department of Bioengineering, Izmir Institute of Technology (IZTECH), Izmir, Turkey
| | | | - Ahu Arslan-Yildiz
- Department of Bioengineering, Izmir Institute of Technology (IZTECH), Izmir, Turkey.
| |
Collapse
|
4
|
Puiggalí-Jou A, Hui I, Baldi L, Frischknecht R, Asadikorayem M, Janiak J, Chansoria P, McCabe MC, Stoddart MJ, Hansen KC, Christman KL, Zenobi-Wong M. Biofabrication of anisotropic articular cartilage based on decellularized extracellular matrix. Biofabrication 2025; 17:015044. [PMID: 39757574 DOI: 10.1088/1758-5090/ad9cc2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025]
Abstract
Tissue-engineered grafts that mimic articular cartilage show promise for treating cartilage injuries. However, engineering cartilage cell-based therapies to match zonal architecture and biochemical composition remains challenging. Decellularized articular cartilage extracellular matrix (dECM) has gained attention for its chondro-inductive properties, yet dECM-based bioinks have limitations in mechanical stability and printability. This study proposes a rapid light-based bioprinting method using a tyrosine-based crosslinking mechanism, which does not require chemical modifications of dECM and thereby preserves its structure and bioactivity. Combining this resin with Filamented Light (FLight) biofabrication enables the creation of cellular, porous, and anisotropic dECM scaffolds composed of aligned microfilaments. Specifically, we focus on the effects of various biopolymer compositions (i.e. hyaluronic acid, collagen I, and dECM) and inner architecture (i.e. bulk light vs FLight) on immune response and cell morphology, and we investigate their influence on nascent ECM production and long-term tissue maturation. Our findings highlight the importance of FLight scaffolds in directing collagen deposition resembling articular cartilage structure and promoting construct maturation, and they emphasize the superiority of biological-rich dECM over single-component materials for engineering articular cartilage, thereby offering new avenues for the development of effective cartilage tissue engineering strategies.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Isabel Hui
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Lucrezia Baldi
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Rea Frischknecht
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Maryam Asadikorayem
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Jakub Janiak
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Parth Chansoria
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Maxwell C McCabe
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, 12801 E 17th Ave., Aurora, CO 80045, United States of America
| | - Martin J Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz 7270, Switzerland
- Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, 12801 E 17th Ave., Aurora, CO 80045, United States of America
| | - Karen L Christman
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California at San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, United States of America
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| |
Collapse
|
5
|
Rashki Ghaleno L, Rezaei Topraggaleh T, Montazeri L, Shahverdi A, Rezazadeh Valojerdi M. Effectiveness of Voytik-Harbin Protocol in Fabrication of Ram's Testicular-Derived Hydrogel and Its Impact on Mouse In Vitro Spermatogenesis. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2025; 19:70-79. [PMID: 39827394 PMCID: PMC11744198 DOI: 10.22074/ijfs.2024.2018868.1599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 04/23/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND The utilization of decellularized extracellular matrix (dECM) derived from animal testis tissue has demonstrated potential as a component of tissue-specific scaffolds. Current research is mostly centered around dECM as a natural resource for culturing testicular cells. This study aimed to assess firstly the comparison of Voytik-Harbin (VH) and Frytes protocol in creating Ram's dECM testis hydrogel and secondly the evaluation of the best protocol effect on in vitro spermatogenesis. MATERIALS AND METHODS In this experimental study, the six testes of mature rams were decellularized and the hydrogel production was performed by i. The Frytes protocol utilized a concentration of 1 mg/mL of pepsin, dissolved in either 0.1 or 0.01 M HCl, and ii. The VH protocol was involved 10 mg of pepsin per 100 mg of ECM in 0.5 M of acetic acid. Subsequently, mouse testicular cells were cultivated on collagen hydrogel as the control and the more effective testicular-derived hydrogel (TDH) to evaluate the early stages of in vitro spermatogenesis. RESULTS While the Freytes protocol produced a homogeneous pre-gel solution with both HCl concentrations; elevating the pH to 7.4 loosened the hydrogel and made gelation problematic. In contrast, the VH protocol solidified the hydrogel and produced a strong hydrogel due to its gelation consistency. Furthermore, the prepared hydrogel by VH with 25 mg of dECM had a significantly higher priority in terms of rheology and structure (P<0.05). Following mouse testicular cell culture, TDH and collagen hydrogel did not differ significantly in terms of cell survival rates and the mRNA expression of early spermatogenesis genes. CONCLUSION Using the VH protocol for producing ram TDH resulted in a firm hydrogel with a high frequency of repeat, which may be suited for testicular cell growth.
Collapse
Affiliation(s)
- Leila Rashki Ghaleno
- Department of Reproductive Biology, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Tohid Rezaei Topraggaleh
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Anatomical Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Mojtaba Rezazadeh Valojerdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. ,
| |
Collapse
|
6
|
Ferreira LP, Jorge C, Henriques-Pereira M, Monteiro MV, Gaspar VM, Mano JF. Flow-on-repellent biofabrication of fibrous decellularized breast tumor-stroma models. BIOMATERIALS ADVANCES 2025; 166:214058. [PMID: 39442360 DOI: 10.1016/j.bioadv.2024.214058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
On-the-fly biofabrication of reproducible 3D tumor models at a pre-clinical level is highly desirable to level-up their applicability and predictive potential. Incorporating ECM biomolecular cues and its complex 3D bioarchitecture in the design stages of such in vitro platforms is essential to better recapitulate the native tumor microenvironment. To materialize these needs, herein we describe an innovative flow-on-repellent (FLORE) 3D extrusion bioprinting technique that leverages expedited and automatized bioink deposition onto a customized superhydrophobic printing bed. We demonstrate that this approach enables the rapid generation of quasi-spherical breast cancer-stroma hybrid models in a mode governed by surface wettability rather than bioink rheological features. For this purpose, an ECM-mimetic bioink comprising breast tissue-specific decellularized matrix in the form of microfiber bundles (dECM-μF) and photocrosslinkable hyaluronan (HAMA), was formulated to generate triple negative breast tumor-stroma models. Leveraging on the FLORE bioprinting approach, a rapid, automated, and reproducible fabrication of physiomimetic breast cancer hydrogel beads was successfully demonstrated. Hydrogel beads size with and without dECM-μF was easily tailored by modelling droplet deposition time on the superhydrophobic bed. Interestingly, in heterotypic breast cancer-stroma beads a self-arrangement of different cellular populations was observed, independent of dECM-μF inclusion, with CAFs clustering overtime within the fabricated models. Drug screening assays showed that the inclusion of CAFs and dECM-μF also impacted the overall response of these living constructs when incubated with gemcitabine chemotherapeutics, with dECM-μF integration promoting a trend for higher resistance in ECM-enriched models. Overall, we developed a rapid fabrication approach leveraging on extrusion bioprinting and superhydrophobic surfaces to process photocrosslinkable dECM bioinks and to generate increasingly physiomimetic tumor-stroma-matrix platforms for drug screening.
Collapse
Affiliation(s)
- Luís P Ferreira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carole Jorge
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Margarida Henriques-Pereira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria V Monteiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Chen Z, Wang J, Kankala RK, Jiang M, Long L, Li W, Zou L, Chen A, Liu Y. Decellularized extracellular matrix-based disease models for drug screening. Mater Today Bio 2024; 29:101280. [PMID: 39399243 PMCID: PMC11470555 DOI: 10.1016/j.mtbio.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
In vitro drug screening endeavors to replicate cellular states closely resembling those encountered in vivo, thereby maximizing the fidelity of drug effects and responses within the body. Decellularized extracellular matrix (dECM)-based materials offer a more authentic milieu for crafting disease models, faithfully emulating the extracellular components and structural complexities encountered by cells in vivo. This review discusses recent advancements in leveraging dECM-based materials as biomaterials for crafting cell models tailored for drug screening. Initially, we delineate the biological functionalities of diverse ECM components, shedding light on their potential influences on disease model construction. Further, we elucidate the decellularization techniques and methodologies for fabricating cell models utilizing dECM substrates. Then, the article delves into the research strides made in employing dECM-based models for drug screening across a spectrum of ailments, including tumors, as well as heart, liver, lung, and bone diseases. Finally, the review summarizes the bottlenecks, hurdles, and promising research trajectories associated with the dECM materials for drug screening, alongside their prospective applications in personalized medicine. Together, by encapsulating the contemporary research landscape surrounding dECM materials in cell model construction and drug screening, this review underscores the vast potential of dECM materials in drug assessment and personalized therapy.
