1
|
Safdar M, Kim W, Kim D, Lee S, Kim YO, Kim J. Dose-responsive phytotoxicity and oxidative stress induced by metal-organic framework PCN-224 in Arabidopsis thaliana seedlings. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137067. [PMID: 39756321 DOI: 10.1016/j.jhazmat.2024.137067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Metal-organic frameworks (MOFs) are advanced porous materials composed of metal ions and organic ligands, known for their unique structures and fascinating physio-chemical properties. To ensure their safe production and applications, it is crucial to thoroughly investigate their toxicity and environmental hazards. However, the potential risks of MOFs, particularly their impact on plants remained underexplored. Herein, we systematically assessed the phytotoxicity of PCN-224 on Arabidopsis thaliana (A. thaliana) due to its commercial availability and widespread use. To achieve this goal, A. thaliana seedlings were subjected to PCN-224 concentrations (10-300 µg/mL) and durations (1-12 days) in agar media, with a control group. PCN-224 slightly accelerated seed germination across all concentrations without altering the total germination rate. Exposure to a higher concentration of PCN-224 (300 µg/mL) significantly impaired A. thaliana development, reducing fresh weight (54.0 %) and root length (82.3 %) compared with control; however, lower exposure (10 µg/mL) showed minimal growth inhibition. Fluorescence microscopy showed that PI-labeled PCN-224 particles adhered to root surfaces and internalized in a concentration- and time-dependent manner, with notable xylem accumulation after 2 h. The net photosynthetic rate, transpiration rate, and stomatal conductance decreased by 54.25 %, 62.37 % and 38.53 %, respectively, compared with control, when the material concentration exceeded 100 µg/mL. Regarding the oxidative damage, higher PCN-224 exposure reduced antioxidant levels and downregulation of antioxidant-related genes resulted in a diminished oxidative stress response. Overall, our study highlights the potential risk of MOFs for plant growth and emphasizes the need to assess their environmental impact for sustainable agricultural practices.
Collapse
Affiliation(s)
- Mahpara Safdar
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dream Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shinyull Lee
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yeon-Ok Kim
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
2
|
Kahkhaie LR, Oveisi AR, Sanchooli E, Daliran S, Khajeh M. Lead free perovskite integrated metal organic framework as heterogeneous catalyst for efficient three component click reaction. Sci Rep 2025; 15:7284. [PMID: 40025054 PMCID: PMC11873247 DOI: 10.1038/s41598-025-85204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/01/2025] [Indexed: 03/04/2025] Open
Abstract
This study reports the synthesis and characterization of a novel CsCu2I3@UiO-66(Ce)-NH2 hybrid material through the state-of-the-art in-situ growth of the lead-free and non-toxic CsCu2I3 perovskite within the porous UiO-66(Ce)-NH2. The composite exhibits a high surface area with the CsCu2I3 nanostructures uniformly dispersed within the UiO-66(Ce)-NH2 framework. The host-guest CsCu2I3@UiO-66(Ce)-NH2 was considered as an effective and stable catalyst for the one-pot three-component copper(I)-catalyzed intermolecular alkyne-azide cycloaddition (CuAAC) or click reaction. Under optimized conditions, utilizing water at room temperature, the nominal catalyst exhibited superior activity, outperforming its individual components. Remarkably, the CsCu2I3@UiO-66(Ce)-NH2 catalyst demonstrated good recyclability and reusability over several catalytic runs. Mechanistic studies unveiled a synergistic cooperation between the CsCu2I3 and MOF, leading to the enhanced catalytic performance and improved stability of the perovskite. The developed multifunctional porous solid offers potential applications in catalysis and related fields, paving the way for innovative and sustainable organic synthesis and beyond.
