1
|
Xu F, Dong Q, Zhang S, Wu Q, An C, Li X, Chen X, Chen Y, Zhang X, Li J, Dong Z. Polydopamine-coated montmorillonite micro/nanoparticles enhanced pectin-based sprayable multifunctional liquid mulching films: Wind erosion resistance, water retention, and temperature increase/heat preservation properties. Int J Biol Macromol 2025; 298:139976. [PMID: 39826734 DOI: 10.1016/j.ijbiomac.2025.139976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Natural biopolymer-based liquid mulching films (LMF) have received widespread attention, whereas the fragile structure and limited functionality have severely restricted their application. Herein, polydopamine-coated montmorillonite micro/nanoparticles enhanced pectin-based sprayable multifunctional liquid mulching films (P-MMT@PDA LMF) were prepared. Dopamine has abundant active sites, and its self-polymerization onto the surface of MMT improves the compatibility of MMT with pectin chains, facilitates the homogeneous dispersion of MMT@PDA in pectin polymers, and makes them more tightly entangled through hydrogen bonding. Therefore, P-MMT@PDA LMF exhibits better mechanical properties (improved by 64.94 N) and wind erosion resistance (wind speed 30 m/s, >60 min). Moreover, MMT@PDA micro/nanoparticles can fill the voids of pectin chains, thus increasing the densification and complexity of the network structure in LMF, enabling better water retention (improved by 14.67 %) and heat preservation (increased by 3.14 °C). Meanwhile, the photothermal effect of PDA endows P-MMT@PDA LMF with a warming effect (increased by 2.84 °C). Hence, this LMF promote wheat growth and demonstrate good biodegradability. These results suggest that the application of P-MMT@PDA LMF is an effective strategy in the environments of drought and cold, which is expected to provide a green solution for sustainable agricultural development and environmental protection in the future.
Collapse
Affiliation(s)
- Fangzhou Xu
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qianyu Dong
- College of Architecture and Urban Planning, Tongji University, Shanghai 200092, PR China
| | - Shikai Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qicong Wu
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Co-Innovation Center for Soil-Water and Forest-Grass Ecological Conservation in Yellow River Basin of Shandong Higher Education Institutions, Tai'an, Shandong 271018, PR China
| | - Chunchun An
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Co-Innovation Center for Soil-Water and Forest-Grass Ecological Conservation in Yellow River Basin of Shandong Higher Education Institutions, Tai'an, Shandong 271018, PR China
| | - Xiaoqian Li
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Co-Innovation Center for Soil-Water and Forest-Grass Ecological Conservation in Yellow River Basin of Shandong Higher Education Institutions, Tai'an, Shandong 271018, PR China
| | - Xinchuang Chen
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yang Chen
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xincheng Zhang
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jinrong Li
- Institute of Water Resources for Pastoral Area of the Ministry of Water Resources of China, Hohhot 010010, PR China
| | - Zhi Dong
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Co-Innovation Center for Soil-Water and Forest-Grass Ecological Conservation in Yellow River Basin of Shandong Higher Education Institutions, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
2
|
Pradyasti A, Lee MJ, Huang H, Choi WM, Kim MH. Polydopamine-integrated cellulose/graphene oxide monoliths: A versatile platform for efficient continuous-flow iodine capture and photothermal-enhanced reduction of Cr(VI). Carbohydr Polym 2025; 351:123090. [PMID: 39779007 DOI: 10.1016/j.carbpol.2024.123090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
The global challenge of wastewater contamination, especially from persistent pollutants like radioactive isotopes and heavy metals, demands innovative purification solutions. Radioactive iodine isotopes (131I and 129I), stemming from nuclear activities, pose serious health risks due to their mobility, bioaccumulation, and ionizing radiation, particularly impacting thyroid health. Similarly, hexavalent chromium, Cr(VI), is highly toxic and persistent in water, linked to cancer and other severe health issues. Developing effective technologies for iodine capture and Cr(VI) reduction is therefore critical for public health and environmental protection. This study presents two distinct cellulose-based composite materials tailored for environmental remediation: cellulose/graphene oxide/polydopamine (cellulose/GO/PDA) monoliths for iodine capture and cellulose/graphene oxide/polydopamine/palladium nano-crystals (cellulose/GO/PDA/Pd) monoliths for the reduction of Cr(VI). PDA substantially enhances the adsorptive, catalytic and photothermal properties of monoliths. The monoliths demonstrated exceptional performance in both batch and continuous-flow reactor studies. Complete iodine removal was achieved within 15 s, while Cr(VI) was entirely reduced within 9 min under dark conditions and 5 min under photothermal conditions. Continuous-flow experiments showed sustained iodine adsorption of 92 % and Cr(VI) reduction of 81 % over 240 min. This research highlights the potential of PDA-enhanced cellulose-based composites as highly efficient and sustainable platforms for practical water remediation and environmental protection.