Collapse
Affiliation(s)
- Zhoujiang Chen
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Ji Wang
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, PR China
| | - Mingli Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563099, Guizhou, PR China
| | - Lianlin Long
- School of Pharmacy, Zunyi Medical University, Zunyi, 563099, Guizhou, PR China
| | - Wei Li
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Liang Zou
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, PR China
| | - Ya Liu
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu, 610106, Sichuan, PR China
| |
Collapse
|
8
|
Desigaux T, Comperat L, Dusserre N, Stachowicz ML, Lea M, Dupuy JW, Vial A, Molinari M, Fricain JC, Paris F, Oliveira H. 3D bioprinted breast cancer model reveals stroma-mediated modulation of extracellular matrix and radiosensitivity. Bioact Mater 2024; 42:316-327. [PMID: 39290339 PMCID: PMC11405629 DOI: 10.1016/j.bioactmat.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Deciphering breast cancer treatment resistance remains hindered by the lack of models that can successfully capture the four-dimensional dynamics of the tumor microenvironment. Here, we show that microextrusion bioprinting can reproducibly generate distinct cancer and stromal compartments integrating cells relevant to human pathology. Our findings unveil the functional maturation of this millimeter-sized model, showcasing the development of a hypoxic cancer core and an increased surface proliferation. Maturation was also driven by the presence of cancer-associated fibroblasts (CAF) that induced elevated microvascular-like structures complexity. Such modulation was concomitant to extracellular matrix remodeling, with high levels of collagen and matricellular proteins deposition by CAF, simultaneously increasing tumor stiffness and recapitulating breast cancer fibrotic development. Importantly, our bioprinted model faithfully reproduced response to treatment, further modulated by CAF. Notably, CAF played a protective role for cancer cells against radiotherapy, facilitating increased paracrine communications. This model holds promise as a platform to decipher interactions within the microenvironment and evaluate stroma-targeted drugs in a context relevant to human pathology.
Collapse
Affiliation(s)
- Theo Desigaux
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
| | - Leo Comperat
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
| | - Nathalie Dusserre
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
| | - Marie-Laure Stachowicz
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
| | - Malou Lea
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
| | - Jean-William Dupuy
- Univ. Bordeaux, Bordeaux Proteome, F-33000, Bordeaux, France
- Univ. Bordeaux, CNRS, INSERM, TBM-Core, US5, UAR 3427, OncoProt, F-33000, Bordeaux, France
| | - Anthony Vial
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600, Pessac, France
| | - Michael Molinari
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600, Pessac, France
| | - Jean-Christophe Fricain
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
- Services d'Odontologie et de Santé Buccale, CHU Bordeaux, F-33000, Bordeaux, France
| | - François Paris
- CRCINA, INSERM, CNRS, Univ. Nantes, F-44000, Nantes, France
- Institut de Cancérologie de l'Ouest, F-44800, Saint Herblain, France
| | - Hugo Oliveira
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
| |
Collapse
|
9
|
Buchholz MB, Scheerman DI, Levato R, Wehrens EJ, Rios AC. Human breast tissue engineering in health and disease. EMBO Mol Med 2024; 16:2299-2321. [PMID: 39179741 PMCID: PMC11473723 DOI: 10.1038/s44321-024-00112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/26/2024] Open
Abstract
The human mammary gland represents a highly organized and dynamic tissue, uniquely characterized by postnatal developmental cycles. During pregnancy and lactation, it undergoes extensive hormone-stimulated architectural remodeling, culminating in the formation of specialized structures for milk production to nourish offspring. Moreover, it carries significant health implications, due to the high prevalence of breast cancer. Therefore, gaining insight into the unique biology of the mammary gland can have implications for managing breast cancer and promoting the well-being of both women and infants. Tissue engineering techniques hold promise to narrow the translational gap between existing breast models and clinical outcomes. Here, we provide an overview of the current landscape of breast tissue engineering, outline key requirements, and the challenges to overcome for achieving more predictive human breast models. We propose methods to validate breast function and highlight preclinical applications for improved understanding and targeting of breast cancer. Beyond mammary gland physiology, representative human breast models can offer new insight into stem cell biology and developmental processes that could extend to other organs and clinical contexts.
Collapse
Affiliation(s)
- Maj-Britt Buchholz
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Demi I Scheerman
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Levato
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Pérez Del Río E, Rey-Vinolas S, Santos F, Castellote-Borrell M, Merlina F, Veciana J, Ratera I, Mateos-Timoneda MA, Engel E, Guasch J. 3D Printing as a Strategy to Scale-Up Biohybrid Hydrogels for T Cell Manufacture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50139-50146. [PMID: 39285613 PMCID: PMC11440455 DOI: 10.1021/acsami.4c06183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The emergence of cellular immunotherapy treatments is introducing more efficient strategies to combat cancer as well as autoimmune and infectious diseases. However, the cellular manufacturing procedures associated with these therapies remain costly and time-consuming, thus limiting their applicability. Recently, lymph-node-inspired PEG-heparin hydrogels have been demonstrated to improve primary human T cell culture at the laboratory scale. To go one step further in their clinical applicability, we assessed their scalability, which was successfully achieved by 3D printing. Thus, we were able to improve primary human T cell infiltration in the biohybrid PEG-heparin hydrogels, as well as increase nutrient, waste, and gas transport, resulting in higher primary human T cell proliferation rates while maintaining the phenotype. Thus, we moved one step further toward meeting the requirements needed to improve the manufacture of the cellular products used in cellular immunotherapies.
Collapse
Affiliation(s)
- Eduardo Pérez Del Río
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Sergi Rey-Vinolas
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona 08019, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Fabião Santos
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Miquel Castellote-Borrell
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Dynamic Biomaterials for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, Bellaterra 08193, Spain
| | - Francesca Merlina
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Dynamic Biomaterials for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, Bellaterra 08193, Spain
| | - Jaume Veciana
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Imma Ratera
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Miguel A Mateos-Timoneda
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès 08195, Spain
| | - Elisabeth Engel
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona 08019, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Judith Guasch
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
- Dynamic Biomaterials for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, Bellaterra 08193, Spain
| |
Collapse
|
11
|
Bhattacharya T, Kumari M, Kaur K, Kaity S, Arumugam S, Ravichandiran V, Roy S. Decellularized extracellular matrix-based bioengineered 3D breast cancer scaffolds for personalized therapy and drug screening. J Mater Chem B 2024; 12:8843-8867. [PMID: 39162395 DOI: 10.1039/d4tb00680a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Breast cancer (BC) is the second deadliest cancer after lung cancer. Similar to all cancers, it is also driven by a 3D microenvironment. The extracellular matrix (ECM) is an essential component of the 3D tumor micro-environment, wherein it functions as a scaffold for cells and provides metabolic support. BC is characterized by alterations in the ECM. Various studies have attempted to mimic BC-specific ECMs using artificial materials, such as Matrigel. Nevertheless, research has proven that naturally derived decellularized extracellular matrices (dECMs) are superior in providing the essential in vivo-like cues needed to mimic a cancer-like environment. Developing in vitro 3-D BC models is not straightforward and requires extensive analysis of the data established by researchers. For the benefit of researchers, in this review, we have tried to highlight all developmental studies that have been conducted by various scientists so far. The analysis of the conclusions drawn from these studies is also discussed. The advantages and drawbacks of the decellularization methods employed for generating BC scaffolds will be covered, and the review will shed light on how dECM scaffolds help develop a BC environment. The later stages of the article will also focus on immunogenicity issues arising from decellularization and the origin of the tissue. Finally, this review will also discuss the biofabrication of matrices, which is the core part of the bioengineering process.
Collapse
Affiliation(s)
- Teeshyo Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Mamta Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Kulwinder Kaur
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine a Health Sciences, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Santanu Kaity
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Somasundaram Arumugam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
12
|
Shu Y, Li B, Ma H, Liu J, Cheng YY, Li X, Liu T, Yang C, Ma X, Song K. Three-dimensional breast cancer tumor models based on natural hydrogels: a review. J Zhejiang Univ Sci B 2024; 25:736-755. [PMID: 39308065 PMCID: PMC11422793 DOI: 10.1631/jzus.b2300840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Breast cancer is the most common cancer in women and one of the deadliest cancers worldwide. According to the distribution of tumor tissue, breast cancer can be divided into invasive and non-invasive forms. The cancer cells in invasive breast cancer pass through the breast and through the immune system or systemic circulation to different parts of the body, forming metastatic breast cancer. Drug resistance and distant metastasis are the main causes of death from breast cancer. Research on breast cancer has attracted extensive attention from researchers. In vitro construction of tumor models by tissue engineering methods is a common tool for studying cancer mechanisms and anticancer drug screening. The tumor microenvironment consists of cancer cells and various types of stromal cells, including fibroblasts, endothelial cells, mesenchymal cells, and immune cells embedded in the extracellular matrix. The extracellular matrix contains fibrin proteins (such as types I, II, III, IV, VI, and X collagen and elastin) and glycoproteins (such as proteoglycan, laminin, and fibronectin), which are involved in cell signaling and binding of growth factors. The current traditional two-dimensional (2D) tumor models are limited by the growth environment and often cannot accurately reproduce the heterogeneity and complexity of tumor tissues in vivo. Therefore, in recent years, research on three-dimensional (3D) tumor models has gradually increased, especially 3D bioprinting models with high precision and repeatability. Compared with a 2D model, the 3D environment can better simulate the complex extracellular matrix components and structures in the tumor microenvironment. Three-dimensional models are often used as a bridge between 2D cellular level experiments and animal experiments. Acellular matrix, gelatin, sodium alginate, and other natural materials are widely used in the construction of tumor models because of their excellent biocompatibility and non-immune rejection. Here, we review various natural scaffold materials and construction methods involved in 3D tissue-engineered tumor models, as a reference for research in the field of breast cancer.
