1
|
Xue Z, Wang J, Li X, Mao L, Tao S, Li Z, Luo Z, Dai S, Jiang N, Gan Z, Ning Z. Highly Improved Shape Memory Properties of a PCL-Based Polyurethane via Polylactide Stereocomplexation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28704-28715. [PMID: 40315334 DOI: 10.1021/acsami.5c04033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
In shape memory polymers (SMPs) composed of semicrystalline polymers, their crystallization-melting process and the overall entropic elasticity of the material determine their shape memory behavior. In this work, cross-linked polyurethanes with polycaprolactone (PCL), poly(l-lactic acid) (PLLA), and poly(d-lactic acid) (PDLA) segments were designed, in which four-armed PCL served as the chemical cross-linking and polylactic acid (PLA) crystals acted as physical cross-linking. By adjusting the molecular weight of the four-armed PCL and the type of PLA crystals [homocrystals (HC) and stereocomplex (SC) crystals], the overall cross-linking degree of the material was controlled, and the crystallization behavior, mechanical properties, and shape memory behavior of the material were studied. The results indicated that both physical and chemical cross-linking significantly affect the mechanical properties and shape memory properties of materials. Moreover, polyurethane-contained SC exhibited a higher shape recovery ratio (Rr) and fixation ratio (Rf) than polyurethane-contained HC because SC provided higher entropy elasticity and promoted PCL crystallization. This study provides a method for synergistically enhancing Rf and Rr of SMPs, offering insights into the design of related materials.
Collapse
Affiliation(s)
- Zhiyou Xue
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lingchen Mao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Sizhe Tao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zihao Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziqi Luo
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Suyang Dai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ni Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhihua Gan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenbo Ning
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Li X, Mao L, Li W, Wu H, Dai S, Xiao R, Huang J, Liu G, Yang K, Bu W, Jiang N, Gan Z, Ning Z. A Novel Polytetrahydrofuran-Based Shape Memory Polyurethane Enhanced by Polyglycolide-Block-Polytetrahydrofuran-Block-Polyglycolide Copolymer. Polymers (Basel) 2024; 16:3610. [PMID: 39771461 PMCID: PMC11679042 DOI: 10.3390/polym16243610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
A series of polyurethanes (PU-GT) were prepared using polyglycolide-block-polytetrahydrofuran-block-polyglycolide (PGA-PTHF-PGA), polytetrahydrofuran homopolymer (PTHF), glycerol, and hexamethylene diisocyanate (HDI) by a one-pot synthesis method. The non-isothermal crystallization and subsequent heating curves showed that the PTHF component in these polyurethanes could crystallize in a temperature range of -11.5~2.6 °C during the cooling process, and the melting temperatures of PTHF crystallites were in the range of 24.0~26.9 °C. The WAXD results implied that a small content of PGA could crystallize in the membranes of PU-GT polyurethanes. And compared with PU-GT-100, which did not contain the PGA-PTHF-PGA block polymer, other PU-GT polyurethanes showed excellent mechanical properties because of the existence of the PGA component. Moreover, these polyurethanes had temperature-responsive shape memory properties due to the PTHF crystallites. The temporary shape could be fixed at -20 °C and recovered to the permanent shape at 37 °C. We conducted two kinds of conceptual experiments using PU-GT-50 polyurethane, which showed its great potential for medical applications in vascular and wound repair.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (X.L.); (L.M.); (W.L.); (H.W.); (S.D.); (R.X.); (J.H.); (N.J.); (Z.G.)
| | - Lingchen Mao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (X.L.); (L.M.); (W.L.); (H.W.); (S.D.); (R.X.); (J.H.); (N.J.); (Z.G.)
| | - Weiqian Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (X.L.); (L.M.); (W.L.); (H.W.); (S.D.); (R.X.); (J.H.); (N.J.); (Z.G.)
| | - Han Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (X.L.); (L.M.); (W.L.); (H.W.); (S.D.); (R.X.); (J.H.); (N.J.); (Z.G.)
| | - Suyang Dai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (X.L.); (L.M.); (W.L.); (H.W.); (S.D.); (R.X.); (J.H.); (N.J.); (Z.G.)
| | - Rui Xiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (X.L.); (L.M.); (W.L.); (H.W.); (S.D.); (R.X.); (J.H.); (N.J.); (Z.G.)
| | - Jiayi Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (X.L.); (L.M.); (W.L.); (H.W.); (S.D.); (R.X.); (J.H.); (N.J.); (Z.G.)
| | - Guodong Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (X.L.); (L.M.); (W.L.); (H.W.); (S.D.); (R.X.); (J.H.); (N.J.); (Z.G.)
- IMElK Technology Development Co., Ltd., Beijing 100010, China
| | - Keda Yang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Wensheng Bu
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China;
| | - Ni Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (X.L.); (L.M.); (W.L.); (H.W.); (S.D.); (R.X.); (J.H.); (N.J.); (Z.G.)
| | - Zhihua Gan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (X.L.); (L.M.); (W.L.); (H.W.); (S.D.); (R.X.); (J.H.); (N.J.); (Z.G.)
| | - Zhenbo Ning
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (X.L.); (L.M.); (W.L.); (H.W.); (S.D.); (R.X.); (J.H.); (N.J.); (Z.G.)
