1
|
Han Y, Dong L, Zhu LY, Hu CR, Li H, Zhang Y, Zhang C, Zhang Y, Dong ZC. Real-Space Spectral Determination of Short Single-Stranded DNA Sequence Structures. J Am Chem Soc 2024; 146:33865-33873. [PMID: 39604067 DOI: 10.1021/jacs.4c12393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Resolving the sequence and structure of flexible biomolecules such as DNA is crucial to understanding their biological mechanisms and functions. Traditional structural biology methods remain challenging for the analysis of small and disordered biomolecules, especially those that are difficult to label or crystallize. Recent development of single-molecule tip-enhanced Raman spectroscopy (TERS) offers a label-free approach to identifying nucleobases in a single DNA chain. However, a clear demonstration of sequencing both spatially and spectrally at single-base resolution is still elusive due to the challenges caused by weak Raman signals and the flexibility of DNA molecules. Here, we report a proof-of-principle demonstration to this end, spectrally resolving in real space individual nucleobases and their sequence structures within a short, single-stranded DNA molecule artificially designed. This breakthrough is achieved through the development of subnanometer-resolved low-temperature TERS methodology for such thermally unstable flexible biomolecules. Further TERS mapping over individual nucleobases provides additional structural information about the molecular configurations and even the locations of functional groups, offering a way to track modification types and binding sites in biomolecules.
Collapse
Affiliation(s)
- Yu Han
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Li Dong
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lu-Yao Zhu
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chun-Rui Hu
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hang Li
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Zhen-Chao Dong
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
2
|
Jaiswal A, Mishra S, Dwivedi PK, Verma S. SERS-Based Microfluidic Bioscreening Platform for Selective Detection of β-Amyloid Peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24463-24470. [PMID: 39514697 DOI: 10.1021/acs.langmuir.4c03042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This study reports development of a microfluidic device for highly sensitive and selective detection of a β-amyloid peptide (Aβ1-42) in simulated cerebrospinal fluid, using surface-enhanced Raman spectroscopy (SERS). The device ensemble comprises a purine ligand (Pu) and its interaction with silver nanoparticles (AgNPs) to generate SERS hotspots. The low surface energy of the synthesized Pu ligand and high surface energy of AgNPs are utilized for the functionalization and formation of a Pu-AgNP SERS substrate. We have integrated a novel polydimethylsiloxane (PDMS) microfluidic device with Pu-AgNPs using a combination of photo- and soft lithography fabrication, sealed by thermal cross-linking with another layer of PDMS, to produce an effective screening platform for Aβ1-42. The SERS spectrum from the microfluidic device affords almost noise-free measurements, with excellent limit-of-detection values.
Collapse
Affiliation(s)
- Ankita Jaiswal
- Department of Chemistry, Center for Environmental Sciences and Engineering, Center for Nanosciences, and Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Shubham Mishra
- Center for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Prabhat K Dwivedi
- Center for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Sandeep Verma
- Department of Chemistry, Center for Environmental Sciences and Engineering, Center for Nanosciences, and Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
3
|
Chaudhry I, Hu G, Ye H, Jensen L. Toward Modeling the Complexity of the Chemical Mechanism in SERS. ACS NANO 2024. [PMID: 39087679 DOI: 10.1021/acsnano.4c07198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Surface-enhanced Raman scattering (SERS) provides detailed information about the binding of molecules at interfaces and their interactions with the local environment due to the large enhancement of Raman scattering. This enhancement arises from a combination of the electromagnetic mechanism (EM) and chemical mechanism (CM). While it is commonly accepted that EM gives rise to most of the enhancement, large spectral changes originate from CM. To elucidate the rich information contained in SERS spectra about molecules at interfaces, a comprehensive understanding of the enhancement mechanisms is necessary. In this Perspective, we discuss the current understanding of the enhancement mechanisms and highlight their interplay in complex local environments. We will also discuss emerging areas where the development of computational and theoretical models is needed with specific attention given to how the CM contributes to the spectral changes. Future efforts in modeling should focus on overcoming the challenges presented in this review in order to capture the complexity of CM in SERS.