Collapse
Affiliation(s)
- Yan Shu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bing Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hailin Ma
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiaqi Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Xiangqin Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chuwei Yang
- Emergency Center, the Second Hospital of Dalian Medical University, Dalian 116023, China. ,
| | - Xiao Ma
- Department of Anesthesia, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China. ,
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
13
|
Pereira-Silva M, Diaz-Gomez L, Blanco-Fernandez B, Ferreirós A, Veiga F, Concheiro A, Paiva-Santos AC, Alvarez-Lorenzo C. Cancer cell membrane-modified Soluplus® micelles for gemcitabine delivery to pancreatic cancer using a prodrug approach. Int J Pharm 2024; 662:124529. [PMID: 39084580 DOI: 10.1016/j.ijpharm.2024.124529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Pancreatic cancer (PC) is one of the most lethal malignancies worldwide and its incidence is increasing. Chemotherapy is often associated to limited efficacy, poor targeting and systemic toxicity. In this work, the hydrophilic gemcitabine (GEM), widely used in PC treatment alone or in combination, was conjugated with vitamin E succinate (VES) and encapsulated in Soluplus® micelles. This prodrug approach facilitated encapsulation of the anticancer drug into the self-assembled copolymer micelles. Soluplus®/VES-GEM micelles were optimized regarding the ratio of the components and the preparation process. The micelles were small-sized (<80 nm), monodisperse, and highly stable, efficiently retaining the conjugate drug and showing significant antiproliferative activity against BxPC3 cell line. To improve biofunctionalization and targeting properties of prepared Soluplus®/VES-GEM micelles, biomimetic modification with PC cell membrane was further attempted by co-extruding PC cell membrane (BxPC3) nanovesicles with Soluplus®/VES-GEM micelles. Several protocols were attempted to prepare the BxPC3-modified Soluplus®/VES-GEM micelles and the outcomes were analyzed in detail. Overall, the results pave the way to innovative PC-targeted nanotherapies by maximizing GEM encapsulation in hydrophobic compartments with high stability and affinity. The results also highlight the need of higher resolution techniques to characterize cell membrane coating of nanocarriers bearing highly hydrophilic shells.
Collapse
Affiliation(s)
- Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Institute of Materials (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Institute of Materials (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Bárbara Blanco-Fernandez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Institute of Materials (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alba Ferreirós
- Nasasbiotech, S.L., Canton Grande 9, 15003 A Coruña, Spain
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Institute of Materials (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Institute of Materials (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
14
|
Shukla P, Bera AK, Yeleswarapu S, Pati F. High Throughput Bioprinting Using Decellularized Adipose Tissue-Based Hydrogels for 3D Breast Cancer Modeling. Macromol Biosci 2024; 24:e2400035. [PMID: 38685795 DOI: 10.1002/mabi.202400035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/29/2024] [Indexed: 05/02/2024]
Abstract
3D bioprinting allows rapid automated fabrication and can be applied for high throughput generation of biomimetic constructs for in vitro drug screening. Decellularized extracellular matrix (dECM) hydrogel is a popular biomaterial choice for tissue engineering and studying carcinogenesis as a tumor microenvironmental mimetic. This study proposes a method for high throughput bioprinting with decellularized adipose tissue (DAT) based hydrogels for 3D breast cancer modeling. A comparative analysis of decellularization protocol using detergent-based and detergent-free decellularization methods for caprine-origin adipose tissue is performed, and the efficacy of dECM hydrogel for 3D cancer modeling is assessed. Histological, biochemical, morphological, and biological characterization and analysis showcase the cytocompatibility of DAT hydrogel. The rheological property of DAT hydrogel and printing process optimization is assessed to select a bioprinting window to attain 3D breast cancer models. The bioprinted tissues are characterized for cellular viability and tumor cell-matrix interactions. Additionally, an approach for breast cancer modeling is shown by performing rapid high throughput bioprinting in a 96-well plate format, and in vitro drug screening using 5-fluorouracil is performed on 3D bioprinted microtumors. The results of this study suggest that high throughput bioprinting of cancer models can potentially have downstream clinical applications like multi-drug screening platforms and personalized disease models.
Collapse
Affiliation(s)
- Priyanshu Shukla
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| | - Ashis Kumar Bera
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| | - Sriya Yeleswarapu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| |
Collapse
|
15
|
Georgopoulou A, Filippi M, Stefani L, Drescher F, Balciunaite A, Scherberich A, Katzschmann R, Clemens F. Bioprinting of Stable Bionic Interfaces Using Piezoresistive Hydrogel Organoelectronics. Adv Healthc Mater 2024; 13:e2400051. [PMID: 38666593 DOI: 10.1002/adhm.202400051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/23/2024] [Indexed: 05/04/2024]
Abstract
Bionic tissues offer an exciting frontier in biomedical research by integrating biological cells with artificial electronics, such as sensors. One critical hurdle is the development of artificial electronics that can mechanically harmonize with biological tissues, ensuring a robust interface for effective strain transfer and local deformation sensing. In this study, a highly tissue-integrative, soft mechanical sensor fabricated from a composite piezoresistive hydrogel. The composite not only exhibits exceptional mechanical properties, with elongation at the point of fracture reaching up to 680%, but also maintains excellent biocompatibility across multiple cell types. Furthermore, the material exhibits bioadhesive qualities, facilitating stable cell adhesion to its surface. A unique advantage of the formulation is the compatibility with 3D bioprinting, an essential technique for fabricating stable interfaces. A multimaterial sensorized 3D bionic construct is successfully bioprinted, and it is compared to structures produced via hydrogel casting. In contrast to cast constructs, the bioprinted ones display a high (87%) cell viability, preserve differentiation ability, and structural integrity of the sensor-tissue interface throughout the tissue development duration of 10 d. With easy fabrication and effective soft tissue integration, this composite holds significant promise for various biomedical applications, including implantable electronics and organ-on-a-chip technologies.
Collapse
Affiliation(s)
- Antonia Georgopoulou
- High Performance Ceramics Laboratory, Empa, Swiss Federal Laboratories for Material Science and Technology, Dübendorf, 8600, Switzerland
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Lisa Stefani
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Felix Drescher
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Aiste Balciunaite
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Robert Katzschmann
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Frank Clemens
- High Performance Ceramics Laboratory, Empa, Swiss Federal Laboratories for Material Science and Technology, Dübendorf, 8600, Switzerland
| |
Collapse
|
16
|
Ferreira LP, Jorge C, Lagarto MR, Monteiro MV, Duarte IF, Gaspar VM, Mano JF. Photoacoustic processing of decellularized extracellular matrix for biofabricating living constructs. Acta Biomater 2024; 183:74-88. [PMID: 38838910 DOI: 10.1016/j.actbio.2024.05.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/07/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The diverse biomolecular landscape of tissue-specific decellularized extracellular matrix (dECM) biomaterials provides a multiplicity of bioinstructive cues to target cells, rendering them highly valuable for various biomedical applications. However, the isolation of dECM biomaterials entails cumbersome xenogeneic enzymatic digestions and also additional inactivation procedures. Such, increases processing time, increments costs and introduces residues of non-naturally present proteins in dECM formulations that remain present even after inactivation. To overcome these limitations, herein we report an innovative conjugation of light and ultrasound-mediated dECM biomaterial processing for fabricating dECM biomaterials. Such approach gathers on ultrasound waves to facilitate dECM-in-liquid processing and visible light photocrosslinking of tyrosine residues naturally present in dECM biomaterials. This dual step methodology unlocked the in-air production of cell laden dECM hydrogels or programmable dECM hydrogel spherical-like beads by using superhydrophobic surfaces. These in-air produced units do not require any additional solvents and successfully supported both fibroblasts and breast cancer cells viability upon encapsulation or surface seeding. In addition, the optimized photoacoustic methodology also enabled a rapid formulation of dECM biomaterial inks with suitable features for biofabricating volumetrically defined living constructs through embedded 3D bioprinting. The biofabricated dECM hydrogel constructs supported cell adhesion, spreading and viability for 7 days. Overall, the implemented photoacoustic processing methodology of dECM biomaterials offers a rapid and universal strategy for upgrading their processing from virtually any tissue. STATEMENT OF SIGNIFICANCE: Leveraging decellularized extracellular matrix (dECM) as cell instructive biomaterials has potential to open new avenues for tissue engineering and in vitro disease modelling. The processing of dECM remains however, lengthy, costly and introduces non-naturally present proteins in the final biomaterials formulations. In this regard, here we report an innovative light and ultrasound two-step methodology that enables rapid dECM-in-liquid processing and downstream photocrosslinking of dECM hydrogel beads and 3D bioprinted constructs. Such photoacoustic based processing constitutes a universally applicable method for processing any type of tissue-derived dECM biomaterials.