Collapse
Affiliation(s)
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, 68151-44316, Iran.
| | - Esmael Sanchooli
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Saba Daliran
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, 68151-44316, Iran
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran
| |
Collapse
|
3
|
Xu Y, Li P, Liu Y, Man Y, Wang C, Li J, Sun G, Ju Q, Fang Z. Constructing Synergistically Catalytic Lewis Acidic-Basic Sites for Boosting Reactivity of a Flexible Coordination Polymer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10710-10721. [PMID: 39912754 DOI: 10.1021/acsami.4c20744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Targeted construction of Lewis acidic-basic sites in the skeleton of coordination polymers (CPs) can greatly enhance their catalytic efficiency due to the synergistic effect of acidic and basic sites. However, research on validating the coexistence of Lewis acidic-basic sites for boosting the catalytic activity of CPs toward the Knoevenagel condensation (KC) reaction, widely applied in the synthesis of high-added-value intermediates and products under mild conditions, is missing so far. Based on the above consideration, we have artificially constructed Lewis acidic-basic sites and introduced vacancy in the framework of a new flexible cerium CP {Ce-CP: [Ce3+Ce4+(obb2-)3(OH)(H2O)(DMF)]∞} (DMF: N,N-dimethylformamide) via applying the functional ligand 4,4'-oxidibenzoate (obb2-) with the bridging O atom as the Lewis basic site and removing the coordinating solvent molecules and counterions to form cerium coordination unsaturated sites (Ce-CUSs) as Lewis acidic sites. Interestingly, Ce-CP exhibits reversible structural transformation associated with a desolvation and resolvation process. The Lewis acidic and basic sites in the resulting Ce-CP (LAB-Ce-CP) have been confirmed by CO2 temperature-programmed desorption (TPD) and NH3 combined with pyrrole-TPD (NH3-Py-TPD) for the first time. Benefiting from the coexistence of Lewis acidic and basic sites as well as the flexibility of the framework, LAB-Ce-CP shows high activity and excellent recyclability toward KC reactions. Moreover, we have found that (1) the activation temperature of Ce-CP plays a critical role in its porosity, exposure of Lewis acidic-basic sites, and thus reactivity; (2) the stronger electron-withdrawing ability of the substituent groups in benzaldehyde derivatives and the smaller size of the reactants lead to the higher yield of product and turnover number (TON) value when the disparity of electron-withdrawing and electron-donating abilities between the substituent groups in benzaldehyde derivatives is not significant. Hence, this work has exploited a new strategy for designing excellent heterogeneous catalysts with constructed active sites of synergistic catalysis capability toward KC reactions.
Collapse
Affiliation(s)
- Yixiu Xu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Peiyuan Li
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Yuanyuan Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Yi Man
- SINOPEC (Beijing) Research Institute of Chemical Industry Co. Ltd, Beijing 100013, China
| | - Chan Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Jia Li
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Gengzhi Sun
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Qiang Ju
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Zhenlan Fang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| |
Collapse
|
4
|
Stamos NA, Kerrigan S, Stiven A, Nichol GS, Bezzu CG, Burt L, Moggach SA, Turner GF, McKeown NB. Porous Molecular Crystals Derived from Cofacial Porphyrin/Phthalocyanine Heterodimers. Angew Chem Int Ed Engl 2025; 64:e202418443. [PMID: 39530334 DOI: 10.1002/anie.202418443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Porphyrin-based porous materials are of growing interest as heterogeneous catalysts especially for reactions that are of importance to sustainability. Here we demonstrate that porous molecular crystals can be prepared by the simple co-crystallisation of tetraphenylporphyrin (TPP) with octa(2',6'-di-iso-propylphenoxy)phthalocyanine or some of its metal complexes [(dipPhO)8PcM; M=H2, Al-OH, Ti=O, Mn-Cl, Fe-Cl, Co, Ni, Cu, Zn, Ga-Cl, Ag, In-Cl or Au-Cl]. This process is facilitated by the efficient formation of the supramolecular heterodimer between TPP and (dipPhO)8PcM, which is driven by the complementary shape and symmetry of the two macrocycles. The (dipPhO)8PcM component directs the crystal structure of the heterodimers to form Phthalocyanine Nanoporous Crystals (PNCs) of similar structure to those formed by (dipPhO)8PcM alone. The incorporation of TPP appears to partially stabilise the PNCs towards the removal of included solvent and for cocrystals containing (dipPhO)8PcCo stability can be enhanced further by the insitu addition of 4,4-bipyridyl to act as a "molecular wall tie". These stabilised PNC/TPP cocrystals have a Brunauer-Emmett-Teller surface area (SABET) of 454 m2 g-1 and a micropore volume (Vmp) of 0.22 mL g-1. The reactivity of both macrocycles within the PNC/TPP co-crystals is demonstrated by insitu metal insertion.