Collapse
Affiliation(s)
- Imran Chaudhry
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| | - Gaohe Hu
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| | - Hepeng Ye
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Poonia M, Morder CJ, Schorr HC, Schultz ZD. Raman and Surface-Enhanced Raman Scattering Detection in Flowing Solutions for Complex Mixture Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:411-432. [PMID: 38382105 PMCID: PMC11254575 DOI: 10.1146/annurev-anchem-061522-035207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Raman scattering provides a chemical-specific and label-free method for identifying and quantifying molecules in flowing solutions. This review provides a comprehensive examination of the application of Raman spectroscopy and surface-enhanced Raman scattering (SERS) to flowing liquid samples. We summarize developments in online and at-line detection using Raman and SERS analysis, including the design of microfluidic devices, the development of unique SERS substrates, novel sampling interfaces, and coupling these approaches to fluid-based chemical separations (e.g., chromatography and electrophoresis). The article highlights the challenges and limitations associated with these techniques and provides examples of their applications in a variety of fields, including chemistry, biology, and environmental science. Overall, this review demonstrates the utility of Raman and SERS for analysis of complex mixtures and highlights the potential for further development and optimization of these techniques.
Collapse
Affiliation(s)
- Monika Poonia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
| | - Courtney J Morder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
| | - Hannah C Schorr
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
| |
Collapse
|
5
|
Li M, Liu M, Qi F, Lin FR, Jen AKY. Self-Assembled Monolayers for Interfacial Engineering in Solution-Processed Thin-Film Electronic Devices: Design, Fabrication, and Applications. Chem Rev 2024; 124:2138-2204. [PMID: 38421811 DOI: 10.1021/acs.chemrev.3c00396] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Interfacial engineering has long been a vital means of improving thin-film device performance, especially for organic electronics, perovskites, and hybrid devices. It greatly facilitates the fabrication and performance of solution-processed thin-film devices, including organic field effect transistors (OFETs), organic solar cells (OSCs), perovskite solar cells (PVSCs), and organic light-emitting diodes (OLEDs). However, due to the limitation of traditional interfacial materials, further progress of these thin-film devices is hampered particularly in terms of stability, flexibility, and sensitivity. The deadlock has gradually been broken through the development of self-assembled monolayers (SAMs), which possess distinct benefits in transparency, diversity, stability, sensitivity, selectivity, and surface passivation ability. In this review, we first showed the evolution of SAMs, elucidating their working mechanisms and structure-property relationships by assessing a wide range of SAM materials reported to date. A comprehensive comparison of various SAM growth, fabrication, and characterization methods was presented to help readers interested in applying SAM to their works. Moreover, the recent progress of the SAM design and applications in mainstream thin-film electronic devices, including OFETs, OSCs, PVSCs and OLEDs, was summarized. Finally, an outlook and prospects section summarizes the major challenges for the further development of SAMs used in thin-film devices.
Collapse
Affiliation(s)
- Mingliang Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Ming Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Feng Qi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Francis R Lin
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
6
|
Zhang X, Yao J, Gong X, Sun J, Wang R, Wang L, Liu L, Huang Y. Paper electrophoretic enrichment-assisted ultrasensitive SERS detection. Food Chem 2024; 434:137416. [PMID: 37734149 DOI: 10.1016/j.foodchem.2023.137416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023]
Abstract
To achieve sensitive detection of trace substances in fluids by surface-enhanced Raman spectroscopy (SERS), effective enrichment of molecules at subwavelength regions (hot spots) with a large enhancement is adopted. In this work, a glass fibre paper with Ag nanoparticles (AgNPs) is employed for electrodynamic enrichment of analytes in fluids by paper electrophoresis integrated with field amplification sample stacking (FASS) and capillary effects to obtain both Raman and SERS convenient and sensitive detection. With the help of electrophoretic enrichment on the glass fibre paper and surface plasmon enhancement on the AgNPs, this paper electrophoretic enrichment could improve the detection limit of Raman and SERS detection by more than an order of magnitude, even achieving a SERS detection limit of 10-17 M for Nile Blue A. Furthermore, this flexible SERS detection method can also detect trace organic contaminants at the ppt level in aquaculture and food applications.