Collapse
Affiliation(s)
- Luís P Ferreira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Carole Jorge
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Matilde R Lagarto
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Maria V Monteiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Iola F Duarte
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
17
|
Shukla P, Bera AK, Ghosh A, Kiranmai G, Pati F. Assessment and process optimization of high throughput biofabrication of immunocompetent breast cancer model for drug screening applications. Biofabrication 2024; 16:035030. [PMID: 38876096 DOI: 10.1088/1758-5090/ad586b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Recent advancements in 3D cancer modeling have significantly enhanced our ability to delve into the intricacies of carcinogenesis. Despite the pharmaceutical industry's substantial investment of both capital and time in the drug screening and development pipeline, a concerning trend persists: drug candidates screened on conventional cancer models exhibit a dismal success rate in clinical trials. One pivotal factor contributing to this discrepancy is the absence of drug testing on pathophysiologically biomimetic 3D cancer models during pre-clinical stages. Unfortunately, current manual methods of 3D cancer modeling, such as spheroids and organoids, suffer from limitations in reproducibility and scalability. In our study, we have meticulously developed 3D bioprinted breast cancer model utilizing decellularized adipose tissue-based hydrogel obtained via a detergent-free decellularization method. Our innovative printing techniques allows for rapid, high-throughput fabrication of 3D cancer models in a 96-well plate format, demonstrating unmatched scalability and reproducibility. Moreover, we have conducted extensive validation, showcasing the efficacy of our platform through drug screening assays involving two potent anti-cancer drugs, 5-Fluorouracil and PRIMA-1Met. Notably, our platform facilitates effortless imaging and gene expression analysis, streamlining the evaluation process. In a bid to enhance the relevance of our cancer model, we have introduced a heterogeneous cell population into the DAT-based bioink. Through meticulous optimization and characterization, we have successfully developed a biomimetic immunocompetent breast cancer model, complete with microenvironmental cues and diverse cell populations. This breakthrough paves the way for rapid multiplex drug screening and the development of personalized cancer models, marking a paradigm shift in cancer research and pharmaceutical development.
Collapse
Affiliation(s)
- Priyanshu Shukla
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Ashis Kumar Bera
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Amit Ghosh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Gaddam Kiranmai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| |
Collapse
|
18
|
Vinnacombe-Willson GA, García-Astrain C, Troncoso-Afonso L, Wagner M, Langer J, González-Callejo P, Silvio DD, Liz-Marzán LM. Growing Gold Nanostars on 3D Hydrogel Surfaces. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:5192-5203. [PMID: 38828187 PMCID: PMC11137816 DOI: 10.1021/acs.chemmater.4c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 06/05/2024]
Abstract
Nanocomposites comprising hydrogels and plasmonic nanoparticles are attractive materials for tissue engineering, bioimaging, and biosensing. These materials are usually fabricated by adding colloidal nanoparticles to the uncured polymer mixture and thus require time-consuming presynthesis, purification, and ligand-exchange steps. Herein, we introduce approaches for rapid synthesis of gold nanostars (AuNSt) in situ on hydrogel substrates, including those with complex three-dimensional (3D) features. These methods enable selective AuNSt growth at the surface of the substrate, and the growth conditions can be tuned to tailor the nanoparticle size and density (coverage). We additionally demonstrate proof-of-concept applications of these nanocomposites for SERS sensing and imaging. High surface coverage with AuNSt enabled 1-2 orders of magnitude higher SERS signals compared to plasmonic hydrogels loaded with premade colloids. Importantly, AuNSt can be prepared without the addition of any potentially cytotoxic surfactants, thereby ensuring a high biocompatibility. Overall, in situ growth becomes a versatile and straightforward approach for the fabrication of plasmonic biomaterials.
Collapse
Affiliation(s)
| | - Clara García-Astrain
- CIC
biomaGUNE, Basque Research and Technology
Alliance (BRTA), Donostia-San
Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería
Biomateriales, y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Lara Troncoso-Afonso
- CIC
biomaGUNE, Basque Research and Technology
Alliance (BRTA), Donostia-San
Sebastián 20014, Spain
- Department
of Applied Chemistry, University of the
Basque Country (UPV-EHU), Donostia-San
Sebastián 20018, Spain
| | - Marita Wagner
- CIC
biomaGUNE, Basque Research and Technology
Alliance (BRTA), Donostia-San
Sebastián 20014, Spain
- Department
of Applied Chemistry, University of the
Basque Country (UPV-EHU), Donostia-San
Sebastián 20018, Spain
- CIC
nanoGUNE, Basque Research and Technology
Alliance (BRTA), Donostia-San Sebastián 20018, Spain
| | - Judith Langer
- CIC
biomaGUNE, Basque Research and Technology
Alliance (BRTA), Donostia-San
Sebastián 20014, Spain
| | | | - Desirè Di Silvio
- CIC
biomaGUNE, Basque Research and Technology
Alliance (BRTA), Donostia-San
Sebastián 20014, Spain
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research and Technology
Alliance (BRTA), Donostia-San
Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería
Biomateriales, y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Ikerbasque
Basque Foundation for Science, Bilbao 48009, Spain
- Cinbio, Universidade de Vigo, Vigo 36310, Spain
| |
Collapse
|
19
|
Chen D, Li Y, Liu X, Zhao Y, Ren T, Guo J, Yang D, Li S. Multi-DNA-Modified Double-Network Hydrogel with Customized Microstructure: A Novel System for Living Circulating Tumor Cells Capture and Real-Time Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8301-8309. [PMID: 38319249 DOI: 10.1021/acsami.3c15432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The precise and effective isolation of living circulating tumor cells (CTCs) from peripheral blood, followed by their real-time monitoring, is crucial for diagnosing cancer patients. In this study, a cell-imprinted double-network (DN) hydrogel modified with circular multi-DNA (CMD), coined the CMD-imprinted hydrogel with fixed cells as templates (CMD-CIDH), was developed. The hydrogel featured a customized surface for proficient capture of viable CTCs and in situ real-time fluorescent detection without subsequent release. The customized surface, constructed using polyacrylamide/chitosan DN hydrogel as the matrix on the cell template, had a dense network structure, thereby ensuring excellent stability and a low degradation rate. Optimal capture efficiencies, recorded at 93 ± 3% for MCF-7 cells and 90 ± 2% for Hela cells, were achieved by grafting the CMD and adjusting the nodule size on the customized surface. The capture efficiency remained significantly high at 67 ± 11% in simulated breast cancer patient experiments even at a minimal concentration of 5 cells mL-1. Furthermore, CMD grafted onto the surface produced a potent fluorescence signature, enabling in situ real-time fluorescent detection of the target cell's growth state even in complex environments. The customized surface is highly efficient for screening CTCs in peripheral blood and has promising potential for setting up the CTCs culture.
Collapse
Affiliation(s)
- Dongliang Chen
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, PR China
| | - Yonggang Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Xiaoqiu Liu
- Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Yali Zhao
- Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Tianying Ren
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, PR China
| | - Jing Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Dawei Yang
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, PR China
| | - Shenghai Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| |
Collapse
|
20
|
Abuwatfa WH, Pitt WG, Husseini GA. Scaffold-based 3D cell culture models in cancer research. J Biomed Sci 2024; 31:7. [PMID: 38221607 PMCID: PMC10789053 DOI: 10.1186/s12929-024-00994-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024] Open
Abstract
Three-dimensional (3D) cell cultures have emerged as valuable tools in cancer research, offering significant advantages over traditional two-dimensional (2D) cell culture systems. In 3D cell cultures, cancer cells are grown in an environment that more closely mimics the 3D architecture and complexity of in vivo tumors. This approach has revolutionized cancer research by providing a more accurate representation of the tumor microenvironment (TME) and enabling the study of tumor behavior and response to therapies in a more physiologically relevant context. One of the key benefits of 3D cell culture in cancer research is the ability to recapitulate the complex interactions between cancer cells and their surrounding stroma. Tumors consist not only of cancer cells but also various other cell types, including stromal cells, immune cells, and blood vessels. These models bridge traditional 2D cell cultures and animal models, offering a cost-effective, scalable, and ethical alternative for preclinical research. As the field advances, 3D cell cultures are poised to play a pivotal role in understanding cancer biology and accelerating the development of effective anticancer therapies. This review article highlights the key advantages of 3D cell cultures, progress in the most common scaffold-based culturing techniques, pertinent literature on their applications in cancer research, and the ongoing challenges.
Collapse
Affiliation(s)
- Waad H Abuwatfa
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, P.O. Box. 26666, Sharjah, United Arab Emirates
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - William G Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Ghaleb A Husseini
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, P.O. Box. 26666, Sharjah, United Arab Emirates.