| |
Collapse
|
3
|
Weng PW, Lu HT, Rethi L, Liu CH, Wong CC, Rethi L, Wu KCW, Jheng PR, Nguyen HT, Chuang AEY. Alleviating rheumatoid arthritis with a photo-pharmacotherapeutic glycan-integrated nanogel complex for advanced percutaneous delivery. J Nanobiotechnology 2024; 22:646. [PMID: 39428483 PMCID: PMC11492540 DOI: 10.1186/s12951-024-02877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
The prospective of percutaneous drug delivery (PDD) mechanisms to address the limitations of oral and injectable treatment for rheumatoid arthritis (RA) is increasing. These limitations encompass inadequate compliance among patients and acute gastrointestinal side effects. However, the skin's intrinsic layer can frequently hinder the percutaneous dispersion of RA medications, thus mitigating the efficiency of drug delivery. To circumvent this constraint, we developed a strontium ranelate (SrR)-loaded alginate (ALG) phototherapeutic hydrogel to assess its effectiveness in combating RA. Our studies revealed that this SrR-loaded ALG hydrogel incorporating photoelectrically responsive molybdenum disulfide nanoflowers (MoS2 NFs) and photothermally responsive polypyrrole nanoparticles (Ppy NPs) to form ALG@SrR-MoS2 NFs-Ppy NPs demonstrated substantial mechanical strength, potentially enabling delivery of hydrophilic therapeutic agents into the skin and significantly impeding the progression of RA. Comprehensive biochemical, histological, behavioral, and radiographic analyses in an animal model of zymosan-induced RA demonstrated that the application of these phototherapeutic ALG@SrR-MoS2 NFs-Ppy NPs effectively reduced inflammation, increased the presence of heat shock proteins, regulatory cluster of differentiation M2 macrophages, and alleviated joint degeneration associated with RA. As demonstrated by our findings, treating RA and possibly other autoimmune disorders with this phototherapeutic hydrogel system offers a distinctive, highly compliant, and therapeutically efficient method.
Collapse
Affiliation(s)
- Pei-Wei Weng
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Research Center of Biomedical Devices, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, New Taipei City, Taiwan
| | - Hsien-Tsung Lu
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Research Center of Biomedical Devices, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Taipei Medical University Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Chin-Chean Wong
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Research Center of Biomedical Devices, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekha Rethi
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Kevin C-W Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institute, Keyan Road, Zhunan, Miaoli City, 350, Taiwan
- Department of Chemical Engineering, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei, 10617, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Hieu T Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan.
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, New Taipei City, Taiwan.
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, 111 Hsing-Long Road, Sec. 3, Taipei, 11696, Taiwan.
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| |
Collapse
|
4
|
Choudhury S, Joshi A, Agrawal A, Nain A, Bagde A, Patel A, Syed ZQ, Asthana S, Chatterjee K. NIR-Responsive Deployable and Self-Fitting 4D-Printed Bone Tissue Scaffold. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49135-49147. [PMID: 39226455 DOI: 10.1021/acsami.4c10385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The treatment of irregular-shaped and critical-sized bone defects poses a clinical challenge. Deployable, self-fitting tissue scaffolds that can be implanted by minimally invasive procedures are a promising solution. Toward this, we fabricated NIR-responsive and programmable polylactide-co-trimethylene carbonate (PLMC) scaffolds nanoengineered with polydopamine nanoparticles (PDA) by extrusion-based three-dimensional (3D) printing. The 3D-printed scaffolds demonstrated excellent (>99%), fast (under 30 s), and tunable shape recovery under NIR irradiation. PLMC-PDA composites demonstrated significantly higher osteogenic potential in vitro as revealed by the significantly enhanced alkaline phosphatase (ALP) secretion and mineral deposition in contrast to neat PLMC. Intraoperative deployability and in vivo bone regeneration ability of PLMC-PDA composites were demonstrated, using self-fitting scaffolds in critical-sized cranial bone defects in rabbits. The 3D-printed scaffolds were deformed into compact shapes that could self-fit into the defect shape intraoperatively under low power intensity (0.76 W cm-2) NIR. At 6 and 12 weeks postsurgical implantation, near-complete bone regeneration was observed in PLMC-PDA composites, unlike neat PLMC through microcomputed tomography (micro-CT) analysis. The potential clinical utility of the 3D-printed composites to secure complex defects was confirmed through self-fitting of the scaffolds into irregular defects in ex vivo models of rabbit tibia, mandible, and tooth models. Taken together, the composite scaffolds fabricated here offer an innovative strategy for minimally invasive deployment to fit irregular and complex tissue defects for bone tissue regeneration.
Collapse
Affiliation(s)
- Saswat Choudhury
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Akshat Joshi
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Akhilesh Agrawal
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Amit Nain
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Ashutosh Bagde
- Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442001, India
| | - Aditya Patel
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha 442001, India
| | - Zahiruddin Quazi Syed
- Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442001, India
- Department of Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442001, India
| | - Sonal Asthana
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
- Department of Hepatobiliary and Multi-Organ Transplantation Surgery, Aster CMI Hospital, Bangalore 560024, India
| | - Kaushik Chatterjee
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
- Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442001, India
| |
Collapse
|
5
|
Wang C, Liu W, Chen R, Sun G, Yu J, Liu Q, Liu J, Li Y, Zhu J, Liu P, Wang J. Macrophage-Inspired marine antifouling coating with dynamic surfaces based on regulation of dynamic covalent bonds. J Colloid Interface Sci 2024; 670:223-233. [PMID: 38761575 DOI: 10.1016/j.jcis.2024.05.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Macrophages can kill bacteria and viruses by releasing free radicals, which provides a possible approach to construct antifouling coatings with dynamic surfaces that release free radicals if the breaking of dynamic covalent bonds is precisely regulated. Herein, inspired by the defensive behavior of macrophages of releasing free radicals to kill bacteria and viruses, a marine antifouling coating composed of polyurethane incorporating dimethylglyoxime (PUx-DMG) is prepared by precise regulation of dynamic oxime-urethane covalent bonds. The obtained alkyl radical (R·) derived from the cleavage of the oxime-urethane bonds manages to effectively suppress the attachment of marine biofouling. Moreover, the intrinsic dynamic surface makes it difficult for biofouling to adhere and ultimately achieves sustainable antifouling property. Notably, the PU50-DMG coating not only presents efficient antibacterial and antialgae properties, but also prevents macroorganisms from settling in the sea for up to 4 months. This provides a pioneer broad-spectrum strategy to explore the marine antifouling coatings.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Wenbin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Nanhai Institute of Harbin Engineering University, Hainan 572024, China.
