1
|
Jeong C, Kwon KY, Wu D, Fu Y, Ye YS, Lee SG, Kang B, Yao L, Kim TI, Majidi C. Reconfigurable double-sided smart textile circuit with liquid metal. MATERIALS HORIZONS 2025. [PMID: 40370052 DOI: 10.1039/d5mh00462d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Smart textiles have emerged as a promising alternative to printed circuit boards (PCBs) for electronics that are flexible, lightweight, and stretchable. However, many existing solutions fall short of providing sufficient electrical properties or are limited to single-sided circuit designs, significantly reducing their utility. In this study, we present a smart textile based on liquid metal and silver flakes that allows for double-sided circuit configurations without the need for via holes, offering advantages beyond conventional PCB technologies. This approach allows users to insulate or connect top and bottom circuits as needed, even when the circuits overlap or intersect. The inherent properties of liquid metal facilitate pressure-induced sintering, working in synergy with textiles to provide users with the ability to dynamically alter circuits. This unique feature enables real-time customization, allowing for the addition, removal, or replacement of circuits through straightforward cutting and stitching processes. Demonstrating these characteristics, we showcase diverse applications, including a wristband with a replaceable LED indicator circuit, a reversible teddy bear cloth with two distinct functions, and a customizable DIY heating glove. This double-sided textile circuit that is patterned with pressure-controlled drawing offers new possibilities for multifunctional wearable electronics, bridging the gap between traditional PCBs and flexible smart textiles.
Collapse
Affiliation(s)
- Chanho Jeong
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Ki Yoon Kwon
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Di Wu
- Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Yibo Fu
- Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Yeong-Sinn Ye
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Sang Gil Lee
- Department of Semiconductor and Display Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Beomchan Kang
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Lining Yao
- Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Carmel Majidi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
2
|
Chen J, Yi D, Shen B, Zheng W. Multifunctional Liquid-Metal Composites for Electromagnetic Communication and Attenuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2404595. [PMID: 40326960 DOI: 10.1002/adma.202404595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2025] [Indexed: 05/07/2025]
Abstract
Efficient and reliable information transmission is crucial in the widespread use of electronic products and wireless communication. Additionally, it is vital to address the electromagnetic interference (EMI) and radiation that arise from the communication process. In particular, the emergence of flexible electronic products has posed new hurdles for EM functional materials with flexibility and high performance. Liquid metal (LM) is an innovative EM functional material that possesses both the conductivity of metals and the fluidity to reconfigure like a liquid. These characteristics paved the way for developing novel flexible electronic devices and products. This review provides an overview of the current status and future potential of LM-based EM functional materials. It highlights the latest progress in LM-based materials for applications such as EMI shielding, EM-wave absorption, and wireless communication (antennas). Finally, the primary obstacles of LM-based EM functional materials are discussed and revealed potential directions for their advancement. Overall, the current research on LM-based EM functional materials indicates that they have great potential to promote the development of EM functional materials, thus providing new possibilities for the advancement of flexible electronic products.
Collapse
Affiliation(s)
- Jiali Chen
- Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da Yi
- College of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, China
| | - Bin Shen
- Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenge Zheng
- Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Sun W, Zhang Z, Wang M, Zeng J, Feng L, Wang X, Hu Y, Ma C, Zhou G. Cellulose Nanocrystal Stabilized Liquid Metal Pickering Emulsion as Photothermal and Conductive Direct-Writing Ink. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501598. [PMID: 40259802 DOI: 10.1002/smll.202501598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/14/2025] [Indexed: 04/23/2025]
Abstract
Gallium-based liquid metal (LM) has attracted great attention for constructing flexible electronic devices due to its excellent deformability and electrical conductivity. However, its large surface tension makes it difficult to be uniformly dispersed in polymers, which severely limits its wide applications. Hence, a surfactant-free approach is proposed to prepare stable LM microspheres against precipitation and coalesce by facile ultrasonication via cellulose nanocrystal (CNC) stabilized LM-in-water Pickering emulsion (PE), where CNCs are employed as Pickering emulsifiers due their partial wettability with both LM and water phases, strong electrostatic adsorption and hydrogen bonding interactions with LM. So far, reports about LM PE and CNC-stabilized inorganic material PE are still rare. CNC/LM PE is employed as direct-writing inks on various substrates for delicate patterns. The pristine CNC/LM patterns show excellent photothermal conversion due to localized surface plasma resonance effect of CNC/LM microspheres. After activation by friction sintering, the LM patterns are highly electric conductive (1666.7 S m-1) due to the formation of LM connection. The activated LM patterns also displayed excellent Joule heating (83.2 °C at 0.9 V) and electromagnetic interference (EMI) shielding ability (585.7 dB mm-1) in X-band range.