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
| |
Collapse
|
21
|
Zhang F, Gao H, Jiang X, Yang F, Zhang J, Song S, Shen J. Biomedical Application of Decellularized Scaffolds. ACS APPLIED BIO MATERIALS 2023; 6:5145-5168. [PMID: 38032114 DOI: 10.1021/acsabm.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Tissue loss and end-stage organ failure are serious health problems across the world. Natural and synthetic polymer scaffold material based artificial organs play an important role in the field of tissue engineering and organ regeneration, but they are not from the body and may cause side effects such as rejection. In recent years, the biomimetic decellularized scaffold based materials have drawn great attention in the tissue engineering field for their good biocompatibility, easy modification, and excellent organism adaptability. Therefore, in this review, we comprehensively summarize the application of decellularized scaffolds in tissue engineering and biomedicine in recent years. The preparation methods, modification strategies, construction of artificial tissues, and application in biomedical applications are discussed. We hope that this review will provide a useful reference for research on decellularized scaffolds and promote their application tissue engineering.
Collapse
Affiliation(s)
- Fang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huimin Gao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xuefeng Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jun Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
22
|
Chai XX, Liu J, Yu TY, Zhang G, Sun WJ, Zhou Y, Ren L, Cao HL, Yin DC, Zhang CY. Recent progress of mechanosensitive mechanism on breast cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 185:1-16. [PMID: 37793504 DOI: 10.1016/j.pbiomolbio.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/10/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
The mechanical environment is important for tumorigenesis and progression. Tumor cells can sense mechanical signals by mechanosensitive receptors, and these mechanical signals can be converted to biochemical signals to regulate cell behaviors, such as cell differentiation, proliferation, migration, apoptosis, and drug resistance. Here, we summarized the effects of the mechanical microenvironment on breast cancer cell activity, and mechanotransduction mechanism from cellular microenvironment to cell membrane, and finally to the nucleus, and also relative mechanosensitive proteins, ion channels, and signaling pathways were elaborated, therefore the mechanical signal could be transduced to biochemical or molecular signal. Meanwhile, the mechanical models commonly used for biomechanics study in vitro and some quantitative descriptions were listed. It provided an essential theoretical basis for the occurrence and development of mechanosensitive breast cancer, and also some potential drug targets were proposed to treat such disease.
Collapse
Affiliation(s)
- Xiao-Xia Chai
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Tong-Yao Yu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Ge Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Wen-Jun Sun
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Yan Zhou
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Li Ren
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China; Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103, Zhejiang, PR China
| | - Hui-Ling Cao
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, School of Pharmacy, Xi'an Medical University, Xi'an, 710021, Shaanxi, PR China.
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China.
| |
Collapse
|
23
|
Castellote-Borrell M, Merlina F, Rodríguez AR, Guasch J. Biohybrid Hydrogels for Tumoroid Culture. Adv Biol (Weinh) 2023; 7:e2300118. [PMID: 37505458 DOI: 10.1002/adbi.202300118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/21/2023] [Indexed: 07/29/2023]
Abstract
Tumoroids are 3D in vitro models that recapitulate key features of in vivo tumors, such as their architecture - hypoxic center and oxygenated outer layer - in contrast with traditional 2D cell cultures. Moreover, they may be able to preserve the patient-specific signature in terms of cell heterogeneity and mutations. Tumoroids are, therefore, interesting tools for improving the understanding of cancer biology, developing new drugs, and potentially designing personalized therapeutic plans. Currently, tumoroids are most often established using basement membrane extracts (BME), which provide a multitude of biological cues. However, BME are characterized by a lack of well-defined composition, limited reproducibility, and potential immunogenicity as a consequence of their natural origin. Synthetic polymers can overcome these problems but lack structural and biochemical complexity, which can limit the functional capabilities of organoids. Biohybrid hydrogels consisting of both natural and synthetic components can combine their advantages and offer superior 3D culture systems. In this review, it is summarized efforts devoted to producing tumoroids using different types of biohybrid hydrogels, which are classified according to their crosslinking mechanism.
Collapse
Affiliation(s)
- Miquel Castellote-Borrell
- Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193, Spain
| | - Francesca Merlina
- Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193, Spain
| | - Adrián R Rodríguez
- Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193, Spain
| | - Judith Guasch
- Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| |
Collapse
|
24
|
Pierantoni L, Reis RL, Silva-Correia J, Oliveira JM, Heavey S. Spatial -omics technologies: the new enterprise in 3D breast cancer models. Trends Biotechnol 2023; 41:1488-1500. [PMID: 37544843 DOI: 10.1016/j.tibtech.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023]
Abstract
The fields of tissue bioengineering, -omics, and spatial biology are advancing rapidly, each offering the opportunity for a paradigm shift in breast cancer research. However, to date, collaboration between these fields has not reached its full potential. In this review, we describe the most recently generated 3D breast cancer models regarding the biomaterials and technological platforms employed. Additionally, their biological evaluation is reported, highlighting their advantages and limitations. Specifically, we focus on the most up-to-date -omics and spatial biology techniques, which can generate a deeper understanding of the biological relevance of bioengineered 3D breast cancer in vitro models, thus paving the way towards truly clinically relevant microphysiological systems, improved drug development success rates, and personalised medicine approaches.
Collapse
Affiliation(s)
- Lara Pierantoni
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London, UK
| |
Collapse
|
25
|
González-Callejo P, Vázquez-Aristizabal P, García-Astrain C, Jimenez de Aberasturi D, Henriksen-Lacey M, Izeta A, Liz-Marzán LM. 3D bioprinted breast tumor-stroma models for pre-clinical drug testing. Mater Today Bio 2023; 23:100826. [PMID: 37928251 PMCID: PMC10622882 DOI: 10.1016/j.mtbio.2023.100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023] Open
Abstract
The use of three-dimensional (3D) bioprinting has been proposed for the reproducible production of 3D disease models that can be used for high-throughput drug testing and personalized medicine. However, most such models insufficiently reproduce the features and environment of real tumors. We report the development of bioprinted in vitro 3D tumor models for breast cancer, which physically and biochemically mimic important aspects of the native tumor microenvironment, designed to study therapeutic efficacy. By combining a mix of breast decellularized extracellular matrix and methacrylated hyaluronic acid with tumor-derived cells and non-cancerous stromal cells of biological relevance to breast cancer, we show that biological signaling pathways involved in tumor progression can be replicated in a carefully designed tumor-stroma environment. Finally, we demonstrate proof-of-concept application of these models as a reproducible platform for investigating therapeutic responses to commonly used chemotherapeutic agents.
Collapse
Affiliation(s)
| | - Paula Vázquez-Aristizabal
- CIC BiomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain
- Biodonostia Health Research Institute, Tissue Engineering Group, Paseo Dr. Beguiristain s/n, 20014, Donostia-San Sebastián, Spain
| | - Clara García-Astrain
- CIC BiomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014, Donostia-San Sebastián, Spain
| | - Dorleta Jimenez de Aberasturi
- CIC BiomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Malou Henriksen-Lacey
- CIC BiomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014, Donostia-San Sebastián, Spain
| | - Ander Izeta
- Biodonostia Health Research Institute, Tissue Engineering Group, Paseo Dr. Beguiristain s/n, 20014, Donostia-San Sebastián, Spain
| | - Luis M. Liz-Marzán
- CIC BiomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
| |
Collapse
|
26
|
Caballero D, Reis RL, Kundu SC. Trapping metastatic cancer cells with mechanical ratchet arrays. Acta Biomater 2023; 170:202-214. [PMID: 37619895 DOI: 10.1016/j.actbio.2023.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Current treatments for cancer, such as chemotherapy, radiotherapy, immunotherapy, and surgery, have positive results but are generally ineffective against metastatic tumors. Treatment effectiveness can be improved by employing bioengineered cancer traps, typically utilizing chemoattractant-loaded materials, to attract infiltrating cancer cells preventing their uncontrolled spread and potentially enabling eradication. However, the encapsulated chemical compounds can have adverse effects on other cells causing unwanted responses, and the generated gradients can evolve unpredictably. Here, we report the development of a cancer trap based on mechanical ratchet structures to capture metastatic cells. The traps use an array of asymmetric local features to mechanically attract cancer cells and direct their migration for prolonged periods. The trapping efficiency was found to be greater than isotropic or inverse anisotropic ratchet structures on either disseminating cancer cells and tumor spheroids. Importantly, the traps exhibited a reduced effectiveness when targeting non-metastatic and non-tumorigenic cells, underscoring their particular suitability for capturing highly invasive cancer cells. Overall, this original approach may have therapeutic implications for fighting cancer, and may also be used to control cell motility for other biological processes. STATEMENT OF SIGNIFICANCE: Current cancer treatments have limitations in treating metastatic tumors, where cancer cells can invade distant organs. Biomaterials loaded with chemoattractants can be implanted to attract and capture metastatic cells preventing uncontrolled spread. However, encapsulated chemical compounds can have adverse effects on other cells, and gradients can evolve unpredictably. This paper presents an original concept of "cancer traps" based on using mechanical ratchet-based structures to capture metastatic cancer cells, with greater trapping efficiency and stability than previously studied methods. This innovative approach has significant potential clinical implications for fighting cancer, particularly in treating metastatic tumors. Additionally, it could be applied to control cell motility for other biological processes, opening new possibilities for biomedicine and tissue engineering.