| | - Gaohui Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Nanhai Institute of Harbin Engineering University, Hainan 572024, China
| | - Jingyuan Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Nanhai Institute of Harbin Engineering University, Hainan 572024, China
| | - Ying Li
- Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China
| | - Jiahui Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Peili Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Nanhai Institute of Harbin Engineering University, Hainan 572024, China.
| |
Collapse
|
6
|
Ershad-Langroudi A, Babazadeh N, Alizadegan F, Mehdi Mousaei S, Moradi G. Polymers for implantable devices. J IND ENG CHEM 2024; 137:61-86. [DOI: 10.1016/j.jiec.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Zhang M, Mi M, Hu Z, Li L, Chen Z, Gao X, Liu D, Xu B, Liu Y. Polydopamine-Based Biomaterials in Orthopedic Therapeutics: Properties, Applications, and Future Perspectives. Drug Des Devel Ther 2024; 18:3765-3790. [PMID: 39219693 PMCID: PMC11363944 DOI: 10.2147/dddt.s473007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Polydopamine is a versatile and modifiable polymer, known for its excellent biocompatibility and adhesiveness. It can also be engineered into a variety of nanoparticles and biomaterials for drug delivery, functional modification, making it an excellent choice to enhance the prevention and treatment of orthopedic diseases. Currently, the application of polydopamine biomaterials in orthopedic disease prevention and treatment is in its early stages, despite some initial achievements. This article aims to review these applications to encourage further development of polydopamine for orthopedic therapeutic needs. We detail the properties of polydopamine and its biomaterial types, highlighting its superior performance in functional modification on nanoparticles and materials. Additionally, we also explore the challenges and future prospects in developing optimal polydopamine biomaterials for clinical use in orthopedic disease prevention and treatment.
Collapse
Affiliation(s)
- Min Zhang
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Man Mi
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zilong Hu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Lixian Li
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zhiping Chen
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Di Liu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Bilian Xu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Yanzhi Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| |
Collapse
|
8
|
Lam KY, Lee CS, Tan RYH. NIR-induced photothermal-responsive shape memory polyurethane for versatile smart material applications. RSC Adv 2024; 14:24265-24286. [PMID: 39104559 PMCID: PMC11299057 DOI: 10.1039/d4ra04754k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024] Open
Abstract
Stimuli responsiveness has been an attractive feature of smart material design, allowing the chemical and physical properties of the materials to change in response to small environmental variations. The versatile shape memory polyurethane (SMPU) has been advanced into thermally-responsive SMPU, enabling its use in neurovascular stents, smart fibers for compression garments, and thermal-responsive components for aircraft and aerospace structures. While thermally-induced SMPU materials exhibit excellent shape recovery and fixity, they encounter limitations such as long response times, energy-intensive heating processes, and potential damage to heat-sensitive components, hindering their wide application. Thus, SMPU has further advanced into a photothermal-responsive material by incorporating photothermal agents into the polymer matrix, offering faster response times, compatibility with heat-sensitive materials, and enhanced mechanical properties, expanding the versatility and applicability of shape memory technology. This review focuses on the classes of NIR-induced photothermal agent used in SMPU systems, their synthesis methods, and photothermal-responsive mechanism under NIR-light, which offers a dual responsiveness to the host SMPU. The advantages and limitations of NIR-induced photothermal SMPU are reviewed, and challenges in their development are discussed.
Collapse
Affiliation(s)
- Ki Yan Lam
- Department of Pharmaceutical Chemistry, School of Pharmacy, IMU University No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000 Kuala Lumpur Malaysia
| | - Choy Sin Lee
- Department of Pharmaceutical Chemistry, School of Pharmacy, IMU University No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000 Kuala Lumpur Malaysia
| | - Rachel Yie Hang Tan
- School of Postgraduate Studies, IMU University No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000 Kuala Lumpur Malaysia
| |
Collapse
|
9
|
Yong Y, Liu Y, Zhang Z, Dai S, Yang X, Li F, Li Z. Shape Memory Polyurethane Composite With Fast Response to Near-Infrared Light Based on Tannic Acid-Iron and Dynamic Phenol-Carbamate Network. Macromol Rapid Commun 2024; 45:e2400105. [PMID: 38623606 DOI: 10.1002/marc.202400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/25/2024] [Indexed: 04/17/2024]
Abstract
Intelligent materials derived from green and renewable bio-based materials garner widespread attention recently. Herein, shape memory polyurethane composite (PUTA/Fe) with fast response to near-infrared (NIR) light is successfully prepared by introducing Fe3+ into the tannic acid-based polyurethane (PUTA) matrix through coordination between Fe3+ and tannic acid. The results show that the excellent NIR light response ability is due to the even distribution of Fe3+ filler with good photo-thermal conversion ability. With the increase of Fe3+ content, the NIR light response shape recovery rate of PUTA/Fe composite films is significantly improved, and the shape recovery time is reduced from over 60 s to 40 s. In addition, the mechanical properties of PUTA/Fe composite film are also improved. Importantly, owing to the dynamic phenol-carbamate network within the polymer matrix, the PUTA/Fe composite film can reshape its permanent shape through topological rearrangement and show its good NIR light response shape memory performance. Therefore, PUTA/Fe composites with high content of bio-based material (TA content of 15.1-19.4%) demonstrate the shape memory characteristics of fast response to NIR light; so, it will have great potential in the application of new intelligent materials including efficient and environmentally friendly smart photothermal responder.