Collapse
Affiliation(s)
- Xiumei Zhang
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China
| | - Jingru Yao
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China
| | - Xiangnan Gong
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - Jianfeng Sun
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China
| | - Runhui Wang
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China
| | - Li Wang
- School of Optoelectronics Engineering, Chongqing University, Chongqing 401331, China.
| | - Liyu Liu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China
| | - Yingzhou Huang
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
7
|
Sánchez-Bodón J, Diaz-Galbarriatu M, Sola-Llano R, Ruiz-Rubio L, Vilas-Vilela JL, Moreno-Benitez I. Catalyst-Free Amino-Yne Click Reaction: An Efficient Way for Immobilizing Amoxicillin onto Polymeric Surfaces. Polymers (Basel) 2024; 16:246. [PMID: 38257045 PMCID: PMC10818529 DOI: 10.3390/polym16020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Surface modifications play a crucial role in enhancing the functionality of biomaterials. Different approaches can be followed in order to achieve the bioconjugation of drugs and biological compounds onto polymer surfaces. In this study, we focused on the immobilization of an amoxicillin antibiotic onto the surface of poly-L-lactic acid (PLLA) using a copper-free amino-yne click reaction. The utilization of this reaction allowed for a selective and efficient bioconjugation of the amoxicillin moiety onto the PLLA surface, avoiding copper-related concerns and ensuring biocompatibility. The process involved sequential steps that included surface activation via alkaline hydrolysis followed by an amidation reaction with ethylendiamine, functionalization with propiolic groups, and subsequent conjugation with amoxicillin via a click chemistry approach. Previous amoxicillin immobilization using tryptophan and fluorescent amino acid conjugation was carried out in order to determine the efficacy of the proposed methodology. Characterization techniques such as X-ray photoelectron spectroscopy (XPS), Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy, surface imaging, water contact angle determination, and spectroscopic analysis confirmed the successful immobilization of both tryptophan and amoxicillin while maintaining the integrity of the PLLA surface. This tailored modification not only exhibited a novel method for surface functionalization but also opens avenues for developing antimicrobial biomaterials with improved drug-loading capacity.
Collapse
Affiliation(s)
- Julia Sánchez-Bodón
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.S.-B.); (M.D.-G.); (L.R.-R.); (J.L.V.-V.)
| | - Maria Diaz-Galbarriatu
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.S.-B.); (M.D.-G.); (L.R.-R.); (J.L.V.-V.)
| | - Rebeca Sola-Llano
- Department of Physical Chemistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Leire Ruiz-Rubio
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.S.-B.); (M.D.-G.); (L.R.-R.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU, Science Park, 48940 Leioa, Spain
| | - José Luis Vilas-Vilela
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.S.-B.); (M.D.-G.); (L.R.-R.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU, Science Park, 48940 Leioa, Spain
| | - Isabel Moreno-Benitez
- Macromolecular Chemistry Group (LABQUIMAC), Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
8
|
Wei Z, Vandergriff A, Liu CH, Liaqat M, Nieh MP, Lei Y, He J. Strongly coupled plasmonic metal nanoparticles with reversible pH-responsiveness and highly reproducible SERS in solution. NANOSCALE 2024; 16:708-718. [PMID: 38086657 DOI: 10.1039/d3nr05071h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
We report a facile method to prepare polymer-grafted plasmonic metal nanoparticles (NPs) that exhibit pH-responsive surface-enhanced Raman scattering (SERS). The concept is based on the use of pH-responsive polymers, such as poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH), as multidentate ligands to wrap around the surface of NPs instead of forming polymer brushes. Upon changing the solvent quality, the grafted pH-responsive polymers would drive reversible aggregation of NPs, leading to a decreased interparticle distance. This creates numerous hot spots, resulting in a secondary enhancement of SERS as compared to the SERS from discrete NPs. For negatively charged PAA-grafted NPs, the SERS response at pH 2.5 showed a secondary enhancement of up to 104-fold as compared to the response for discrete NPs at pH 12. Similarly, positively charged PAH-grafted AuNPs showed an opposite response to pH. We demonstrated that enhanced SERS with thiol-containing and charged molecular probes was indeed from the pH-driven solubility change of polymer ligands. Our method is different from the conventional SERS sensors in the solid state. With pH-responsive polymer-grafted NPs, SERS can be performed in solution with high reproducibility and sensitivity but without the need for sample pre-concentration. These findings could pave the way for innovative designs of polymer ligands for metal NPs where polymer ligands do not compromise interparticle plasmon coupling.