Collapse
Affiliation(s)
- Nikolaos-Angelos Stamos
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Shannah Kerrigan
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Alexander Stiven
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Gary S Nichol
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - C Grazia Bezzu
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Luke Burt
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Stephen A Moggach
- School of Molecular Sciences, The University of Western Australia, Perth, 6009, Western Australia, Australia
| | - Gemma F Turner
- School of Molecular Sciences, The University of Western Australia, Perth, 6009, Western Australia, Australia
| | - Neil B McKeown
- EaStChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| |
Collapse
|
5
|
Arafa WAA, Nayl AA, Ahmed IM, Youssef AMS, Mourad AK, Bräse S. A Ru-Based Complex for Sustainable One-Pot Tandem Aerobic Oxidation-Knoevenagel Condensation Reactions. Molecules 2024; 29:5114. [PMID: 39519755 PMCID: PMC11547704 DOI: 10.3390/molecules29215114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Our novel binuclear complex-anchored Ru(III) catalyst, designed and assembled by sonicating 2,2'-(4,6-dihydroxy-1,3-phenylene)bis(1H-benzo[d]imidazole-4-carboxylic acid), Ru(DMSO)4Cl2 and 4-methylpyridine, demonstrates remarkable efficiency and selectivity. It promotes one-pot reactions, including active methylenes and benzyl alcohols in water, via a tandem aerobic oxidation/Knoevenagel condensation process, yielding benzylidene malononitrile in excellent yields. The catalyst's ability to oxidize benzyl alcohols to aldehydes, which then undergo Knoevenagel condensation with active methylenes, makes it a multifunctional catalyst. Notably, the catalyst can be successfully retrieved and recycled for five successive rounds with no significant decrease in catalytic efficiency. The ICP study showed that no catalyst leaching was observed, indicating that the designed catalyst is indeed heterogeneous. The Ru catalyst outperformed other documented catalysts in terms of lower dose, shorter duration, decreased working temperature, and the absence of dangerous additives. This demonstrates the catalyst's robustness and sustainability, making it a promising candidate for future organic conversions and industrial uses.
Collapse
Affiliation(s)
- Wael A. A. Arafa
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia; (A.A.N.); (I.M.A.)
| | - AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia; (A.A.N.); (I.M.A.)
| | - Ismail M. Ahmed
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia; (A.A.N.); (I.M.A.)
| | - Ayman M. S. Youssef
- Department of Chemistry, Faculty of Science, Fayoum University, Fayoum P.O. Box 63514, Egypt; (A.M.S.Y.); (A.K.M.)
| | - Asmaa K. Mourad
- Department of Chemistry, Faculty of Science, Fayoum University, Fayoum P.O. Box 63514, Egypt; (A.M.S.Y.); (A.K.M.)
| | - Stefan Bräse
- Institute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| |
Collapse
|
6
|
Jin HG, Zhao PC, Qian Y, Xiao JD, Chao ZS, Jiang HL. Metal-organic frameworks for organic transformations by photocatalysis and photothermal catalysis. Chem Soc Rev 2024; 53:9378-9418. [PMID: 39163028 DOI: 10.1039/d4cs00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Organic transformation by light-driven catalysis, especially, photocatalysis and photothermal catalysis, denoted as photo(thermal) catalysis, is an efficient, green, and economical route to produce value-added compounds. In recent years, owing to their diverse structure types, tunable pore sizes, and abundant active sites, metal-organic framework (MOF)-based photo(thermal) catalysis has attracted broad interest in organic transformations. In this review, we provide a comprehensive and systematic overview of MOF-based photo(thermal) catalysis for organic transformations. First, the general mechanisms, unique advantages, and strategies to improve the performance of MOFs in photo(thermal) catalysis are discussed. Then, outstanding examples of organic transformations over MOF-based photo(thermal) catalysis are introduced according to the reaction type. In addition, several representative advanced characterization techniques used for revealing the charge reaction kinetics and reaction intermediates of MOF-based organic transformations by photo(thermal) catalysis are presented. Finally, the prospects and challenges in this field are proposed. This review aims to inspire the rational design and development of MOF-based materials with improved performance in organic transformations by photocatalysis and photothermal catalysis.