Collapse
Affiliation(s)
- David Caballero
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
27
|
Buwalda S. Advanced Functional Polymers for Unmet Medical Challenges. Biomacromolecules 2023; 24:4329-4332. [PMID: 37811641 DOI: 10.1021/acs.biomac.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
A significant part of medicine relies on biomaterials, which are designed to interact with biological tissues for therapeutic or diagnostic purposes. A number of major trends can be distinguished in the multidisciplinary field of biomaterials science, including the precise synthesis of biomaterial building blocks, elucidation of biomaterial processing-structure-property correlations, as well as clarification of the interactions between living tissues and biomaterials. Moreover, advances in biofabrication facilitate the development of tailored implants with improved functionality, whereas recent achievements in medical imaging allow for a detailed evaluation of the performance and spatiotemporal behavior of medical devices and nanomedicine formulations.
Collapse
Affiliation(s)
- Sytze Buwalda
- MINES Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France
| |
Collapse
|
28
|
Blanco-Fernandez B, Ibañez-Fonseca A, Orbanic D, Ximenes-Carballo C, Perez-Amodio S, Rodríguez-Cabello JC, Engel E. Elastin-like Recombinamer Hydrogels as Platforms for Breast Cancer Modeling. Biomacromolecules 2023; 24:4408-4418. [PMID: 36597885 PMCID: PMC10565832 DOI: 10.1021/acs.biomac.2c01080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/07/2022] [Indexed: 01/05/2023]
Abstract
The involvement of the extracellular matrix (ECM) in tumor progression has motivated the development of biomaterials mimicking the tumor ECM to develop more predictive cancer models. Particularly, polypeptides based on elastin could be an interesting approach to mimic the ECM due to their tunable properties. Here, we demonstrated that elastin-like recombinamer (ELR) hydrogels can be suitable biomaterials to develop breast cancer models. This hydrogel was formed by two ELR polypeptides, one containing sequences biodegradable by matrix metalloproteinase and cyclooctyne and the other carrying arginylglycylaspartic acid and azide groups to allow cell adhesion, biodegradability, and suitable stiffness through "click-chemistry" cross-linking. Our findings show that breast cancer or nontumorigenic breast cells showed high viability and cell proliferation for up to 7 days. MCF7 and MCF10A formed spheroids whereas MDA-MB-231 formed cell networks, with the expression of ECM and high drug resistance in all cases, evidencing that ELR hydrogels are a promising biomaterial for breast cancer modeling.
Collapse
Affiliation(s)
- Barbara Blanco-Fernandez
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology (BIST), Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER
en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid 28029, Spain
| | - Arturo Ibañez-Fonseca
- BIOFORGE
Lab, CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Doriana Orbanic
- BIOFORGE
Lab, CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Celia Ximenes-Carballo
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology (BIST), Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Soledad Perez-Amodio
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology (BIST), Baldiri Reixac 10-12, Barcelona 08028, Spain
| | | | - Elisabeth Engel
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology (BIST), Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER
en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid 28029, Spain
- IMEM-BRT
Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona 08019, Spain
| |
Collapse
|
29
|
Shi W, Mirza S, Kuss M, Liu B, Hartin A, Wan S, Kong Y, Mohapatra B, Krishnan M, Band H, Band V, Duan B. Embedded Bioprinting of Breast Tumor Cells and Organoids Using Low-Concentration Collagen-Based Bioinks. Adv Healthc Mater 2023; 12:e2300905. [PMID: 37422447 PMCID: PMC10592394 DOI: 10.1002/adhm.202300905] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Bioinks for 3D bioprinting of tumor models should not only meet printability requirements but also accurately maintain and support phenotypes of tumor surrounding cells to recapitulate key tumor hallmarks. Collagen is a major extracellular matrix protein for solid tumors, but low viscosity of collagen solution has made 3D bioprinted cancer models challenging. This work produces embedded, bioprinted breast cancer cells and tumor organoid models using low-concentration collagen I based bioinks. The biocompatible and physically crosslinked silk fibroin hydrogel is used to generate the support bath for the embedded 3D printing. The composition of the collagen I based bioink is optimized with a thermoresponsive hyaluronic acid-based polymer to maintain the phenotypes of both the noninvasive epithelial and invasive breast cancer cells, as well as cancer-associated fibroblasts. Mouse breast tumor organoids are bioprinted using optimized collagen bioink to mimic in vivo tumor morphology. A vascularized tumor model is also created using a similar strategy, with significantly enhanced vasculature formation under hypoxia. This study shows the great potential of embedded bioprinted breast tumor models utilizing a low-concentration collagen-based bioink for advancing the understanding of tumor cell biology and facilitating drug discovery research.
Collapse
Affiliation(s)
- Wen Shi
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Sameer Mirza
- Department of GeneticsCell Biology and AnatomyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of ChemistryCollege of ScienceUnited Arab Emirates UniversityAbu DhabiUnited Arab Emirates
| | - Mitchell Kuss
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bo Liu
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Andrew Hartin
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Shibiao Wan
- Department of GeneticsCell Biology and AnatomyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Yunfan Kong
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bhopal Mohapatra
- Department of GeneticsCell Biology and AnatomyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mena Krishnan
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Hamid Band
- Eppley InstituteUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Vimla Band
- Department of GeneticsCell Biology and AnatomyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of SurgeryUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical EngineeringUniversity of Nebraska–LincolnLincolnNE68588USA
| |
Collapse
|
30
|
Wu BX, Wu Z, Hou YY, Fang ZX, Deng Y, Wu HT, Liu J. Application of three-dimensional (3D) bioprinting in anti-cancer therapy. Heliyon 2023; 9:e20475. [PMID: 37800075 PMCID: PMC10550518 DOI: 10.1016/j.heliyon.2023.e20475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
Three-dimensional (3D) bioprinting is a novel technology that enables the creation of 3D structures with bioinks, the biomaterials containing living cells. 3D bioprinted structures can mimic human tissue at different levels of complexity from cells to organs. Currently, 3D bioprinting is a promising method in regenerative medicine and tissue engineering applications, as well as in anti-cancer therapy research. Cancer, a type of complex and multifaceted disease, presents significant challenges regarding diagnosis, treatment, and drug development. 3D bioprinted models of cancer have been used to investigate the molecular mechanisms of oncogenesis, the development of cancers, and the responses to treatment. Conventional 2D cancer models have limitations in predicting human clinical outcomes and drug responses, while 3D bioprinting offers an innovative technique for creating 3D tissue structures that closely mimic the natural characteristics of cancers in terms of morphology, composition, structure, and function. By precise manipulation of the spatial arrangement of different cell types, extracellular matrix components, and vascular networks, 3D bioprinting facilitates the development of cancer models that are more accurate and representative, emulating intricate interactions between cancer cells and their surrounding microenvironment. Moreover, the technology of 3D bioprinting enables the creation of personalized cancer models using patient-derived cells and biomarkers, thereby advancing the fields of precision medicine and immunotherapy. The integration of 3D cell models with 3D bioprinting technology holds the potential to revolutionize cancer research, offering extensive flexibility, precision, and adaptability in crafting customized 3D structures with desired attributes and functionalities. In conclusion, 3D bioprinting exhibits significant potential in cancer research, providing opportunities for identifying therapeutic targets, reducing reliance on animal experiments, and potentially lowering the overall cost of cancer treatment. Further investigation and development are necessary to address challenges such as cell viability, printing resolution, material characteristics, and cost-effectiveness. With ongoing progress, 3D bioprinting can significantly impact the field of cancer research and improve patient outcomes.
Collapse
Affiliation(s)
- Bing-Xuan Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Yan-Yu Hou
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Yu Deng
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
31
|
Gugulothu S, Asthana S, Homer-Vanniasinkam S, Chatterjee K. Trends in Photopolymerizable Bioinks for 3D Bioprinting of Tumor Models. JACS AU 2023; 3:2086-2106. [PMID: 37654587 PMCID: PMC10466332 DOI: 10.1021/jacsau.3c00281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023]
Abstract
Three-dimensional (3D) bioprinting technologies involving photopolymerizable bioinks (PBs) have attracted enormous attention in recent times owing to their ability to recreate complex structures with high resolution, mechanical stability, and favorable printing conditions that are suited for encapsulating cells. 3D bioprinted tissue constructs involving PBs can offer better insights into the tumor microenvironment and offer platforms for drug screening to advance cancer research. These bioinks enable the incorporation of physiologically relevant cell densities, tissue-mimetic stiffness, and vascularized channels and biochemical gradients in the 3D tumor models, unlike conventional two-dimensional (2D) cultures or other 3D scaffold fabrication technologies. In this perspective, we present the emerging techniques of 3D bioprinting using PBs in the context of cancer research, with a specific focus on the efforts to recapitulate the complexity of the tumor microenvironment. We describe printing approaches and various PB formulations compatible with these techniques along with recent attempts to bioprint 3D tumor models for studying migration and metastasis, cell-cell interactions, cell-extracellular matrix interactions, and drug screening relevant to cancer. We discuss the limitations and identify unexplored opportunities in this field for clinical and commercial translation of these emerging technologies.