Collapse
Affiliation(s)
- Astrini Pradyasti
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Myeong Joo Lee
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Haiji Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Won Mook Choi
- School of Chemical Engineering, University of Ulsan, 93 Daehak-ro Nam-gu, Ulsan 44610, Republic of Korea
| | - Mun Ho Kim
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
| |
Collapse
|
3
|
Mei L, Zhang Y, Wang K, Chen S, Song T. Nanomaterials at the forefront of antimicrobial therapy by photodynamic and photothermal strategies. Mater Today Bio 2024; 29:101354. [PMID: 39655165 PMCID: PMC11626539 DOI: 10.1016/j.mtbio.2024.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
In the face of the increasing resistance of microorganisms to traditional antibiotics, the development of innovative treatment methods is becoming increasingly urgent. Nanophototherapy technology can precisely target the infected area and achieve synergistic antibacterial effects in multiple modes. This phototherapy method has shown significant efficacy in treating diseases caused by drug-resistant bacteria, especially in the elimination of biofilms, where it has demonstrated strong dissolution capabilities. PTT utilizes photothermal agents to convert near-infrared light into heat, effectively killing bacteria and promoting tissue regeneration. Similarly, PDT utilizes photosensitizers, which produce reactive oxygen species (ROS) when activated by light, destroying the structure and function of bacterial cells. This review summarizes photothermal agents and photosensitizers used for antibacterial purposes. In conducting our literature review, we employed a systematic approach to ensure a comprehensive and representative selection of studies. Additionally, this article explores the potential of phototherapy in regulating wound microenvironments, promoting wound healing, and activating the immune system. Nanophototherapeutic materials show great potential for application in antibacterial treatment and are expected to provide innovative solutions for drug-resistant bacterial infections that traditional antibiotics are struggling to address.
Collapse
Affiliation(s)
- Ling Mei
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yifan Zhang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Kaixi Wang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Sijing Chen
- Sichuan Electric Power Hospital, Chengdu, Sichuan Province, China
| | - Tao Song
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
4
|
Wang F, Li S, Wang X, Yang Q, Duan J, Yang Y, Mu H. Gellan gum-based multifunctional hydrogel with enduring sterilization and ROS scavenging for infected wound healing. Int J Biol Macromol 2024; 282:136888. [PMID: 39490880 DOI: 10.1016/j.ijbiomac.2024.136888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
The progression of severe skin injury healing can be easily impeded by bacterial infections and the resultant overproduction of reactive oxygen species (ROS) within the wound microenvironment. In this study, we developed a multifunctional antibacterial hydrogel by integrating gallium ion-tannic acid and polydopamine particles into gellan gum via a facile heat-cooling process. By harnessing the synergistic effects of polydopamine for short-term photothermal therapy and gallium ion for long-term chemotherapy, the hydrogel obtained shows outstanding antibacterial activities. Sustained release of gallium ion and tannic acid ensures a prolonged sterilization along with ROS-scavenging benefits. Moreover, this hydrogel demonstrates superior cytocompatibility, hemostatic properties, as well as capabilities including promoting cell migration, and adsorption to bacterial cells and toxin. The therapeutic efficacy of the hydrogel was validated using a mouse model of MRSA-induced cutaneous infections. Overall, this work introduces a straightforward yet highly efficient multifunctional hydrogel platform that combines synergetic antibacterial actions, ROS scavenging, and hemostasis to enhance the healing of bacteria-associated wounds.
Collapse
Affiliation(s)
- Fei Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China
| | - Siwei Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xing Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qisen Yang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jinyou Duan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yu Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China.
| | - Haibo Mu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
5
|
Li J, Guo P, Gao S, Wang J, Cheng J, Fan W, Liu X, Zhang X, Lei K. Cu 2O-SnO 2-PDA heterozygous nanozyme doped hydrogel mediated conglutinant microenvironment regulation for wound healing therapy. Int J Biol Macromol 2024; 280:135852. [PMID: 39307489 DOI: 10.1016/j.ijbiomac.2024.135852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024]
Abstract
Bacterial infection significantly hinders the wound healing process. Overuse of antibiotics has led to the rise of drug resistance in bacteria, making the development of smart medical dressings that promote wound healing without antibiotics, a critical need. In this study, Cu₂O-SnO₂-PDA (PCS) nanoenzymes with Fenton-like activity and high photothermal conversion efficiency were developed. These nanoenzymes were then incorporated into a hydrogel through cross-linking of acrylamide (AM) and N-[Tris-(hydroxymethyl)methyl] acrylamide (THMA), forming a tough, highly-adhesive, and self-healing composite hydrogel (AT/PCS) with antimicrobial properties. The AT/PCS hydrogel exhibits excellent mechanical strength and adhesion, facilitating increased oxygen levels and strong adherence to the wound site. Moreover, it effectively regulates the wound microenvironment by combining synergistic chemodynamic therapy (CDT) and photothermal therapy (PTT) for antibacterial treatment. The AT/PCS hydrogel enhances collagen deposition and expedites wound healing in a rat model, largely due to its potent antibacterial properties.
Collapse
Affiliation(s)
- Jinghua Li
- The 1st Affiliated Hospital, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471000, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China; Department of Wound Repair, the First Affiliated Hospital, College of Emergency and Trauma, Hainan Medical University, Haikou 570100, China; Department of Radiation Oncology, The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710000, China.