Collapse
Affiliation(s)
- Hong-Guang Jin
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Peng-Cheng Zhao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China.
| | - Zi-Sheng Chao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
7
|
Li M, Zhao Y, Yang Y, Zhang R, Wang Y, Teng Y, Su Z, Zhang J. High-Efficiency Photocatalytic Oxidation of Benzyl Alcohol by NH 2-UiO-66-(Indole-2,3-Dione)-Fe. Chem Asian J 2024; 19:e202400346. [PMID: 38878296 DOI: 10.1002/asia.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/04/2024] [Indexed: 08/06/2024]
Abstract
The photocatalytic oxidation of biomass-derived benzyl alcohol provides a promising way for the synthesis of benzoic acid, which is an important intermediate with wide applications. To improve the efficiency of photocatalytic benzyl alcohol oxidation to benzoic acid is of great interest. In this work, we propose the utilization of NH2-UiO-66-ID-Fe catalyst for photocatalytic oxidation of benzyl alcohol to benzoic acid, where NH2-UiO-66 is a typically used metal-organic framework, ID is indole-2,3-dione (ID) that has biocompatibility, light absorption property and can be covalently combined with amino-functionalized substances. The NH2-UiO-66-ID-Fe catalyst exhibits improved light absorption and photo-generated electron-hole separation ability compared with NH2-UiO-66. The photocatalytic performance of NH2-UiO-66-ID-Fe was examined for the oxidation of bio-based benzyl alcohol under mild conditions of air atmosphere, room temperature and no additive or additional oxidant involved. The results show that the conversion of benzyl alcohol and the selectivity to benzoic acid could both reach over 99 % in 6 h, and the generation rate of benzoic acid per gram of catalyst is 3.36 mmol g-1 h-1. The reaction mechanism was detected by radical trapping method and in situ electron paramagnetic resonance. This study presents an efficient and environmentally benign avenue for the synthesis of carboxylic acid compounds.
Collapse
Affiliation(s)
- Meiling Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingzhe Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yisen Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renjie Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyue Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunan Teng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuizhui Su
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Daliran S, Oveisi AR, Kung CW, Sen U, Dhakshinamoorthy A, Chuang CH, Khajeh M, Erkartal M, Hupp JT. Defect-enabling zirconium-based metal-organic frameworks for energy and environmental remediation applications. Chem Soc Rev 2024; 53:6244-6294. [PMID: 38743011 DOI: 10.1039/d3cs01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This comprehensive review explores the diverse applications of defective zirconium-based metal-organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68151-44316, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Unal Sen
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Mustafa Erkartal
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
9
|
Wang YM, Ning GH, Li D. Multifunctional Metal-Organic Frameworks as Catalysts for Tandem Reactions. Chemistry 2024; 30:e202400360. [PMID: 38376356 DOI: 10.1002/chem.202400360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/21/2024]
Abstract
Owing to well-defined structure as well as easy synthesis and modification, metal-organic frameworks (MOFs) have emerged as promising catalysts for tandem reactions. In this article, we aim to summarize the development of multifunctional MOFs, including mixed metal MOFs, MOFs that are synergistically catalyzed by metal nodes and organic linkers, MOFs loaded with metal nanoparticles, etc, as heterogenous catalysts for tandem reactions over the past five years. This concept briefly discusses on present challenges, future trends, and prospects of multifunctional MOFs catalysts in tandem reactions.