Collapse
Affiliation(s)
- Yong Yong
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Yang Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Zetian Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Songbo Dai
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Xiaohan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Fufen Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Zhengjun Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
10
|
Lim JH, Han WB, Jang TM, Ko GJ, Shin JW, Han S, Kang H, Eom CH, Choi SJ, Rajaram K, Bandodkar AJ, Yeo WH, Hwang SW. Synthesis of shape-programmable elastomer for a bioresorbable, wireless nerve stimulator. Biosens Bioelectron 2024; 254:116222. [PMID: 38518560 DOI: 10.1016/j.bios.2024.116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Materials that have the ability to manipulate shapes in response to stimuli such as heat, light, humidity and magnetism offer a means for versatile, sophisticated functions in soft robotics or biomedical implants, while such a reactive transformation has certain drawbacks including high operating temperatures, inherent rigidity and biological hazard. Herein, we introduce biodegradable, self-adhesive, shape-transformable poly (L-lactide-co-ε-caprolactone) (BSS-PLCL) that can be triggered via thermal stimulation near physiological temperature (∼38 °C). Chemical inspections confirm the fundamental properties of the synthetic materials in diverse aspects, and study on mechanical and biochemical characteristics validates exceptional stretchability up to 800 % and tunable dissolution behaviors under biological conditions. The integration of the functional polymer with a bioresorbable electronic system highlights potential for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Jun Hyeon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Chan-Hwi Eom
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - So Jeong Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Kaveti Rajaram
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA; Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA; Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30332, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; Department of Integrative Energy Engineering, Korea University, Seoul, 02841, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
11
|
Liu M, Liu B, Liu Z, Yang Z, Webster TJ, Zhou H, Yang L. High Strength and Shape Memory Spinal Fusion Device for Minimally Invasive Interbody Fusions. Int J Nanomedicine 2024; 19:5109-5123. [PMID: 38846643 PMCID: PMC11155384 DOI: 10.2147/ijn.s460339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Lumbar interbody fusion is widely employed for both acute and chronic spinal diseases interventions. However, large incision created during interbody cage implantation may adversely impair spinal tissue and influence postoperative recovery. The aim of this study was to design a shape memory interbody fusion device suitable for small incision implantation. Methods In this study, we designed and fabricated an intervertebral fusion cage that utilizes near-infrared (NIR) light-responsive shape memory characteristics. This cage was composed of bisphenol A diglycidyl ether, polyether amine D-230, decylamine and iron oxide nanoparticles. A self-hardening calcium phosphate-starch cement (CSC) was injected internally through the injection channel of the cage for healing outcome improvement. Results The size of the interbody cage is reduced from 22 mm to 8.8 mm to minimize the incision size. Subsequent NIR light irradiation prompted a swift recovery of the cage shape within 5 min at the lesion site. The biocompatibility of the shape memory composite was validated through in vitro MC3T3-E1 cell (osteoblast-like cells) adhesion and proliferation assays and subcutaneous implantation experiments in rats. CSC was injected into the cage, and the relevant results revealed that CSC is uniformly dispersed within the internal space, along with the cage compressive strength increasing from 12 to 20 MPa. Conclusion The results from this study thus demonstrated that this integrated approach of using a minimally invasive NIR shape memory spinal fusion cage with CSC has potential for lumbar interbody fusion.
Collapse
Affiliation(s)
- Min Liu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, People’s Republic of China
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, People’s Republic of China
| | - Bo Liu
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, People’s Republic of China
| | - Ziyang Liu
- Department of Orthopedics, Tianjin Hospital, Tianjin, People’s Republic of China
| | - Zhen Yang
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, People’s Republic of China
| | | | - Huan Zhou
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, People’s Republic of China
| | - Lei Yang
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, People’s Republic of China
| |
Collapse
|
12
|
Tang J, Wen Z, Zhai M, Zhang J, Zhang S, Cui Y, Guo Q, Zhu K, Wang J, Liu Q. Environmental-friendly, flexible silk fibroin-based film as dual-responsive shape memory material. Int J Biol Macromol 2024; 269:131748. [PMID: 38670194 DOI: 10.1016/j.ijbiomac.2024.131748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/06/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Bio-based shape memory materials have attracted wide attention due to their biocompatibility, degradability and safety. However, designing and manufacturing wearable bio-based shape memory films with excellent flexibility and toughness is still a challenge. In this work, silk fibroin substrate with a β-sheet structure was combined with a tri-block shape memory copolymer to prepare a transparent composited shape memory film. The silk fibroin-based film showed a dual-responsive shape memory function, which can respond to both temperature and water stimuli. This film has a sensitive water-responsive shape memory, which starts deforming after exposure to water for 3 s and fully recovers in 30 s. In addition, the composite film shows highly stretchable (>300 %) and could maintain its high tensile properties after 5 cycles of regeneration. The films also exhibited rapid degradation ability. This study provides new insights for the design of dual-responsive shape memory materials by combining biocompatible matrix and multi-block SMP to simultaneously enhance the mechanical properties, which can be used for intelligent packaging, medical supplies, soft actuators and wearable devices.
Collapse
Affiliation(s)
- Jingzhi Tang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Zhongyuan Wen
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Maomao Zhai
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Jinming Zhang
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Shouwei Zhang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Yongming Cui
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Qingfeng Guo
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Kunkun Zhu
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China.
| | - Jinfeng Wang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Qingtao Liu
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
13
|
Farrukh A, Nayab S. Shape Memory Hydrogels for Biomedical Applications. Gels 2024; 10:270. [PMID: 38667689 PMCID: PMC11049586 DOI: 10.3390/gels10040270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The ability of shape memory polymers to change shape upon external stimulation makes them exceedingly useful in various areas, from biomedical engineering to soft robotics. Especially, shape memory hydrogels (SMHs) are well-suited for biomedical applications due to their inherent biocompatibility, excellent shape morphing performance, tunable physiochemical properties, and responsiveness to a wide range of stimuli (e.g., thermal, chemical, electrical, light). This review provides an overview of the unique features of smart SMHs from their fundamental working mechanisms to types of SMHs classified on the basis of applied stimuli and highlights notable clinical applications. Moreover, the potential of SMHs for surgical, biomedical, and tissue engineering applications is discussed. Finally, this review summarizes the current challenges in synthesizing and fabricating reconfigurable hydrogel-based interfaces and outlines future directions for their potential in personalized medicine and clinical applications.