| | - Pengshan Guo
- The 1st Affiliated Hospital, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471000, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| | - Shegan Gao
- The 1st Affiliated Hospital, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Jianping Wang
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| | - Ji Cheng
- Department of Wound Repair, the First Affiliated Hospital, College of Emergency and Trauma, Hainan Medical University, Haikou 570100, China
| | - Wenxuan Fan
- Department of Wound Repair, the First Affiliated Hospital, College of Emergency and Trauma, Hainan Medical University, Haikou 570100, China
| | - Xiaoran Liu
- Department of Wound Repair, the First Affiliated Hospital, College of Emergency and Trauma, Hainan Medical University, Haikou 570100, China
| | - Xiaozhi Zhang
- Department of Radiation Oncology, The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710000, China
| | - Kun Lei
- The 1st Affiliated Hospital, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
6
|
Omidian H, Wilson RL. Polydopamine Applications in Biomedicine and Environmental Science. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3916. [PMID: 39203091 PMCID: PMC11355457 DOI: 10.3390/ma17163916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
This manuscript explores the multifaceted applications of polydopamine (PDA) across various scientific and industrial domains. It covers the chemical aspects of PDA and its potential in bone tissue engineering, implant enhancements, cancer treatment, and nanotechnology. The manuscript investigates PDA's roles in tissue engineering, cell culture technologies, surface modifications, drug delivery systems, and sensing techniques. Additionally, it highlights PDA's contributions to microfabrication, nanoengineering, and environmental applications. Through detailed testing and assessment, the study identifies limitations in PDA-related research, such as synthesis complexity, incomplete mechanistic understanding, and biocompatibility variability. It also proposes future research directions aimed at improving synthesis techniques, expanding biomedical applications, and enhancing sensing technologies to optimize PDA's efficacy and scalability.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
7
|
He Y, Fan Z, Sun P, Jiang H, Chen Z, Tang G, Hou Z, Sun Y, Yi Y, Shi W, Ge D. Mechanism of Self-Oxidative Copolymerization and its Application with Polydopamine-pyrrole Nano-copolymers. SMALL METHODS 2024; 8:e2301405. [PMID: 38168901 DOI: 10.1002/smtd.202301405] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Currently, the copolymer of dopamine (DA) and pyrrole (PY) via chemical and electrochemical oxidation usually requires additional oxidants, and lacks flexibility in regulating the size and morphology, thereby limiting the broad applications of DA-PY copolymer in biomedicine. Herein, the semiquinone radicals produced by the self-oxidation of DA is ingeniously utilized as the oxidant to initiate the following copolymerization with PY, and a series of quinone-rich polydopamine-pyrrole copolymers (PDAm-nPY) with significantly enhanced absorption in near-infrared (NIR) region without any additional oxidant assistance is obtained. Moreover, the morphology and size of PDAm-nPY can be regulated by changing the concentration of DA and PY, thereby optimizing nanoscale PDA0.05-0.15PY particles (≈ 150 nm) with excellent NIR absorption and surface modification activity are successfully synthesized. Such PDA0.05-0.15PY particles show effective photoacoustic (PA) imaging and photothermal therapy (PTT) against 4T1 tumors in vivo. Furthermore, other catechol derivatives can also copolymerize with PY under the same conditions. This work by fully utilizing the semiquinone radical active intermediates produced through the self-oxidation of DA reduces the dependence on external oxidants in the synthesis of composite materials and predigests the preparation procedure, which provides a novel, simple, and green strategy for the synthesis of other newly catechol-based functional copolymers.
Collapse
Affiliation(s)
- Yuan He
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
- Department of Cardiothoracic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, Fujian, 363000, China
| | - Zhongxiong Fan
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, China
| | - Pengfei Sun
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian, 361005, China
| | - Hairong Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhou Chen
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Guo Tang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenqing Hou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanan Sun
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yunfeng Yi
- Department of Cardiothoracic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, Fujian, 363000, China
| | - Wei Shi
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Dongtao Ge
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
8
|
Si L, Zhang S, Guo H, Luo W, Feng Y, Du X, Mou F, Ma H, Guan J. Swarming Magnetic Fe 3O 4@Polydopamine-Tannic Acid Nanorobots: Integrating Antibiotic-Free Superficial Photothermal and Deep Chemical Strategies for Targeted Bacterial Elimination. RESEARCH (WASHINGTON, D.C.) 2024; 7:0438. [PMID: 39086398 PMCID: PMC11289052 DOI: 10.34133/research.0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024]
Abstract
Micro/nanorobots (MNRs) are envisioned to provide revolutionary changes to therapies for infectious diseases as they can deliver various antibacterial agents or energies to many hard-to-reach infection sites. However, existing MNRs face substantial challenges in addressing complex infections that progress from superficial to deep tissues. Here, we develop swarming magnetic Fe3O4@polydopamine-tannic acid nanorobots (Fe3O4@PDA-TA NRs) capable of performing targeted bacteria elimination in complicated bacterial infections by integrating superficial photothermal and deep chemical strategies. The Fe3O4@PDA-TA nanoparticles (NPs), serving as building blocks of the nanorobots, are fabricated by in situ polymerization of dopamine followed by TA adhesion. When driven by alternating magnetic fields, Fe3O4@PDA-TA NPs can assemble into large energetic microswarms continuously flowing forward with tunable velocity. Thus, the swarming Fe3O4@PDA-TA NRs can be navigated to achieve rapid broad coverage of a targeted superficial area from a distance and rapidly eradicate bacteria residing there upon exposure to near-infrared (NIR) light due to their efficient photothermal conversion. Additionally, they can concentrate at deep infection sites by traversing through confined, narrow, and tortuous passages, exerting sustained antibacterial action through their surface TA-induced easy cell adhesion and subsequent membrane destruction. Therefore, the swarming Fe3O4@PDA-TA NRs show great potential for addressing complex superficial-to-deep infections. This study may inspire the development of future therapeutic microsystems for various diseases with multifunction synergies, task flexibility, and high efficiency.