Collapse
Affiliation(s)
- Wang Sun
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Zhen Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Mengen Wang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Jiaqi Zeng
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Liu Feng
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Xiaojing Wang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Yali Hu
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Chao Ma
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Guofu Zhou
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
4
|
Lee S, Jaseem SA, Atar N, Wang M, Kim JY, Zare M, Kim S, Bartlett MD, Jeong JW, Dickey MD. Connecting the Dots: Sintering of Liquid Metal Particles for Soft and Stretchable Conductors. Chem Rev 2025; 125:3551-3585. [PMID: 40036064 DOI: 10.1021/acs.chemrev.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
This review focuses on the sintering of liquid metal particles (LMPs). Here, sintering means the partial merging or connecting of particles (or droplets) to form a network of percolated and, thus, conductive electrical pathways. LMPs are attractive materials because they can be suspended in a carrier fluid to create printable inks or distributed in an elastomer to create soft, stretchable composites. However, films and traces of LMPs are not typically conductive as fabricated due to the native oxide that forms on the surface of the particles. In the case of composites, polymers can also get between particles, making sintering more challenging. Sintering can be done via a variety of ways, such as mechanical, thermal, and chemical processing. This review discusses the mechanisms to sinter these particles, patterning techniques that use sintering, unique properties of sintered LMPs, and their practical applications in fields such as stretchable electronics, soft robotics, and active materials.
Collapse
Affiliation(s)
- Simok Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| | - Syed Ahmed Jaseem
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| | - Nurit Atar
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| | - Meixiang Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Jeong Yong Kim
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| | - Mohammadreza Zare
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| | - Sooyoung Kim
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| | - Michael D Bartlett
- Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for NanoCentury, Daejeon 34141, Republic of Korea
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| |
Collapse
|
5
|
Zhou X, Min P, Liu Y, Jin M, Yu ZZ, Zhang HB. Insulating electromagnetic-shielding silicone compound enables direct potting electronics. Science 2024; 385:1205-1210. [PMID: 39265019 DOI: 10.1126/science.adp6581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
Traditional electromagnetic interference-shielding materials are predominantly electrically conductive, posing short-circuit risks when applied in highly integrated electronics. To overcome this dilemma, we propose a microcapacitor-structure model comprising conductive fillers as polar plates and intermediate polymer as a dielectric layer to develop insulating electromagnetic interference-shielding polymer composites. The electron oscillation in plates and dipole polarization in dielectric layers contribute to the reflection and absorption of electromagnetic waves. Guided by this, the synergistic nonpercolation densification and dielectric enhancement enable our composite to combine high resistivity, shielding performance, and thermal conductivity. Its insulating feature allows for direct potting into the crevices among assembled components to address electromagnetic compatibility and heat-accumulation issues.
Collapse
Affiliation(s)
- Xinfeng Zhou
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Min
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meng Jin
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhong-Zhen Yu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao-Bin Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Shen Y, Jin D, Li T, Yang X, Ma X. Magnetically Responsive Gallium-Based Liquid Metal: Preparation, Property and Application. ACS NANO 2024. [PMID: 39073895 DOI: 10.1021/acsnano.4c07051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Magnetically responsive soft smart materials have garnered significant academic attention due to their flexibility, remote controllability, and reconfigurability. However, traditional soft materials used in the construction of these magnetically responsive systems typically exhibit low density and poor thermal and electrical conductivities. These limitations result in suboptimal performance in applications such as medical radiography, high-performance electronic devices, and thermal management. To address these challenges, magnetically responsive gallium-based liquid metals have emerged as promising alternatives. In this review, we summarize the methodologies for achieving magnetically responsive liquid metals, including the integration of magnetic agents into the liquid metal matrix and the utilization of induced Lorentz forces. We then provide a comprehensive discussion of the key physicochemical properties of these materials and the factors influencing them. Additionally, we explore the advanced and potential applications of magnetically responsive liquid metals. Finally, we discuss the current challenges in this field and present an outlook on future developments and research directions.