Collapse
Affiliation(s)
- Aleeza Farrukh
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA
| | - Sana Nayab
- Institute of Chemistry, Quaid-i-Azam Campus, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
14
|
Fang Q, Qin C, Duo L, Fei F, Jia Q, Chen H, Lin Q. Polydopamine based photothermal/photodynamic synchronous coating modified intraocular lens for efficient and safer posterior capsule opacification prevention. BIOMATERIALS ADVANCES 2024; 158:213792. [PMID: 38281322 DOI: 10.1016/j.bioadv.2024.213792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Posterior capsule opacification (PCO), as one of the most common late complications after intraocular lens (IOL) implantation in cataract surgery, seriously affects patients' postoperative vision and surgical satisfaction, and can only be treated by laser incision of the posterior capsule. Although drug eluting coating modification have been proved to inhibit PCO effectively, the complicated coating methods and the potential toxicity of the antiproliferative drugs hinders its actual application. In this study, an indocyanine green (ICG) loaded polydopamine (PDA) coating modified IOL (IP-IOL) was designed to prevented PCO. In vitro and in vivo studies have shown that IP-IOL can effectively eliminate lens epithelial cells and significantly reduce the degree of PCO. At the same time, it still has good imaging quality and optical properties. Furthermore, both the near-infrared irradiation and ICG loaded PDA coating modified IOLs have proved to possess high biological safety to eyes. Thus, with easy preparation and safer near-infrared irradiated photothermal/photodynamic synchronous properties, such ICG loaded PDA coating provides an effective yet easier and safer PCO prevention after IOL implantation.
Collapse
Affiliation(s)
- Qiuna Fang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Chen Qin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Lan Duo
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Fan Fei
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Qingqing Jia
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hao Chen
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Quankui Lin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
15
|
Zhou ZX, Li J, Hu J, Fu H. Towards promoting wound healing: A near-infrared light-triggered persistently antibacterial, synergistically hemostatic nanoarchitecture-integrated chitosan hydrogel. Carbohydr Polym 2024; 329:121783. [PMID: 38286553 DOI: 10.1016/j.carbpol.2024.121783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024]
Abstract
The skin, the primary barrier of the body, is inevitably broken. However, the development of materials that facilitate wound healing with sustained antimicrobial, hemostatic, and biocompatible properties remains a formidable challenge. In this article, we prepared a photopolymerizable composite hydrogel consisting of a hydrogel matrix, a hemostatic/antibacterial agent, and a photothermal therapy agent. The photopolymerizable hydrogel matrix was prepared by grafting the photoinitiator and polymerizable active monomer onto the chitosan chain segment, which exhibits excellent biocompatibility. Furthermore, linalool is adsorbed on the surface of halloysite nanotubes (HNTs) to form a hemostatic and antibacterial. Meanwhile, dopamine is employed as a coating material for hollow glass microsphere (HGM), which enables them to function as photothermal therapy agents. Upon exposure to near-infrared radiation, the PHA hydrogel releases linalool molecules from the surface of the HNTs, which diffuse into the hydrogel matrix, resulting in a sustained antimicrobial effect. At the same time, rapid curing of the photopolymerizable hydrogel under UV light forms a physical barrier that synergistically enhances the hemostatic properties of the HNTs. From the above, the results pave the way to develop a potential hemostatic antimicrobial dressing for clinical use in wound healing.
Collapse
Affiliation(s)
- Zhao-Xi Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China
| | - Jingyi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Jianfeng Hu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China.
| | - Heqing Fu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China.
| |
Collapse
|
16
|
Li Y, Yang J, Chen X, Hu H, Lan N, Zhao J, Zheng L. Mitochondrial-targeting and NIR-responsive Mn 3O 4@PDA@Pd-SS31 nanozymes reduce oxidative stress and reverse mitochondrial dysfunction to alleviate osteoarthritis. Biomaterials 2024; 305:122449. [PMID: 38194734 DOI: 10.1016/j.biomaterials.2023.122449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Mitochondrial reactive oxygen species (mROS) play a crucial role in the process of osteoarthritis (OA), which may be a promising target for therapy of OA. In this study, novel mitochondrial-targeting and SOD-mimic Mn3O4@PDA@Pd-SS31 nanozymes with near-infrared (NIR) responsiveness and synergistic cascade to scavenge mROS were designed for the therapy of OA. Results showed that the nanozymes accelerated the release of Pd and Mn3O4 under NIR irradiation, exhibiting enhanced activities of SOD and CAT mimic enzymes with reversed mitochondrial dysfunction and promoted mitophagy to effectively scavenge mROS from chondrocytes, modulate the microenvironment of oxidative stress, and eventually inhibit the inflammatory response. Nanozymes were excreted in vivo through intestinal metabolic pathway and had good biocompatibility, effectively reducing the inflammatory response and relieving articular cartilage degeneration in OA joints, with a reduction of 93.7 % and 93.8 % in OARSCI scores for 4 and 8 weeks respectively. Thus, this study demonstrated that the mitochondria targeting and NIR responsive Mn3O4@PDA@Pd-SS31 nanozymes could efficiently scavenge mROS, repair damaged mitochondrial function and promote cartilage regeneration, which are promising for the treatment of OA in clinical applications.