Collapse
Affiliation(s)
- Zichao Wei
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Unit 3060, Storrs, Connecticut 06269-3060, USA.
| | - Audrey Vandergriff
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Unit 3060, Storrs, Connecticut 06269-3060, USA.
| | - Chung-Hao Liu
- Polymer Program, University of Connecticut, Storrs, CT 06269, USA
| | - Maham Liaqat
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Unit 3060, Storrs, Connecticut 06269-3060, USA.
| | - Mu-Ping Nieh
- Polymer Program, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Yu Lei
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Jie He
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Unit 3060, Storrs, Connecticut 06269-3060, USA.
- Polymer Program, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
9
|
Huang K, Wang YH, Zhang H, Wang TY, Liu XH, Liu L, Jiang H, Wang XM. Application and outlook of electrochemical technology in single-cell analysis. Biosens Bioelectron 2023; 242:115741. [PMID: 37816284 DOI: 10.1016/j.bios.2023.115741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023]
Abstract
Cellular heterogeneity, especially in some important diseased cells like tumor cells, acts as an invisible driver for disease development like cancer progression in the tumor ecosystem, contributing to differences in the macroscopic and microscopic detection of disease lesions like tumors. Traditional analysis techniques choose group information masked by the mean as the analysis sample, making it difficult to achieve precise diagnosis and target treatment, on which could be shed light via the single-cell level determination/bioanalysis. Hence, in this article we have reviewed the special characteristic differences among various kinds of typical single-cell bioanalysis strategies and electrochemical techniques, and then focused on the recent advance and special bio-applications of electrochemiluminescence and micro-nano electrochemical sensing mediated in single-cell bioimaging & bioanalysis. Especially, we have summarized the relevant research exploration of the possibility to establish the in-situ single-cell electrochemical methods to detect cell heterogeneity through determination of specific biomolecules and bioimaging of some important biological processes. Eventually, this review has explored some important advances of electrochemical single-cell detection techniques for the real-time cellular bioimaging and diagnostics of some disease lesions like tumors. It raises the possibility to provide the specific in-situ platform to exploit the versatile, sensitive, and high-resolution electrochemical single-cell analysis for the promising biomedical applications like rapid tracing of some disease lesions or in vivo bioimaging for precise cancer theranostics.
Collapse
Affiliation(s)
- Ke Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yi Han Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hao Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Ting Ya Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiao Hui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liu Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Xue Mei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
10
|
Qiu M, Tang L, Wang J, Xu Q, Zheng S, Weng S. SERS with Flexible β-CD@AuNP/PTFE Substrates for In Situ Detection and Identification of PAH Residues on Fruit and Vegetable Surfaces Combined with Lightweight Network. Foods 2023; 12:3096. [PMID: 37628095 PMCID: PMC10453087 DOI: 10.3390/foods12163096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The detection of polycyclic aromatic hydrocarbons (PAHs) on fruit and vegetable surfaces is important for protecting human health and ensuring food safety. In this study, a method for the in situ detection and identification of PAH residues on fruit and vegetable surfaces was developed using surface-enhanced Raman spectroscopy (SERS) based on a flexible substrate and lightweight deep learning network. The flexible SERS substrate was fabricated by assembling β-cyclodextrin-modified gold nanoparticles (β-CD@AuNPs) on polytetrafluoroethylene (PTFE) film coated with perfluorinated liquid (β-CD@AuNP/PTFE). The concentrations of benzo(a)pyrene (BaP), naphthalene (Nap), and pyrene (Pyr) residues on fruit and vegetable surfaces could be detected at 0.25, 0.5, and 0.25 μg/cm2, respectively, and all the relative standard deviations (RSD) were less than 10%, indicating that the β-CD@AuNP/PTFE exhibited high sensitivity and stability. The lightweight network was then used to construct a classification model for identifying various PAH residues. ShuffleNet obtained the best results with accuracies of 100%, 96.61%, and 97.63% for the training, validation, and prediction datasets, respectively. The proposed method realised the in situ detection and identification of various PAH residues on fruit and vegetables with simplicity, celerity, and sensitivity, demonstrating great potential for the rapid, nondestructive analysis of surface contaminant residues in the food-safety field.