Collapse
Affiliation(s)
- Yu-Mei Wang
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Guo-Hong Ning
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Dan Li
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
10
|
Feng J, Mak CH, Yu L, Han B, Shen HH, Santoso SP, Yuan M, Li FF, Song H, Colmenares JC, Hsu HY. Structural Modification Strategies, Interfacial Charge-Carrier Dynamics, and Solar Energy Conversion Applications of Organic-Inorganic Halide Perovskite Photocatalysts. SMALL METHODS 2024; 8:e2300429. [PMID: 37381684 DOI: 10.1002/smtd.202300429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/17/2023] [Indexed: 06/30/2023]
Abstract
Over the past few decades, organic-inorganic halide perovskites (OIHPs) as novel photocatalyst materials have attracted intensive attention for an impressive variety of photocatalytic applications due to their excellent photophysical (chemical) properties. Regarding practical application and future commercialization, the air-water stability and photocatalytic performance of OIHPs need to be further improved. Accordingly, studying modification strategies and interfacial interaction mechanisms is crucial. In this review, the current progress in the development and photocatalytic fundamentals of OIHPs is summarized. Furthermore, the structural modification strategies of OIHPs, including dimensionality control, heterojunction design, encapsulation techniques, and so on for the enhancement of charge-carrier transfer and the enlargement of long-term stability, are elucidated. Subsequently, the interfacial mechanisms and charge-carrier dynamics of OIHPs during the photocatalytic process are systematically specified and classified via diverse photophysical and electrochemical characterization methods, such as time-resolved photoluminescence measurements, ultrafast transient absorption spectroscopy, electrochemical impedance spectroscopy measurements, transient photocurrent densities, and so forth. Eventually, various photocatalytic applications of OIHPs, including hydrogen evolution, CO2 reduction, pollutant degradation, and photocatalytic conversion of organic matter.
Collapse
Affiliation(s)
- Jianpei Feng
- School of Energy and Environment & Department of Materials Science and Engineering & Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Chun Hong Mak
- School of Energy and Environment & Department of Materials Science and Engineering & Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Li Yu
- School of Energy and Environment & Department of Materials Science and Engineering & Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, Guangdong, 510006, P. R. China
| | - Bin Han
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Shella Permatasari Santoso
- Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Surabaya, East Java, 60114, Indonesia
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Fang-Fang Li
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Haisheng Song
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | | | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering & Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
11
|
Karimi D, Khajeh M, Oveisi AR, Bohlooli M, Khatibi A, Neyband RS, Luque R. Sulfur-functionalized porphyrin-based covalent organic framework as a metal-free dual-functional catalyst for photodegradation of organophosphorus pesticides under visible-LED-light. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122109. [PMID: 37379874 DOI: 10.1016/j.envpol.2023.122109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Parathion and diazinon are two significant organophosphorus pesticides broadly used in agriculture. However, these compounds are toxic and can enter into the environment and atmosphere via various processes. Herein, we synthesized and post-functionalized a porphyrinic covalent organic framework (COF), COF-366, with elemental sulfur under solvent-free conditions to give polysulfide-functionalized COF-366, namely PS@COF. The resulting material consisting of porphyrin sensitizer and sulfur nucleophilic sites was used as a dual-functional heterogeneous catalyst for the degradation of these organic compounds using visible-LED-light. Accordingly, the effects of several pertinent parameters such as pH (3-9), the catalyst dosage (5-30 mg), time (up to 80 min), and substrate concentration (10-50 mg L-1) were studied in detail and optimized. The post-modified COF showed excellent photocatalytic activity (>97%) in the detoxification of diazinon and parathion for 60 min at pH 5.5. Kinetic studies indicated a fast degradation rate with pseudo-second order model for 20 mg L-1 of diazinon and parathion. The total organic carbon detection and gas chromatography-mass spectrometry (GC-MS) confirmed the organic intermediates and byproducts formed during the process. PS@COF displayed good recyclability and high reusable efficiency for six cycles without a noteworthy lose in its catalytic activity, owing to its robust structure.