Collapse
Affiliation(s)
- Yuquan Li
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application, Guangxi Key Laboratory of Regenerative Medicine,The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, China
| | - Junxu Yang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application, Guangxi Key Laboratory of Regenerative Medicine,The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiaoming Chen
- Department of Spine Osteopathia, The First Affifiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Hao Hu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application, Guangxi Key Laboratory of Regenerative Medicine,The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441100, China
| | - Nihan Lan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application, Guangxi Key Laboratory of Regenerative Medicine,The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application, Guangxi Key Laboratory of Regenerative Medicine,The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application, Guangxi Key Laboratory of Regenerative Medicine,The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
17
|
Dai S, Mao L, Ning H, Jiang N, Gan Z, Yi T, Ning Z. Novel Heterogeneous Hydrogel with Dual-Responsive Shape Programmability and Good Biocompatibility. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9275-9285. [PMID: 38330499 DOI: 10.1021/acsami.3c17722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Shape memory polymers (SMPs) responsive to various external stimuli can realize a complex shape transformation process and have attracted extensive attention. However, integrating multiple stimulus-responsive mechanisms in one material often requires a complex molecular design and synthesis procedure. In this work, we designed a novel dual-responsive heterogeneous hydrogel (PU-PAM/Alg/PDA), which was manufactured through in situ free radical polymerization of acrylamide (AM) in the presence of alginate (Alg) and polydopamine (PDA) in a porous polycaprolactone-based polyurethane foam (PU-foam). The PU-PAM/Alg/PDA hydrogel could achieve thermal responsiveness through melting-crystallization transformation of polycaprolactone (PCL), while the metallo-supramolecular interactions between Alg and Fe3+ could provide ion responsiveness for this hydrogel. This dual-programmable feature endowed the heterogeneous hydrogel with a complex shape-morphing behavior and also a reconfiguration ability for the permanent shape. Meanwhile, the strong hydrogen bondings between PDA and polyurethane chains enhanced the interfacial adhesions, resulting in the structural integrity and excellent mechanical property of PU-PAM/Alg/PDA. The in vitro and in vivo tests revealed the good biocompatibility of the heterogeneous hydrogel, and the potential of the heterogeneous hydrogel as an esophageal stent was evaluated in vitro as conceptual proof.
Collapse
Affiliation(s)
- Suyang Dai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lingchen Mao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huijuan Ning
- Children's Hospital Capital Institute of Pediatrics, Beijing 100000, China
| | - Ni Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhihua Gan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tuoxin Yi
- Xinxing Cathay International Pharmaceutical Holdings co, Ltd, Beijing 100020, China
| | - Zhenbo Ning
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
18
|
Guo K, Wang Y, Feng ZX, Lin XY, Wu ZR, Zhong XC, Zhuang ZM, Zhang T, Chen J, Tan WQ. Recent Development and Applications of Polydopamine in Tissue Repair and Regeneration Biomaterials. Int J Nanomedicine 2024; 19:859-881. [PMID: 38293610 PMCID: PMC10824616 DOI: 10.2147/ijn.s437854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
The various tissue damages are a severe problem to human health. The limited human tissue regenerate ability requires suitable biomaterials to help damage tissue repair and regeneration. Therefore, many researchers devoted themselves to exploring biomaterials suitable for tissue repair and regeneration. Polydopamine (PDA) as a natural and multifunctional material which is inspired by mussel has been widely applied in different biomaterials. The excellent properties of PDA, such as strong adhesion, photothermal and high drug-loaded capacity, seem to be born for tissue repair and regeneration. Furthermore, PDA combined with different materials can exert unexpected effects. Thus, to inspire researchers, this review summarizes the recent and representative development of PDA biomaterials in tissue repair and regeneration. This article focuses on why apply PDA in these biomaterials and what PDA can do in different tissue injuries.
Collapse
Affiliation(s)
- Kai Guo
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zi-Xuan Feng
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xiao-Ying Lin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zhang-Rui Wu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xin-Cao Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Ze-Ming Zhuang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Tao Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jian Chen
- Department of Ultrasonography, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang Province, People’s Republic of China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
19
|
Sang F, Pan L, Ji Z, Zhang B, Meng Z, Cao L, Zhang J, Li X, Yang X, Shi C. Polydopamine functionalized polyurethane shape memory sponge with controllable expansion performance triggered by near-infrared light for incompressible hemorrhage control. Colloids Surf B Biointerfaces 2023; 232:113590. [PMID: 37862950 DOI: 10.1016/j.colsurfb.2023.113590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
Uncontrolled expansion of shape memory sponges face a significant challenge in the treatment of lethal incompressible hemorrhage, which can lead to blood overflow or damage to the surrounding tissue. Herein, we developed a polydopamine functionalized polyurethane shape memory sponge (PDA-TPI-PU) with a controllable degree of expansion by near-infrared (NIR) light-triggered stimulation for the treatment of incompressible hemorrhage. The sponge has excellent liquid absorption performance and robust mechanical strength as well as good photothermal conversion ability. Under NIR light of 0.32 W/cm2, the maximum recovery rate of the fixed-shape compression sponge was 91% within 25 s in air and 80% within 25 s in blood. In the SD rat liver penetrating injury model, compared with commercial medical gelatin sponge and PVA sponge, the PDA-TPI-PU sponge could effectively control the bleeding under the NIR light irradiation and did not cause excessive compression of the wound. The sponge with these characteristics shows potential application prospects as a hemostatic material.