Collapse
Affiliation(s)
- Mengqing Qiu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.Q.); (Q.X.)
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Le Tang
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei 230601, China; (L.T.); (J.W.)
| | - Jinghong Wang
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei 230601, China; (L.T.); (J.W.)
| | - Qingshan Xu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.Q.); (Q.X.)
| | - Shouguo Zheng
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.Q.); (Q.X.)
- Anhui Institute of Innovation for Industrial Technology, Hefei 230088, China
| | - Shizhuang Weng
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei 230601, China; (L.T.); (J.W.)
| |
Collapse
|
11
|
Poonia M, Kurtz K, Green-Gavrielidis L, Oyanedel-Craver V, Bothun GD. Electric Potential Induced Prevention and Removal of an Algal Biofoulant from Planar SERS Substrates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11666-11674. [PMID: 37499098 DOI: 10.1021/acs.est.3c02574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Ulva zoospores are widespread marine macroalgae and a common organism found in biofouling communities due to their strong adhesive properties and quick settlement times. Using Ulva as a model organism, a strategy is presented where direct-current (DC) electric potentials are applied in conjunction with surface-enhanced Raman spectroscopy (SERS) to characterize, remove, and prevent Ulva from forming a biofilm on gold-capped nanopillar SERS substrates. Experiments were conducted within a poly(tetrafluoroethylene) (PTFE) flow channel device where the SERS substrates were used as an electrode. Ulva density, determined in situ by SERS and ex situ by electron and fluorescence microscopy, decreased under successively increasing low negative potentials up to -1.0 V. The presence of damaged Ulva suggests that the applied potential led to spore rupture. At the highest negative applied potential (-1.0 V), microparticles containing copper, which is known for its antimicrobial properties, were associated with Ulva on the SERS substrate and the lowest Ulva density was observed. These findings indicate that (1) SERS can be employed to study biofilm formation on nanostructured metal surfaces and (2) applying low-voltage electric potentials may be used to control Ulva biofouling on SERS marine sensors.
Collapse
Affiliation(s)
- Monika Poonia
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Kayla Kurtz
- Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Lindsay Green-Gavrielidis
- Department of Biology and Biomedical Sciences, Salve Regina University, Newport, Rhode Island 02840, United States
| | - Vinka Oyanedel-Craver
- Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Geoffrey D Bothun
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
12
|
Kitaw SL, Birhan YS, Tsai HC. Plasmonic surface-enhanced Raman scattering nano-substrates for detection of anionic environmental contaminants: Current progress and future perspectives. ENVIRONMENTAL RESEARCH 2023; 221:115247. [PMID: 36640935 DOI: 10.1016/j.envres.2023.115247] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman scattering spectroscopy (SERS) is a powerful technique of vibrational spectroscopy based on the inelastic scattering of incident photons by molecular species. It has unique properties such as ultra-sensitivity, selectivity, non-destructivity, speed, and fingerprinting properties for analytical and sensing applications. This enables SERS to be widely used in real-world sample analysis and basic plasmonic mechanistic studies. However, the desirable properties of SERS are compromised by the high cost and low reproducibility of the signals. The development of multifunctional, stable and reusable nano-engineered SERS substrates is a viable solution to circumvent these drawbacks. Recently, plasmonic SERS active nano-substrates with various morphologies have attracted the attention of researchers due to promising properties such as the formation of dense hot spots, additional stability, tunable and controlled morphology, and surface functionalization. This comprehensive review focused on the current advances in the field of SERS active nanosubstrates suitable for the detection and quantification of anionic environmental pollutants. The common fabrication methods, including the techniques for morphological adjustments and surface modification, substrate categories, and the design of nanotechnologically fabricated plasmonic SERS substrates for anion detection are systematically presented. Here, the need for the design, synthesis, and functionalization of SERS nano-substrates for anions of great environmental importance is explained in detail. In addition, the broad categories of SERS nano-substrates, namely colloid-based SERS substrates and solid-support SERS substrates are discussed. Moreover, a brief discussion of SERS detection of certain anionic pollutants in the environment is presented. Finally, the prospects in the fabrication and commercialization of pilot-scale handheld SERS sensors and the construction of smart nanosubstrates integrated with novel amplifying materials for the detection of anions of environmental and health concern are proposed.