Collapse
Affiliation(s)
- Sriram
Bharath Gugulothu
- Department
of Materials Engineering Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sonal Asthana
- Department
of Materials Engineering Indian Institute of Science, Bangalore, Karnataka 560012, India
- Department
of Hepatobiliary and Multi-Organ Transplantation Surgery, Aster CMI Hospital, Bangalore 560024, India
| | - Shervanthi Homer-Vanniasinkam
- Department
of Materials Engineering Indian Institute of Science, Bangalore, Karnataka 560012, India
- Department
of Mechanical Engineering and Division of Surgery, University College, London WC1E 7JE, U.K.
| | - Kaushik Chatterjee
- Department
of Materials Engineering Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
32
|
Parodi I, Di Lisa D, Pastorino L, Scaglione S, Fato MM. 3D Bioprinting as a Powerful Technique for Recreating the Tumor Microenvironment. Gels 2023; 9:482. [PMID: 37367152 DOI: 10.3390/gels9060482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
In vitro three-dimensional models aim to reduce and replace animal testing and establish new tools for oncology research and the development and testing of new anticancer therapies. Among the various techniques to produce more complex and realistic cancer models is bioprinting, which allows the realization of spatially controlled hydrogel-based scaffolds, easily incorporating different types of cells in order to recreate the crosstalk between cancer and stromal components. Bioprinting exhibits other advantages, such as the production of large constructs, the repeatability and high resolution of the process, as well as the possibility of vascularization of the models through different approaches. Moreover, bioprinting allows the incorporation of multiple biomaterials and the creation of gradient structures to mimic the heterogeneity of the tumor microenvironment. The aim of this review is to report the main strategies and biomaterials used in cancer bioprinting. Moreover, the review discusses several bioprinted models of the most diffused and/or malignant tumors, highlighting the importance of this technique in establishing reliable biomimetic tissues aimed at improving disease biology understanding and high-throughput drug screening.
Collapse
Affiliation(s)
- Ilaria Parodi
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy
- National Research Council of Italy, Institute of Electronic, Computer and Telecommunications Engineering (IEIIT), 16149 Genoa, Italy
| | - Donatella Di Lisa
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy
| | - Laura Pastorino
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy
| | - Silvia Scaglione
- National Research Council of Italy, Institute of Electronic, Computer and Telecommunications Engineering (IEIIT), 16149 Genoa, Italy
- React4life S.p.A., 16152 Genova, Italy
| | - Marco Massimo Fato
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy
- National Research Council of Italy, Institute of Electronic, Computer and Telecommunications Engineering (IEIIT), 16149 Genoa, Italy
| |
Collapse
|
33
|
Abstract
Tumor metastasis is a multiple cascade process where tumor cells disseminate from the primary site to distant organs and subsequently adapt to the foreign microenvironment. Simulating the physiology of tumor metastatic events in a realistic and three-dimensional (3D) manner is a challenge for in vitro modeling. 3D bioprinting strategies, which can generate well-customized and bionic structures, enable the exploration of dynamic tumor metastasis process in a species-homologous, high-throughput and reproducible way. In this review, we summarize the recent application of 3D bioprinting in constructing in vitro tumor metastatic models and discuss its advantages and current limitations. Further perspectives on how to harness the potential of accessible 3D bioprinting strategies to better model tumor metastasis and guide anti-cancer therapies are also provided.
Collapse
Affiliation(s)
- Manqing Lin
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian 116023, China
| | - Mengyi Tang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian 116023, China
| | - Wenzhe Duan
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian 116023, China
| | - Shengkai Xia
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian 116023, China
| | - Wenwen Liu
- Cancer Translational Medicine Research Center, The Second Hospital, Dalian Medical University, Dalian 116023, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian 116023, China
- Cancer Translational Medicine Research Center, The Second Hospital, Dalian Medical University, Dalian 116023, China
| |
Collapse
|
34
|
Mi X, Su Z, Yue X, Ren Y, Yang X, Qiang L, Kong W, Ma Z, Zhang C, Wang J. 3D bioprinting tumor models mimic the tumor microenvironment for drug screening. Biomater Sci 2023; 11:3813-3827. [PMID: 37052182 DOI: 10.1039/d3bm00159h] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cancer is a severe threat to human life and health and represents the main cause of death globally. Drug therapy is one of the primary means of treating cancer; however, most anticancer medications do not proceed beyond preclinical testing because the conditions of actual human tumors are not effectively mimicked by traditional tumor models. Hence, bionic in vitro tumor models must be developed to screen for anticancer drugs. Three-dimensional (3D) bioprinting technology can produce structures with built-in spatial and chemical complexity and models with accurately controlled structures, a homogeneous size and morphology, less variation across batches, and a more realistic tumor microenvironment (TME). This technology can also rapidly produce such models for high-throughput anticancer medication testing. This review describes 3D bioprinting methods, the use of bioinks in tumor models, and in vitro tumor model design strategies for building complex tumor microenvironment features using biological 3D printing technology. Moreover, the application of 3D bioprinting in vitro tumor models in drug screening is also discussed.
Collapse
Affiliation(s)
- Xuelian Mi
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Zhi Su
- School of Kinesiology, Shanghai University of Sport, 399 Chang Hai Road, Shanghai, 200438, China
| | - Xiaokun Yue
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Ya Ren
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Xue Yang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Lei Qiang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Weiqing Kong
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong Province, 266000, China
| | - Zhenjiang Ma
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Jinwu Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
35
|
Fröhlich E. The Variety of 3D Breast Cancer Models for the Study of Tumor Physiology and Drug Screening. Int J Mol Sci 2023; 24:ijms24087116. [PMID: 37108283 PMCID: PMC10139112 DOI: 10.3390/ijms24087116] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer is the most common cancer in women and responsible for multiple deaths worldwide. 3D cancer models enable a better representation of tumor physiology than the conventional 2D cultures. This review summarizes the important components of physiologically relevant 3D models and describes the spectrum of 3D breast cancer models, e.g., spheroids, organoids, breast cancer on a chip and bioprinted tissues. The generation of spheroids is relatively standardized and easy to perform. Microfluidic systems allow control over the environment and the inclusion of sensors and can be combined with spheroids or bioprinted models. The strength of bioprinting relies on the spatial control of the cells and the modulation of the extracellular matrix. Except for the predominant use of breast cancer cell lines, the models differ in stromal cell composition, matrices and fluid flow. Organoids are most appropriate for personalized treatment, but all technologies can mimic most aspects of breast cancer physiology. Fetal bovine serum as a culture supplement and Matrigel as a scaffold limit the reproducibility and standardization of the listed 3D models. The integration of adipocytes is needed because they possess an important role in breast cancer.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| |
Collapse
|
36
|
Tang RZ, Liu XQ. Biophysical cues of in vitro biomaterials-based artificial extracellular matrix guide cancer cell plasticity. Mater Today Bio 2023; 19:100607. [PMID: 36960095 PMCID: PMC10027567 DOI: 10.1016/j.mtbio.2023.100607] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/10/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
Clinical evidence supports a role for the extracellular matrix (ECM) in cancer plasticity across multiple tumor types. The lack of in vitro models that represent the native ECMs is a significant challenge for cancer research and drug discovery. Therefore, a major motivation for developing new tumor models is to create the artificial ECM in vitro. Engineered biomaterials can closely mimic the architectural and mechanical properties of ECM to investigate their specific effects on cancer progression, offering an alternative to animal models for the testing of cancer cell behaviors. In this review, we focused on the biomaterials from different sources applied in the fabrication of the artificial ECM and their biophysical cues to recapitulate key features of tumor niche. Furthermore, we summarized how the distinct biophysical cues guided cell behaviors of cancer plasticity, including morphology, epithelial-to-mesenchymal transition (EMT), enrichment of cancer stem cells (CSCs), proliferation, migration/invasion and drug resistance. We also discuss the future opportunities in using the artificial ECM for applications of tumorigenesis research and precision medicine, as well as provide useful messages of principles for designing suitable biomaterial scaffolds.