Collapse
Affiliation(s)
- Feng Sang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Luqi Pan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Zhixiao Ji
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Bingxu Zhang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Zhizhen Meng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lina Cao
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Jing Zhang
- College of Materials Science and Engineering, Donghua University, Shanghai 200051, China
| | - Xujian Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| | - Xiao Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| | - Changcan Shi
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
20
|
Fang Z, Xu H, Xu Q, Meng L, Lu N, Li R, Müller-Buschbaum P, Zhong Q. High Efficiency of Formaldehyde Removal and Anti-bacterial Capability Realized by a Multi-Scale Micro-Nano Channel Structure in Hybrid Hydrogel Coating Cross-Linked on Microfiber-Based Polyurethane. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37429826 DOI: 10.1021/acsami.3c07210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Inspired by the transpiration in the tree stem having a vertical and porous channel structure, high efficiency of formaldehyde removal is realized by the multi-scale micro-nano channel structure in a hybrid P(AAm/DA)-Ag/MgO hydrogel coating cross-linked on microfiber-based polyurethane. The present multi-scale channel structure is formed by a joint effect of directional freezing and redox polymerization as well as nanoparticles-induced porosity. Due to the large number of vertically aligned channels of micrometer size and an embedded porous structure of nanometer size, the specific surface area is significantly increased. Therefore, formaldehyde from solution can be rapidly adsorbed by the amine group in the hydrogels and efficiently degraded by the Ag/MgO nanoparticles. By only immersing in formaldehyde solution (0.2 mg mL-1) for 12 h, 83.8% formaldehyde is removed by the hybrid hydrogels with a multi-scale channel structure, which is 60.8% faster than that observed in hydrogels without any channel structure. After cross-linking the hybrid hydrogels with a multi-scale channel structure to microfiber-based polyurethane and exposing to the formaldehyde vapor atmosphere, 79.2% formaldehyde is removed in 12 h, which is again 11.2% higher than that observed in hydrogels without any channel structure. Unlike the traditional approaches to remove formaldehyde by the light catalyst, no external conditions are required in our present hybrid hydrogel coating, which is very suitable for indoor use. In addition, due to the formation of free radicals by the Ag/MgO nanoparticles, the cross-linked hybrid hydrogel coating on polyurethane synthetic leather also shows good anti-bacterial capability. 99.99% of Staphylococcus aureus can be killed on the surface. Based on the good ability to remove formaldehyde and to kill bacteria, the obtained microfiber-based polyurethane cross-linked with a hybrid hydrogel coating containing a multi-scale channel structure can be used in a broad field of applications, such as furniture and car interior parts, to simultaneously solve the indoor air pollution and hygiene problems.
Collapse
Affiliation(s)
- Zheng Fang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 928 Second Avenue, 310018 Hangzhou, China
| | - Huawei Xu
- Hexin Kuraray Micro Fiber Leather (Jiaxing) Co. Ltd., 777 Pingnan Road, 314003 Jiaxing, China
| | - Qiang Xu
- Hexin Kuraray Micro Fiber Leather (Jiaxing) Co. Ltd., 777 Pingnan Road, 314003 Jiaxing, China
| | - LiuBang Meng
- Hexin Kuraray Micro Fiber Leather (Jiaxing) Co. Ltd., 777 Pingnan Road, 314003 Jiaxing, China
| | - Nan Lu
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science & Engineering, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Renhong Li
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science & Engineering, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Peter Müller-Buschbaum
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Qi Zhong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 928 Second Avenue, 310018 Hangzhou, China
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
| |
Collapse
|
21
|
Huang G, Yao C, Huang M, Zhou J, Hao X, Ma X, He S, Liu H, Liu W, Zhu C. Colorless, Transparent, and High-Performance Polyurethane with Intrinsic Ultraviolet Resistance and Its Anti-UV Mechanism. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18300-18310. [PMID: 36988098 DOI: 10.1021/acsami.2c23317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Polyurethane (PU) is a widely used polymer material that will age under prolonged exposure to ultraviolet (UV) light, shortening the service life. Several methods have been used to prepare the anti-UV PU, including adding nonreactive anti-UV additives, functional fillers, and biological antioxidant molecules. However, the nonreactive anti-UV additives may migrate during long-term use, the functional fillers may damage the mechanical properties and seriously reduce the light transmittance of the sample, and the biological antioxidant molecules will inevitably color the sample. To solve these problems, in this work, a benzotriazole UV absorber (Chiguard R-455) was introduced into the PU molecular chains by in situ polymerization to prepare the nonmigrating intrinsic anti-UV PU sample with high performance and colorless transparency. The anti-UV PU samples exhibit light transmittance of over 88% in the visible range and superior mechanical properties with tensile strength higher than 65 MPa and elongation at break higher than 900%. After 24 h UV irradiation (200 W, 365 nm), the tensile strength and elongation at break of pure PU sample are significantly reduced to only 8.9 and 15.8% of the original one, respectively. On the contrary, the addition of Chiguard R-455 will endow the PU sample with excellent anti-UV performance. After 24 h UV irradiation, the tensile strength (67.2 ± 1.6 MPa) and elongation at break (917.4 ± 30.0%) of PU-0.5% (the content of Chiguard R-455 is only 0.5 wt %) have changed little compared with the sample without irradiation (67.4 ± 3.5 MPa and 919.4 ± 26.5%). Additionally, the anti-UV mechanism of the PU sample is systematically studied. This work provides a feasible method for preparing colorless, transparent, high-performance, nonmigrating intrinsic UV-shielding PU samples, which can be used as a UV light-shielding material in various fields with visible and aesthetic requirements, such as protection fields and wearable products.
Collapse
Affiliation(s)
- Gaoshang Huang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chenxin Yao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Miaoming Huang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Junjie Zhou
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiuge Hao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiaojuan Ma
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Suqin He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chengshen Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
22
|
Kausar A. Cutting-edge Shape Memory Polymer/Fullerene Nanocomposite: Design and Contemporary Status. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2121222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Ayesha Kausar
- Nanosciences Division, National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
23
|
Zhao Z, Zhang Q, Song X, Chen J, Ding Y, Wu H, Guo S. Versatile Melanin-Like Coatings with Hierarchical Structure toward Personal Thermal Management, Anti-Icing/Deicing, and UV Protection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3522-3533. [PMID: 36600550 DOI: 10.1021/acsami.2c20714] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Superhydrophobic photothermal coatings are promising for multifunctional applications due to the efficient use of solar energy, but the current challenge is to seek one easy-to-prepare material with high photothermal performance. Herein, inspired by mussel adhesion and lotus leaf surfaces, we developed superhydrophobic photothermal coatings with hierarchical structure by depositing melanin-like polydopamine (PDA) and dip-coating polydimethylsiloxane (PDMS)/hydrophobic fumed silica (SiO2) sequentially. Benefitting from the efficient photothermal conversion performance of PDA, the coated fabric can rapidly warm up to 100 °C under 100 mW/cm2 sun irradiation. Meanwhile, the coatings show excellent superhydrophobic properties (WCA of 163°), which not only prevent the adhesion of the contaminant from maintaining a long-term and efficient photothermal performance but also help the fabric to own outstanding passive anti-icing and active deicing performances. Furthermore, the superhydrophobic properties of the coatings can be maintained after sandpaper abrasion, repeat tape-peeling, and ultrasonication. In addition, superior UV protection of the coatings can meet the long-term service conditions under outdoor sunlight. The PDA-based superhydrophobic photothermal coatings are believed to inspire new strategies for solar-driven multifunctional applications such as personal thermal management, anti-icing/deicing of variously shaped components, photothermal antibacterial, and so on.