Collapse
Affiliation(s)
- Sintayehu Leshe Kitaw
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, ROC
| | - Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan, 320, Taiwan, ROC.
| |
Collapse
|
13
|
Zhou A, Chen X, Li C, Yang W, He J, Fang T, Chen W, Xu Y, Ge H, Chen Z, Ning X. Orthogonal Chemical Reporter Strategy Enables Sensitive and Specific SERS Detection of Hydrazine Derivatives. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2054-2066. [PMID: 36579636 DOI: 10.1021/acsami.2c16982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hydrazine and its derivatives are well-known environmental hazards and biological carcinogens; therefore, there is a great need for a powerful workflow solution for protecting the public from unexpected exposure to toxic contaminants. Recently, functional surface-enhanced Raman scattering (SERS) exhibits enormous benefits in sensing trace biochemical substances due to its fingerprint-like identification of individual molecules, making it an ideal method for detecting and quantifying hydrazine. Herein, for the first time, we integrated the orthogonal chemical reporter strategy with SERS to build an intelligent hydrazine detection platform (orthogonal chemical SERS, ocSERS), in which 4-mercaptobenzaldehyde was incorporated on a nanoimprinted gold nanopillar array, which acted as an orthogonal coupling partner of hydrazine to form Raman active benzaldehyde hydrazone, allowing for sensitively detecting hydrazine with a detection limit of 10-13 M in complex circumstances. Particularly, ocSERS could effectively identify the carcinogen N-nitrosodimethylamine (NDMA) after its reduction to dimethylhydrazine (UDMH), enabling ultrasensitive detection of UDMH (10-13 M). Importantly, ocSERS could not only monitor elevated levels of NDMA in ranitidine due to improper storage but also quantify NDMA in urine and blood after oral administration of NDMA-containing drugs, thereby preventing NDMA overexposure. Therefore, ocSERS represents the first click SERS sensor and may open up a new analytical field.
Collapse
Affiliation(s)
- Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing210093, China
| | - Xiaofeng Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210093, China
| | - Chaowei Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou350108, Fujian, China
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science center, Xi'an Jiaotong University, Xi'an710061, China
| | - Wenting Yang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210093, China
| | - Jielei He
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210093, China
| | - Tianliang Fang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210093, China
| | - Weiwei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210093, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210093, China
| | - Haixiong Ge
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210093, China
| | - Zhuo Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing210093, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210093, China
| |
Collapse
|
14
|
Wang C, Guo X, Fu Q. TiO2 Thickness-Dependent Charge Transfer in an Ordered Ag/TiO2/Ni Nanopillar Arrays Based on Surface-Enhanced Raman Scattering. MATERIALS 2022; 15:ma15103716. [PMID: 35629741 PMCID: PMC9146224 DOI: 10.3390/ma15103716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/04/2023]
Abstract
In this study, an ordered Ag/TiO2/Ni nanopillar arrays hybrid substrate was designed, and the charge transfer (CT) process at the metal–semiconductor and substrate–molecule interface was investigated based on the surface-enhanced Raman scattering (SERS) spectra of 4-Aminothiophenol (PATP) absorbed on the composite system. The surface plasmon resonance (SPR) absorption of Ag changes due to the regulation of TiO2 thickness, which leads to different degrees of CT enhancement in the system. The CT degree of SERS spectra obtained at different excitation wavelengths was calculated to study the contribution of CT enhancement to SERS, and a TiO2thickness-dependent CT enhancement mechanism was proposed. Furthermore, Ag/TiO2/Ni nanopillar arrays possessed favorable detection ability and uniformity, which has potential as a SERS-active substrate.
Collapse
Affiliation(s)
| | | | - Qun Fu
- Correspondence: (C.W.); (Q.F.)
| |
Collapse
|