Collapse
Affiliation(s)
- Luying Si
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
| | - Shuming Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
| | - Huiru Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
| | - Wei Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
- Wuhan Institute of Photochemistry and Technology, Wuhan, China
| | - Yuqin Feng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
| | - Xinkang Du
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
| | - Huiru Ma
- Wuhan Institute of Photochemistry and Technology, Wuhan, China
- School of Chemistry, Chemical Engineering and Life Science,
Wuhan University of Technology, Wuhan, China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
- Wuhan Institute of Photochemistry and Technology, Wuhan, China
| |
Collapse
|
9
|
Miao L, Xu Z, Sui J, Meng X, Huo S, Liu S, Chen M, Zheng Z, Cai X, Zhang H. A New Nanoplatform Under NIR Released ROS Enhanced Photodynamic Therapy and Low Temperature Photothermal Therapy for Antibacterial and Wound Repair. Int J Nanomedicine 2024; 19:7509-7527. [PMID: 39071503 PMCID: PMC11283834 DOI: 10.2147/ijn.s471623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Purpose Skin injury, often caused by physical or medical mishaps, presents a significant challenge as wound healing is critical to restore skin integrity and tissue function. However, external factors such as infection and inflammation can hinder wound healing, highlighting the importance of developing biomaterials with antibiotic and wound healing properties to treat infections and inflammation. In this study, a novel photothermal nanomaterial (MMPI) was synthesized for infected wound healing by loading indocyanine green (ICG) on magnesium-incorporated mesoporous bioactive glass (Mg-MBG) and coating its surface with polydopamine (PDA). Results In this study, Mg-MBG and MMPI was synthesized via the sol-gel method and characterized it using various techniques such as scanning electron microscopy (SEM), the energy dispersive X-ray spectrometry (EDS) system and X-ray diffraction (XRD). The cytocompatibility of MMPI was evaluated by confocal laser scanning microscopy (CLSM), CCK8 assay, live/dead staining and F-actin staining of the cytoskeleton. The antibacterial efficiency was assessed using bacterial dead-acting staining, spread plate method (SPM) and TEM. The impact of MMPI on macrophage polarization was initially evaluated through flow cytometry, qPCR and ELISA. Additionally, an in vivo experiment was performed on a mouse model with skin excision infected. Histological analysis and RNA-seq analysis were utilized to analyze the in vivo wound healing and immunomodulation effect. Conclusion Collectively, the new photothermal and photodynamic nanomaterial (MMPI) can achieve low-temperature antibacterial activity while accelerating wound healing, holds broad application prospects.
Collapse
Affiliation(s)
- Licai Miao
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Zihao Xu
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Junhao Sui
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Xiangyu Meng
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Shicheng Huo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, Shanghai, 200003, People’s Republic of China
| | - Shu Liu
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Mengchen Chen
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Zhong Zheng
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Xiaobin Cai
- Department of Orthopedics Shanghai Tenth People’s Hospital Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Hao Zhang
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
10
|
Deng T, Lu W, Zhao X, Wang H, Zheng Y, Zheng A, Shen Z. Chondroitin sulfate/silk fibroin hydrogel incorporating graphene oxide quantum dots with photothermal-effect promotes type H vessel-related wound healing. Carbohydr Polym 2024; 334:121972. [PMID: 38553198 DOI: 10.1016/j.carbpol.2024.121972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 04/02/2024]
Abstract
Chronic wounds with bacterial infection present formidable clinical challenges. In this study, a versatile hydrogel dressing with antibacterial and angiogenic activity composite of silk fibroin (SF), chondroitin sulfate (CS), and graphene oxide quantum dots (GOQDs) is fabricated. GOQDs@SF/CS (GSC) hydrogel is rapidly formed through the enzyme catalytic action of horseradish peroxidase. With the incorporation of GOQDs both gelation speed and mechanical properties have been enhanced, and the photothermal characteristics of GOQDs in GSC hydrogel enabled bacterial killing through photothermal treatment (PTT) at ∼51 °C. In vitro studies show that the GSC hydrogels demonstrate excellent antibacterial performance and induce type H vessel differentiation of endothelial cells via the activated ERK1/2 signaling pathway and upregulated SLIT3 expression. In vivo results show that the hydrogel significantly promotes type H vessels formation, which is related to the collagen deposition, epithelialization and, ultimately, accelerates the regeneration of infected skin defects. Collectively, this multifunctional GSC hydrogel, with dual action of antibacterial efficacy and angiogenesis promotion, emerges as an innovative skin dressing with the potential for advancing in infected wound healing.
Collapse
Affiliation(s)
- Tanjun Deng
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wenli Lu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaoxian Zhao
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Haoyu Wang
- Dermatology Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yumeng Zheng
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ao Zheng
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China.
| | - Zhengyu Shen
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
11
|
Wang Q, Gan Z, Wang X, Li X, Zhao L, Li D, Xu Z, Mu C, Ge L, Li D. Dissolving Hyaluronic Acid-Based Microneedles to Transdermally Deliver Eugenol Combined with Photothermal Therapy for Acne Vulgaris Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21595-21609. [PMID: 38635857 DOI: 10.1021/acsami.4c01790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
A microneedle transdermal drug delivery system simultaneously avoids systemic toxicity of oral administration and low efficiency of traditional transdermal administration, which is of great significance for acne vulgaris therapy. Herein, eugenol-loaded hyaluronic acid-based dissolving microneedles (E@P-EO-HA MNs) with antibacterial and anti-inflammatory activities are developed for acne vulgaris therapy via eugenol transdermal delivery integrated with photothermal therapy. E@P-EO-HA MNs are pyramid-shaped with a sharp tip and a hollow cavity structure, which possess sufficient mechanical strength to penetrate the stratum corneum of the skin and achieve transdermal delivery, in addition to excellent in vivo biocompatibility. Significantly, E@P-EO-HA MNs show effective photothermal therapy to destroy sebaceous glands and achieve antibacterial activity against deep-seated Propionibacterium acnes (P. acnes) under near-infrared-light irradiation. Moreover, cavity-loaded eugenol is released from rapidly dissolved microneedle bodies to play a sustained antibacterial and anti-inflammatory therapy on the P. acnes infectious wound. E@P-EO-HA MNs based on a synergistic therapeutic strategy combining photothermal therapy and eugenol transdermal administration can significantly alleviate inflammatory response and ultimately facilitate the repair of acne vulgaris. Overall, E@P-EO-HA MNs are expected to be clinically applied as a functional minimally invasive transdermal delivery strategy for superficial skin diseases therapy in skin tissue engineering.