Collapse
Affiliation(s)
- Zhiheng Zhao
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Qi Zhang
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Xudong Song
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Jing Chen
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yitong Ding
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Hong Wu
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
24
|
Wang Y, Gao B, He B. Toward Efficient Wound Management: Bioinspired Microfluidic and Microneedle Patch. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206270. [PMID: 36464498 DOI: 10.1002/smll.202206270] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Microneedle (MN) patches hold demonstrated prospects in intelligent wound management. Herein, inspired by the highly folded structure of insect wings, a three-dimensional (3D) origami MN patch with superfine miniature needle structures, microfluidic channels, and multiple functions was reported to detect biomarkers, release drugs controllably and monitor motions to facilitate wound healing. By simply replicating the pre-stretched silicone rubber (Ecoflex) molds patterned by a laser engraving machine, the superfine structure MN patch with microfluidic channels was obtained from the restored molds. The bioinspired origami structure endows the MN patch with a high degree of functional integration, including microfluidic channels and electrocircuits. The microfluidic channels combined with the pH value and glucose concentration indicators enable the patch with the capability of biomarker sensing detection. Porous structures, a temperature-responsive hydrogel, and a photothermal-sensitive agent are utilized to form a controllable drug release system on the MN patch. Meanwhile, MXene electrocircuits were printed on the MN patch for motion sensing. In addition, the ability of the MN patch to accelerate wound healing was demonstrated by a mouse model experiment with full-thickness skin wounds. These results indicate that the multifunctional 3D origami MN patch is a valuable intelligent strategy for wound management.
Collapse
Affiliation(s)
- Yuqiu Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Bingfang He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
25
|
Zhao C, Yue H, Huang M, He S, Liu H, Liu W, Zhu C, Jiang L. Thermal/Near-Infrared Light Dual-Responsive Reconfigurable and Recyclable Polythiourethane/CNT Composite with Simultaneously Enhanced Strength and Toughness. Macromol Rapid Commun 2022; 44:e2200806. [PMID: 36444920 DOI: 10.1002/marc.202200806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/11/2022] [Indexed: 12/03/2022]
Abstract
Thermoset polymers cross-linked by dynamic covalent bonds are recyclable and reconfigurable based on solid-state plasticity, resulting in less waste and environmental pollution. However, most thermoset polymers previously reported show thermal-responsive solid-state plasticity, depending much on external conditions and not allowing for local shape modulation. Here, the isocyanate modified carbon nanotubes (CNTs-NCO) are introduced into the polythiourethane (PCTU) network with multiple dynamic covalent bonds by in situ polymerization to prepare the composite with thermal/light dual-responsive solid-state plasticity, reconfigurability, and recyclability. The introduction of CNTs-NCO simultaneously strengthens and toughens the PCTU composite. Moreover, based on the photothermal properties and light-responsive solid-state plasticity, the PCTU/CNTs composite or bilayer sample could achieve complex permanent shape by locally precise shape regulation without affecting other parts. This work provides a simple and reliable method for preparing high-performance polymer composite with light-responsive solid-state plasticity, which may be applied in the fields of sensing and flexible electronics.
Collapse
Affiliation(s)
- Chunrui Zhao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Huimin Yue
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Miaoming Huang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Suqin He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China.,Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Hao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chengshen Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Lei Jiang
- High &New Technology Research Center of Henan Academy of Sciences, Zhengzhou, 450002, P. R. China
| |
Collapse
|
26
|
Song Y, Chen Y, Qian W, Shi D, Dong W, Wang Y, Ma P, Zhang H. A photothermally triggered one-component shape memory polymer material prepared by cross-linking porphyrin-based amphiphilic copolymer self-assemblies. SOFT MATTER 2022; 18:5562-5567. [PMID: 35861560 DOI: 10.1039/d2sm00787h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photothermally triggered shape memory polymer materials are usually prepared by dispersing photothermally responsive fillers or compounds into shape memory polymer matrixes through physical blending, while the migration and non-biodegradability of the fillers limit their potential applications (e.g., in the biomedical field). Here, we synthesized a new type of porphyrin-based amphiphilic random copolymer bearing a reactive moiety of carbonyl group by co-polymerizing methyl methacrylate (MMA), butyl acrylate (BA), diacetone acrylamide (DAAM), acrylic acid (AA) and double-bonded vinyl porphyrin monomers, followed by induced self-assembly in aqueous solution to give rise to amphiphilic random copolymer nanoparticles. The nanoparticles were further crosslinked by means of adipic dihydrazide (ADH) to fabricate the photothermally triggered one-component shape memory polymer material. Compared with the most-studied multi-phase/multi-component shape memory polymer materials, the porphyrin moiety, playing the role of a photo-to-heat converter, covalently bonded into the polymer structure would certainly make it more homogeneous and more stable in principle.
Collapse
Affiliation(s)
- Yufang Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Yiming Chen
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Wangqiu Qian
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Dongjian Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Weifu Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Yang Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Piming Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Hongji Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|