Collapse
Affiliation(s)
- Rui-Zhi Tang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, PR China
| | - Xi-Qiu Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| |
Collapse
|
37
|
Hong S, Song JM. High-Resolution In Situ High-Content Imaging of 3D-Bioprinted Single Breast Cancer Spheroids for Advanced Quantification of Benzo( a)pyrene Carcinogen-Induced Breast Cancer Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11416-11430. [PMID: 36812369 DOI: 10.1021/acsami.2c17877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells, are critically correlated with carcinogenesis and are strongly affected by the environmental factors. Environmental carcinogens, such as benzo(a)pyrene (BaP), are associated with the overproduction of CSCs in various types of cancers, including breast cancer. In this report, we present a sophisticated 3D breast cancer spheroid model for the direct identification and quantitative determination of CSCs induced by carcinogens within intact 3D spheroids. To this end, hydrogel microconstructs containing MCF-7 breast cancer cells were bioprinted within direct-made diminutive multi-well chambers, which were utilized for the mass cultivation of spheroids and in situ detection of CSCs. We found that the breast CSCs caused by BaP-induced mutations were higher in the biomimetic MCF-7 breast cancer spheroids than that in standard 2D monolayer cultures. Precisely controlled MCF-7 cancer spheroids could be generated by serially cultivating MCF-7 cells within the printed hydrogel microconstructs, which could be further utilized for high-resolution in situ high-content 3D imaging analysis to spatially identify the emergence of CSCs at the single spheroid level. Additionally, potential therapeutic agents specific to breast CSCs were successfully evaluated to verify the effectiveness of this model. This bioengineered 3D cancer spheroid system provides a novel approach to investigating the emergence of CSC induced by a carcinogen for environmental hazard assessment in a reproducible and scalable format.
Collapse
Affiliation(s)
- Sera Hong
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Joon Myong Song
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
38
|
Sztankovics D, Moldvai D, Petővári G, Gelencsér R, Krencz I, Raffay R, Dankó T, Sebestyén A. 3D bioprinting and the revolution in experimental cancer model systems-A review of developing new models and experiences with in vitro 3D bioprinted breast cancer tissue-mimetic structures. Pathol Oncol Res 2023; 29:1610996. [PMID: 36843955 PMCID: PMC9946983 DOI: 10.3389/pore.2023.1610996] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023]
Abstract
Growing evidence propagates those alternative technologies (relevant human cell-based-e.g., organ-on-chips or biofabricated models-or artificial intelligence-combined technologies) that could help in vitro test and predict human response and toxicity in medical research more accurately. In vitro disease model developments have great efforts to create and serve the need of reducing and replacing animal experiments and establishing human cell-based in vitro test systems for research use, innovations, and drug tests. We need human cell-based test systems for disease models and experimental cancer research; therefore, in vitro three-dimensional (3D) models have a renaissance, and the rediscovery and development of these technologies are growing ever faster. This recent paper summarises the early history of cell biology/cellular pathology, cell-, tissue culturing, and cancer research models. In addition, we highlight the results of the increasing use of 3D model systems and the 3D bioprinted/biofabricated model developments. Moreover, we present our newly established 3D bioprinted luminal B type breast cancer model system, and the advantages of in vitro 3D models, especially the bioprinted ones. Based on our results and the reviewed developments of in vitro breast cancer models, the heterogeneity and the real in vivo situation of cancer tissues can be represented better by using 3D bioprinted, biofabricated models. However, standardising the 3D bioprinting methods is necessary for future applications in different high-throughput drug tests and patient-derived tumour models. Applying these standardised new models can lead to the point that cancer drug developments will be more successful, efficient, and consequently cost-effective in the near future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
39
|
Londoño-Berrio M, Castro C, Cañas A, Ortiz I, Osorio M. Advances in Tumor Organoids for the Evaluation of Drugs: A Bibliographic Review. Pharmaceutics 2022; 14:pharmaceutics14122709. [PMID: 36559203 PMCID: PMC9784359 DOI: 10.3390/pharmaceutics14122709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/11/2022] Open
Abstract
Tumor organoids are defined as self-organized three-dimensional assemblies of heterogeneous cell types derived from patient samples that mimic the key histopathological, genetic, and phenotypic characteristics of the original tumor. This technology is proposed as an ideal candidate for the evaluation of possible therapies against cancer, presenting advantages over other models which are currently used. However, there are no reports in the literature that relate the techniques and material development of tumor organoids or that emphasize in the physicochemical and biological properties of materials that intent to biomimicry the tumor extracellular matrix. There is also little information regarding the tools to identify the correspondence of native tumors and tumoral organoids (tumoroids). Moreover, this paper relates the advantages of organoids compared to other models for drug evaluation. A growing interest in tumoral organoids has arisen from 2009 to the present, aimed at standardizing the process of obtaining organoids, which more accurately resemble patient-derived tumor tissue. Likewise, it was found that the characteristics to consider for the development of organoids, and therapeutic responses of them, are cell morphology, physiology, the interaction between cells, the composition of the cellular matrix, and the genetic, phenotypic, and epigenetic characteristics. Currently, organoids have been used for the evaluation of drugs for brain, lung, and colon tumors, among others. In the future, tumor organoids will become closer to being considered a better model for studying cancer in clinical practice, as they can accurately mimic the characteristics of tumors, in turn ensuring that the therapeutic response aligns with the clinical response of patients.
Collapse
Affiliation(s)
- Maritza Londoño-Berrio
- Systems Biology Research Group, Pontifical Bolivarian University (Universidad Pontificia Bolivariana), Carrera 78B No. 72a-109, Medellin 050034, Colombia
| | - Cristina Castro
- New Materials Research Group, School of Engineering, Pontifical Bolivarian University, Circular 1 No. 70-01, Medellin 050031, Colombia
| | - Ana Cañas
- Corporation for Biological Research, Medical, and Experimental Research Group, Carrera 72A # 78b-141, Medellin 050034, Colombia
| | - Isabel Ortiz
- Systems Biology Research Group, Pontifical Bolivarian University (Universidad Pontificia Bolivariana), Carrera 78B No. 72a-109, Medellin 050034, Colombia
| | - Marlon Osorio
- Systems Biology Research Group, Pontifical Bolivarian University (Universidad Pontificia Bolivariana), Carrera 78B No. 72a-109, Medellin 050034, Colombia
- New Materials Research Group, School of Engineering, Pontifical Bolivarian University, Circular 1 No. 70-01, Medellin 050031, Colombia
- Correspondence:
| |
Collapse
|
40
|
Guan X, Huang S. Advances in the application of 3D tumor models in precision oncology and drug screening. Front Bioeng Biotechnol 2022; 10:1021966. [PMID: 36246388 PMCID: PMC9555934 DOI: 10.3389/fbioe.2022.1021966] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Traditional tumor models cannot perfectly simulate the real state of tumors in vivo, resulting in the termination of many clinical trials. 3D tumor models’ technology provides new in vitro models that bridge the gap between in vitro and in vivo findings, and organoids maintain the properties of the original tissue over a long period of culture, which enables extensive research in this area. In addition, they can be used as a substitute for animal and in vitro models, and organoids can be established from patients’ normal and malignant tissues, with unique advantages in clinical drug development and in guiding individualized therapies. 3D tumor models also provide a promising platform for high-throughput research, drug and toxicity testing, disease modeling, and regenerative medicine. This report summarizes the 3D tumor model, including evidence regarding the 3D tumor cell culture model, 3D tumor slice model, and organoid culture model. In addition, it provides evidence regarding the application of 3D tumor organoid models in precision oncology and drug screening. The aim of this report is to elucidate the value of 3D tumor models in cancer research and provide a preclinical reference for the precise treatment of cancer patients.
Collapse
Affiliation(s)
- Xiaoyong Guan
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Shigao Huang
- Department of Radiation Oncology, The First Affiliated Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Shigao Huang,
| |
Collapse
|
41
|
Pellegrini E, Desando G, Petretta M, Cellamare A, Cristalli C, Pasello M, Manara MC, Grigolo B, Scotlandi K. A 3D Collagen-Based Bioprinted Model to Study Osteosarcoma Invasiveness and Drug Response. Polymers (Basel) 2022; 14:polym14194070. [PMID: 36236019 PMCID: PMC9571197 DOI: 10.3390/polym14194070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
The biological and therapeutic limits of traditional 2D culture models, which only partially mimic the complexity of cancer, have recently emerged. In this study, we used a 3D bioprinting platform to process a collagen-based hydrogel with embedded osteosarcoma (OS) cells. The human OS U-2 OS cell line and its resistant variant (U-2OS/CDDP 1 μg) were considered. The fabrication parameters were optimized to obtain 3D printed constructs with overall morphology and internal microarchitecture that accurately match the theoretical design, in a reproducible and stable process. The biocompatibility of the 3D bioprinting process and the chosen collagen bioink in supporting OS cell viability and metabolism was confirmed through multiple assays at short- (day 3) and long- (day 10) term follow-ups. In addition, we tested how the 3D collagen-based bioink affects the tumor cell invasive capabilities and chemosensitivity to cisplatin (CDDP). Overall, we developed a new 3D culture model of OS cells that is easy to set up, allows reproducible results, and better mirrors malignant features of OS than flat conditions, thus representing a promising tool for drug screening and OS cell biology research.
Collapse
Affiliation(s)
- Evelin Pellegrini
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Giovanna Desando
- Laboratory RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Mauro Petretta
- Laboratory RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
- REGENHU Ltd., Z.I. Le Vivier 22, 1690 Villaz-Saint-Pierre, Switzerland
| | - Antonella Cellamare
- Laboratory RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Camilla Cristalli
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Michela Pasello
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Maria Cristina Manara
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Brunella Grigolo
- Laboratory RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
- Correspondence: ; Tel.: +39-05-1636-6760
| |
Collapse
|