Collapse
Affiliation(s)
- Qi Wang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zhiyang Gan
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xinxin Wang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xinying Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Lei Zhao
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Derong Li
- People's Hospital of Lanshan District, Linyi 27600, P. R. China
| | - Zhilang Xu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
12
|
Fang Q, Qin C, Duo L, Fei F, Jia Q, Chen H, Lin Q. Polydopamine based photothermal/photodynamic synchronous coating modified intraocular lens for efficient and safer posterior capsule opacification prevention. BIOMATERIALS ADVANCES 2024; 158:213792. [PMID: 38281322 DOI: 10.1016/j.bioadv.2024.213792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Posterior capsule opacification (PCO), as one of the most common late complications after intraocular lens (IOL) implantation in cataract surgery, seriously affects patients' postoperative vision and surgical satisfaction, and can only be treated by laser incision of the posterior capsule. Although drug eluting coating modification have been proved to inhibit PCO effectively, the complicated coating methods and the potential toxicity of the antiproliferative drugs hinders its actual application. In this study, an indocyanine green (ICG) loaded polydopamine (PDA) coating modified IOL (IP-IOL) was designed to prevented PCO. In vitro and in vivo studies have shown that IP-IOL can effectively eliminate lens epithelial cells and significantly reduce the degree of PCO. At the same time, it still has good imaging quality and optical properties. Furthermore, both the near-infrared irradiation and ICG loaded PDA coating modified IOLs have proved to possess high biological safety to eyes. Thus, with easy preparation and safer near-infrared irradiated photothermal/photodynamic synchronous properties, such ICG loaded PDA coating provides an effective yet easier and safer PCO prevention after IOL implantation.
Collapse
Affiliation(s)
- Qiuna Fang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Chen Qin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Lan Duo
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Fan Fei
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Qingqing Jia
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hao Chen
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Quankui Lin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
13
|
Wang Z, Henriques A, Rouvière L, Callizot N, Tan L, Hotchkin MT, Rossignol R, Mortenson MG, Dorfman AR, Ho KS, Wang H. A Mechanism Underpinning the Bioenergetic Metabolism-Regulating Function of Gold Nanocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304082. [PMID: 37767608 DOI: 10.1002/smll.202304082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/17/2023] [Indexed: 09/29/2023]
Abstract
Bioenergetic deficits are known to be significant contributors to neurodegenerative diseases. Nevertheless, identifying safe and effective means to address intracellular bioenergetic deficits remains a significant challenge. This work provides mechanistic insights into the energy metabolism-regulating function of colloidal Au nanocrystals, referred to as CNM-Au8, that are synthesized electrochemically in the absence of surface-capping organic ligands. When neurons are subjected to excitotoxic stressors or toxic peptides, treatment of neurons with CNM-Au8 results in dose-dependent neuronal survival and neurite network preservation across multiple neuronal subtypes. CNM-Au8 efficiently catalyzes the conversion of an energetic cofactor, nicotinamide adenine dinucleotide hydride (NADH), into its oxidized counterpart (NAD+ ), which promotes bioenergy production by regulating the intracellular level of adenosine triphosphate. Detailed kinetic measurements reveal that CNM-Au8-catalyzed NADH oxidation obeys Michaelis-Menten kinetics and exhibits pH-dependent kinetic profiles. Photoexcited charge carriers and photothermal effect, which result from optical excitations and decay of the plasmonic electron oscillations or the interband electronic transitions in CNM-Au8, are further harnessed as unique leverages to modulate reaction kinetics. As exemplified by this work, Au nanocrystals with deliberately tailored structures and surfactant-free clean surfaces hold great promise for developing next-generation therapeutic agents for neurodegenerative diseases.
Collapse
Affiliation(s)
- Zixin Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | | | | | | | - Lin Tan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | | | - Rodrigue Rossignol
- Cellomet, CARF Center, University of Bordeaux, 146 rue Léo Saignat, Bordeaux, 33000, France
| | - Mark G Mortenson
- Clene Nanomedicine, Inc., Salt Lake City, UT, 84117, USA
- Clene Nanomedicine, Inc., North East, MD, 21901, USA
| | | | - Karen S Ho
- Clene Nanomedicine, Inc., Salt Lake City, UT, 84117, USA
| | - Hui Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
14
|
Tang R, Zhou L, Dai Y, Wang Y, Cai Y, Chen T, Yao Y. Polydopamine modified by pillar[5]arene in situ for targeted chemo-photothermal cancer therapy. Chem Commun (Camb) 2024; 60:1160-1163. [PMID: 38192227 DOI: 10.1039/d3cc04196d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
A pillar[5]arene-modified polydopamine (PDA-P[5]OH) displaying pH/NIR dual-responsive properties was constructed successfully in situ for targeted chemo-photothermal cancer therapy.