Collapse
Affiliation(s)
- Danial Karimi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran
| | - Mousa Bohlooli
- Department of Cell & Molecular Sciences, Kharazmi University, Tehran, Iran
| | - Ali Khatibi
- Department of Biotechnology, Alzahra University, Tehran, Iran
| | - Razieh Sadat Neyband
- Department of Physical Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation; Universidad ECOTEC, Km 13.5 Samborondón, Samborondón, EC092302, Ecuador
| |
Collapse
|
12
|
López-Magano A, Daliran S, Oveisi AR, Mas-Ballesté R, Dhakshinamoorthy A, Alemán J, Garcia H, Luque R. Recent Advances in the Use of Covalent Organic Frameworks as Heterogenous Photocatalysts in Organic Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209475. [PMID: 36563668 DOI: 10.1002/adma.202209475] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Indexed: 06/16/2023]
Abstract
Organic photochemistry is intensely developed in the 1980s, in which the nature of excited electronic states and the energy and electron transfer processes are thoroughly studied and finally well-understood. This knowledge from molecular organic photochemistry can be transferred to the design of covalent organic frameworks (COFs) as active visible-light photocatalysts. COFs constitute a new class of crystalline porous materials with substantial application potentials. Featured with outstanding structural tunability, large porosity, high surface area, excellent stability, and unique photoelectronic properties, COFs are studied as potential candidates in various research areas (e.g., photocatalysis). This review aims to provide the state-of-the-art insights into the design of COF photocatalysts (pristine, functionalized, and hybrid COFs) for organic transformations. The catalytic reaction mechanism of COF-based photocatalysts and the influence of dimensionality and crystallinity on heterogenous photocatalysis performance are also discussed, followed by perspectives and prospects on the main challenges and opportunities in future research of COFs and COF-based photocatalysts.
Collapse
Affiliation(s)
- Alberto López-Magano
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Saba Daliran
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, 98615-538, Iran
| | - Ali Reza Oveisi
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, 98615-538, Iran
| | - Rubén Mas-Ballesté
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Amarajothi Dhakshinamoorthy
- School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - José Alemán
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia, 46022, Spain
| | - Hermenegildo Garcia
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, Cordoba, E14014, Spain
- Department of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., Moscow, 117198, Russian Federation
| |
Collapse
|
13
|
Biodiesel Production from Waste Oil Catalysed by Metal-Organic Framework (MOF-5): Insights on Activity and Mechanism. Catalysts 2023. [DOI: 10.3390/catal13030503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
The activity of MOF-5-based solids has been exploited in the simultaneous transesterification and esterification of acid vegetable oils. For this purpose, three different types of MOF-5 have been synthesized and characterized, and then tested in the above-mentioned reactions. It has been demonstrated that the “regular MOF-5” was a suitable catalyst for biodiesel synthesis from waste oil also, rich in FFA (Free Fatty Acids). Moreover, to identify the true structure that acts in the reactions and possible structural modifications due to the presence of alcohols, proper studies have been performed. The results have evidenced a distortion of the regular structure of MOF-5 due to the breakage of some zinc bonds between the cluster and organic framework.
Collapse
|
14
|
Oudi S, Oveisi AR, Daliran S, Khajeh M, Dhakshinamoorthy A, García H. A Porphyrin-Based Covalent Organic Framework as Metal-Free Visible-LED-Light Photocatalyst for One-Pot Tandem Benzyl Alcohol Oxidation/Knoevenagel Condensation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:558. [PMID: 36770519 PMCID: PMC9920377 DOI: 10.3390/nano13030558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
A porphyrin-based covalent organic framework (COF), namely Porph-UOZ-COF (UOZ stands for the University of Zabol), has been designed and prepared via the condensation reaction of 5,10,15,20-tetrakis-(3,4-dihydroxyphenyl)porphyrin (DHPP) with 1,4-benzenediboronic acid (DBBA), under the solvothermal condition. The solid was characterized by spectroscopic, microscopic, and powder X-ray diffraction techniques. The resultant multifunctional COF revealed an outstanding performance in catalyzing a one-pot tandem selective benzylic C-H photooxygenation/Knoevenagel condensation reaction in the absence of additives or metals under visible-LED-light irradiation. Notably, the catalytic activity of the COF was superior to individual organic counterparts and the COF was both stable and reusable for four consecutive runs. The present approach illustrates the potential of COFs as promising metal-free (photo) catalysts for the development of tandem reactions.
Collapse
Affiliation(s)
- Sara Oudi
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol P.O. Box 98615-538, Iran
| | - Ali Reza Oveisi
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol P.O. Box 98615-538, Iran
| | - Saba Daliran
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol P.O. Box 98615-538, Iran
| | - Mostafa Khajeh
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol P.O. Box 98615-538, Iran
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Hermenegildo García
- Instituto Universitario de Tecnología Química, Consejo Superior de Investigaciones Científicas-Universitat Politecnica de Valencia, Av. De los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|