Collapse
Affiliation(s)
- Ruowen Tang
- School of Chemistry and Chemical Engineering, Nantong City Key Laboratory of Life-Organic Chemistry, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Lei Zhou
- School of Chemistry and Chemical Engineering, Nantong City Key Laboratory of Life-Organic Chemistry, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yu Dai
- School of Chemistry and Chemical Engineering, Nantong City Key Laboratory of Life-Organic Chemistry, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong City Key Laboratory of Life-Organic Chemistry, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yan Cai
- School of Chemistry and Chemical Engineering, Nantong City Key Laboratory of Life-Organic Chemistry, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong City Key Laboratory of Life-Organic Chemistry, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong City Key Laboratory of Life-Organic Chemistry, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
15
|
Zhang N, Zhang J, Zhu X, Yuan S, Wang D, Xu H, Wang Z. Synergistic Effect of Ti 3C 2T x MXene Nanosheets and Tannic Acid-Fe 3+ Network in Constructing High-Performance Hydrogel Composite Membrane for Photothermal Membrane Distillation. NANO LETTERS 2024; 24:724-732. [PMID: 38166126 DOI: 10.1021/acs.nanolett.3c04159] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Photothermal membrane distillation (PMD) has emerged as a promising and sustainable approach for seawater desalination and wastewater purification. However, the wide application of the technique is severely impeded by low freshwater production and membrane fouling/wetting issues. Herein, we developed an advanced hydrogel-engineered membrane with simultaneously enhanced photothermal conversion capacity and desired fouling and wetting resistance for PMD. By the synergies of photothermal Ti3C2Tx MXene nanosheets and the tannic acid-Fe3+ network in the hydrogel, the membrane was endowed with excellent surface self-heating ability, yielding the highest freshwater production rate (1.71 kg m-2 h-1) and photothermal efficiency among the fabricated hydrogel composite membranes under 1 sun irradiation. Meanwhile, the PMD membrane could robustly resist oil-induced fouling and surfactant-induced wetting, significantly extending the membrane lifespan in treating contaminated saline water. Furthermore, when desalinating real seawater, the membrane exhibited superior durability with a stable vapor flux and excellent ion rejection (e.g., 99.24% for boron) for 100 h.
Collapse
Affiliation(s)
- Na Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Jiaojiao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Xiaohui Zhu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Shideng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Dong Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Haoran Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| |
Collapse
|
16
|
Lv Q, Zhang Y, Yang R, Dai Y, Lin Y, Sun K, Xu H, Tao K. Photoacoustic Imaging Endometriosis Lesions with Nanoparticulate Polydopamine as a Contrast Agent. Adv Healthc Mater 2024; 13:e2302175. [PMID: 37742067 DOI: 10.1002/adhm.202302175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Indexed: 09/25/2023]
Abstract
Endometriosis (EM) is a prevalent and debilitating gynecological disorder primarily affecting women of reproductive age. The diagnosis of EM is historically hampered by delays, owing to the absence of reliable diagnostic and monitoring techniques. Herein, it is reported that photoacoustic imaging can be a noninvasive modality for deep-seated EM by employing a hyaluronic-acid-modified polydopamine (PDA@HA) nanoparticle as the contrast agent. The PDA@HA nanoparticles exhibit inherent absorption and photothermal effects when exposed to near-infrared light, proficiently converting thermal energy into sound waves. Leveraging the targeting properties of HA, distinct photoacoustic signals emanating from the periphery of orthotopic EM lesions are observed. These findings are corroborated through anatomical observations and in vivo experiments involving mice with green fluorescent protein-labeled EM lesions. Moreover, the changes in photoacoustic intensity over a 24 h period reflect the dynamic evolution of PDA@HA nanoparticle biodistribution. Through the utilization of a photoacoustic ultrasound modality, in vivo assessments of EM lesion volumes are conducted. This innovative approach not only facilitates real-time monitoring of the therapeutic kinetics of candidate drugs but also obviates the need for the sacrifice of experimental mice. As such, this study presents a promising avenue for enhancing the diagnosis and drug-screening processes of EM.
Collapse
Affiliation(s)
- Quanjie Lv
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yili Zhang
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Ruihao Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yingfan Dai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yu Lin
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hong Xu
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
17
|
Wamsley M, Zou S, Zhang D. Advancing Evidence-Based Data Interpretation in UV-Vis and Fluorescence Analysis for Nanomaterials: An Analytical Chemistry Perspective. Anal Chem 2023; 95:17426-17437. [PMID: 37972233 DOI: 10.1021/acs.analchem.3c03490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
UV-vis spectrophotometry and spectrofluorometry are indispensable tools in education, research, and industrial process controls with widespread applications in nanoscience encompassing diverse nanomaterials and fields. Nevertheless, the prevailing spectroscopic interpretations and analyses often exhibit ambiguity and errors, particularly evident in the nanoscience literature. This analytical chemistry Perspective focuses on fostering evidence-based data interpretation in experimental studies of materials' UV-vis absorption, scattering, and fluorescence properties. We begin by outlining common issues observed in UV-vis and fluorescence analysis. Subsequently, we provide a summary of recent advances in commercial UV-vis spectrophotometric and spectrofluorometric instruments, emphasizing their potential to enhance scientific rigor in UV-vis and fluorescence analysis. Furthermore, we propose potential avenues for future developments in spectroscopic instrumentation and measurement strategies, aiming to further augment the utility of optical spectroscopy in nano research for samples where optical complexity surpasses existing tools. Through a targeted focus on the critical issues related to UV-vis and fluorescence properties of nanomaterials, this Perspective can serve as a valuable resource for researchers, educators, and practitioners.
Collapse
Affiliation(s)
- Max Wamsley
- Department of Chemistry, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Shengli Zou
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Dongmao Zhang
- Department of Chemistry, Mississippi State University, Starkville, Mississippi 39762, United States
| |
Collapse
|
18
|
He M, Yang J, Qiu K, Wu Y, Sun Y, Qi D. Super-assembly platform for diverse nanoparticles with tunable topological architectures and surface morphologies. J Colloid Interface Sci 2023; 651:849-860. [PMID: 37573731 DOI: 10.1016/j.jcis.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
Self-assembly leveraged by nature enables the sophisticated generation of a wide range of nanoparticles (NPs) with rich architectures and morphologies. However, existing artificial self-assembly platforms largely only allow for the fabrication of single type of NPs with limited structures, due to their inability to define interfacial interaction between seeds and growth materials, which is critically important to gain controllable growth patterns of the grown materials on the seeds' surface. Here, we report a versatile super-assembly platform that shows the capabilities to fabricate diverse NPs with tunable topological architectures and surface morphologies, e.g., molecular-like NPs, hollow asymmetric NPs, patchy NPs, etc. We unprecedentedly discovered the powerful functions of polyvinylpyrrolidone (PVP), which enable us to well define interfacial interaction between growth materials and seeds to achieve the controllable and tunable generation of various complex topological growth patterns. Moreover, the nucleation pattern (island nucleation or layered nucleation) of the patches can be thermodynamically modulated via the polarity of the solvent, while the number and size of the patches can be kinetically tuned by the ratio of polystyrene (PS), precursor, and catalyst. Interestingly, the hollow NPs can be generated by single-one processing step in our platform, unlike the multiple steps laboriously and widely employed by previously reported fabrication platforms. In addition, we demonstrate that our annealed NPs can not only selectively reflect visible light, and show well-controlled colors from gray, blue, to green, but also exhibit excellent photothermal conversion performances with a high photothermal conversion efficiency of 68.7% that are superior to currently routinely reported of 40%. This super-assembly platform can serve as a powerful toolset to sophisticatedly create varied NPs with tunable hierarchical architectures and controllable surface morphologies, which would significantly benefit the development of drug delivery, nanomaterial assembly, nano pigments, nanoreactors, and beyond.
Collapse
Affiliation(s)
- Mengyao He
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jifu Yang
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kejun Qiu
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yue Wu
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yangyi Sun
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Dongming Qi
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
19
|
He L, Di D, Chu X, Liu X, Wang Z, Lu J, Wang S, Zhao Q. Photothermal antibacterial materials to promote wound healing. J Control Release 2023; 363:180-200. [PMID: 37739014 DOI: 10.1016/j.jconrel.2023.09.035] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Wound healing is a crucial process that restores the integrity and function of the skin and other tissues after injury. However, external factors, such as infection and inflammation, can impair wound healing and cause severe tissue damage. Therefore, developing new drugs or methods to promote wound healing is of great significance. Photothermal therapy (PTT) is a promising technique that uses photothermal agents (PTAs) to convert near-infrared radiation into heat, which can eliminate bacteria and stimulate tissue regeneration. PTT has the advantages of high efficiency, controllability, and low drug resistance. Hence, nanomaterial-based PTT and its related strategies have been widely explored for wound healing applications. However, a comprehensive review of PTT-related strategies for wound healing is still lacking. In this review, we introduce the physiological mechanisms and influencing factors of wound healing, and summarize the types of PTAs commonly used for wound healing. Then, we discuss the strategies for designing nanocomposites for multimodal combination treatment of wounds. Moreover, we review methods to improve the therapeutic efficacy of PTT for wound healing, such as selecting the appropriate wound dressing form, controlling drug release, and changing the infrared irradiation window. Finally, we address the challenges of PTT in wound healing and suggest future directions.
Collapse
Affiliation(s)
- Luning He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Donghua Di
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinhui Chu
- Wuya College of innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinlin Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Ziyi Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Junya Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
20
|
Zhu L, Tian L, Jiang S, Han L, Liang Y, Li Q, Chen S. Advances in photothermal regulation strategies: from efficient solar heating to daytime passive cooling. Chem Soc Rev 2023; 52:7389-7460. [PMID: 37743823 DOI: 10.1039/d3cs00500c] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Photothermal regulation concerning solar harvesting and repelling has recently attracted significant interest due to the fast-growing research focus in the areas of solar heating for evaporation, photocatalysis, motion, and electricity generation, as well as passive cooling for cooling textiles and smart buildings. The parallel development of photothermal regulation strategies through both material and system designs has further improved the overall solar utilization efficiency for heating/cooling. In this review, we will review the latest progress in photothermal regulation, including solar heating and passive cooling, and their manipulating strategies. The underlying mechanisms and criteria of highly efficient photothermal regulation in terms of optical absorption/reflection, thermal conversion, transfer, and emission properties corresponding to the extensive catalog of nanostructured materials are discussed. The rational material and structural designs with spectral selectivity for improving the photothermal regulation performance are then highlighted. We finally present the recent significant developments of applications of photothermal regulation in clean energy and environmental areas and give a brief perspective on the current challenges and future development of controlled solar energy utilization.
Collapse
Affiliation(s)
- Liangliang Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Liang Tian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Siyi Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Lihua Han
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Yunzheng Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| |
Collapse
|
21
|
Xu X, Yang L, Cui Y, Hu B. A study on rapid and stable catalytic reduction of 4-nitrophenol by 2-hydroxyethylamine stabilized Fe 3O 4@Pt and its kinetic factors. RSC Adv 2023; 13:25828-25835. [PMID: 37655348 PMCID: PMC10467567 DOI: 10.1039/d3ra05298b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023] Open
Abstract
The successful development of efficient and stable catalysts for 4-NP reduction reactions is beneficial to the environment and ecology. Fe3O4@Pt exhibits excellent catalytic performance for 4-NP reduction reaction due to the synergistic effect between Fe and Pt. But its structure and catalytic performance are extremely unstable. Here, we utilized the small-scale organic compound 2-hydroxyethylamine as surfactant to construct a stable composite nanomaterial. Then investigated the influence of monochromatic light (650 nm, 808 nm and 980 nm) and temperature on the kinetics of 4-NP reduction reaction by 2-hydroxyethylamine stabilized Fe3O4@Pt. The results indicate that both temperature and monochromatic light radiation can affect kinetic regulation. Increasing temperature can promote the catalytic rate, while monochromatic light radiation can induce agglomeration and inhibit the catalytic rate. This study opens up a new way for developing and regulating catalysts for heterogeneous catalysis reactions.
Collapse
Affiliation(s)
- Xia Xu
- College of Science, Gansu Agricultural University No.1, Yingmen Village Lanzhou 730070 P. R. China
| | - Liming Yang
- College of Science, Gansu Agricultural University No.1, Yingmen Village Lanzhou 730070 P. R. China
| | - Yanjun Cui
- College of Science, Gansu Agricultural University No.1, Yingmen Village Lanzhou 730070 P. R. China
| | - Bing Hu
- College of Science, Gansu Agricultural University No.1, Yingmen Village Lanzhou 730070 P. R. China
| |
Collapse
|
22
|
Wang Z, Wang H. Phase-Controlled Ruthenium Nanocrystals on Colloidal Polydopamine Supports and Their Catalytic Behaviors in Aerobic Oxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37486213 DOI: 10.1021/acsami.3c06654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The past decade has witnessed rapidly growing interest in noble metal nanostructures adopting unconventional metastable crystal phases. In the case of Ru, chemically synthesized nanocrystals typically form thermodynamically favored hexagonal close-packed (hcp) crystal lattices, whereas it remains significantly more challenging to synthesize Ru nanocrystals in the metastable face-centered cubic (fcc) phase. In this work, we have synthesized polydopamine (PDA)-supported hcp and fcc Ru nanocrystals in a phase-selective manner through one-pot thermal reduction of appropriate Ru(III) precursors in a polyol solvent. Benefiting from the unique surface-adhesion function of PDA, we have been able to grow phase-controlled sub-5 nm Ru nanocrystals directly on colloidal PDA supports without prefunctionalizing the particle surfaces with any molecular linkers or surface-capping ligands. Success in phase-controlled synthesis of capping ligand-free Ru nanocrystals dispersed on the same support material enables us to systematically compare the intrinsic mass-specific and surface-specific activities of fcc and hcp Ru nanocatalysts toward the aerobic oxidation of a chromogenic molecular substrate, 3,3',5,5'-tetramethylbenzidine (TMB), under a broad range of reaction conditions. We use UV-vis absorption spectroscopy to monitor the conversion of the reactant molecules into the one-electron and two-electron oxidation products in real time during Ru-catalyzed oxidation of TMB, which is found to be a mechanistically complex molecule-transforming process involving multiple elementary steps. The apparent reaction rates and detailed kinetic features are observed to be not only intimately related to the crystalline structures of the Ru nanocatalysts but also profoundly influenced by several other critical factors, such as the pH of the reaction medium, the initial concentration of TMB, Ru coverage on the PDA supports, and degree of nanoparticle aggregation.
Collapse
Affiliation(s)
- Zixin Wang
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Hui Wang
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
23
|
Li B, Zhang J, Zhu Q, Xiang T, Wang R, Hu T, Jin R, Yang J. Nanoreactor of Fe, N Co-Doped Hollow Carbon Spheres for Oxygen Reduction Catalysis. Inorg Chem 2023; 62:6510-6517. [PMID: 37027781 DOI: 10.1021/acs.inorgchem.3c00582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
A simple template strategy was applied to prepare a Fe, N co-doped hollow carbon (Fe-NHC) nanoreactor for the oxygen reduction reaction (ORR) by coating Fe nanoparticles (Fe-NPs) with polydopamine (PDA), followed by high temperature pyrolysis and acid-leaching. With this method, Fe-NPs were used as both the template and the metal precursor, so that the nanoreactors can preserve the original spherical morphology and embed Fe single atoms on the inner walls. The carbonized PDA contained abundant N content, offering an ideal coordination environment for Fe atoms. By regulating the mass ratio of Fe-NPs and PDA, an optimal sample with a carbon layer thickness of 12 nm (Fe-NHC-3) was obtained. The hollow spherical structure of the nanoreactors and the atomically dispersed Fe were verified by various physical characterizations. As a result, Fe-NHC-3 performed well in ORR tests under alkaline conditions, with high catalytic activity, durability, and methanol resistance, demonstrating that the as-fabricated materials have the potential to be applied in the cathodic catalysis of fuel cells.
Collapse
Affiliation(s)
- Bing Li
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiali Zhang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qingchao Zhu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tingting Xiang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ruibo Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tieyu Hu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ran Jin
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juan Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|