Collapse
Affiliation(s)
- Yifeng Shen
- Sauvage Laboratory for Smart Materials, School of Integrated Circuits, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310058, China
| | - Dongdong Jin
- Sauvage Laboratory for Smart Materials, School of Integrated Circuits, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Tiefeng Li
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310058, China
| | - Xuxu Yang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310058, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Integrated Circuits, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
7
|
Kim JH, Kim S, Dickey MD, So JH, Koo HJ. Interface of gallium-based liquid metals: oxide skin, wetting, and applications. NANOSCALE HORIZONS 2024; 9:1099-1119. [PMID: 38716614 DOI: 10.1039/d4nh00067f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Gallium-based liquid metals (GaLMs) are promising for a variety of applications-especially as a component material for soft devices-due to their fluidic nature, low toxicity and reactivity, and high electrical and thermal conductivity comparable to solid counterparts. Understanding the interfacial properties and behaviors of GaLMs in different environments is crucial for most applications. When exposed to air or water, GaLMs form a gallium oxide layer with nanoscale thickness. This "oxide nano-skin" passivates the metal surface and allows for the formation of stable microstructures and films despite the high-surface tension of liquid metal. The oxide skin easily adheres to most smooth surfaces. While it enables effective printing and patterning of the GaLMs, it can also make the metals challenging to handle because it adheres to most surfaces. The oxide also affects the interfacial electrical resistance of the metals. Its formation, thickness, and composition can be chemically or electrochemically controlled, altering the physical, chemical, and electrical properties of the metal interface. Without the oxide, GaLMs wet metallic surfaces but do not wet non-metallic substrates such as polymers. The topography of the underlying surface further influences the wetting characteristics of the metals. This review outlines the interfacial attributes of GaLMs in air, water, and other environments and discusses relevant applications based on interfacial engineering. The effect of surface topography on the wetting behaviors of the GaLMs is also discussed. Finally, we suggest important research topics for a better understanding of the GaLMs interface.
Collapse
Affiliation(s)
- Ji-Hye Kim
- Department of Energy and Chemical Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Sooyoung Kim
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Ju-Hee So
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology, Ansan-si, 15588, Republic of Korea.
| | - Hyung-Jun Koo
- Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea.
| |
Collapse
|
8
|
Zhu J, Li J, Tong Y, Hu T, Chen Z, Xiao Y, Zhang S, Yang H, Gao M, Pan T, Cheng H, Lin Y. Recent progress in multifunctional, reconfigurable, integrated liquid metal-based stretchable sensors and standalone systems. PROGRESS IN MATERIALS SCIENCE 2024; 142:101228. [PMID: 38745676 PMCID: PMC11090487 DOI: 10.1016/j.pmatsci.2023.101228] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Possessing a unique combination of properties that are traditionally contradictory in other natural or synthetical materials, Ga-based liquid metals (LMs) exhibit low mechanical stiffness and flowability like a liquid, with good electrical and thermal conductivity like metal, as well as good biocompatibility and room-temperature phase transformation. These remarkable properties have paved the way for the development of novel reconfigurable or stretchable electronics and devices. Despite these outstanding properties, the easy oxidation, high surface tension, and low rheological viscosity of LMs have presented formidable challenges in high-resolution patterning. To address this challenge, various surface modifications or additives have been employed to tailor the oxidation state, viscosity, and patterning capability of LMs. One effective approach for LM patterning is breaking down LMs into microparticles known as liquid metal particles (LMPs). This facilitates LM patterning using conventional techniques such as stencil, screening, or inkjet printing. Judiciously formulated photo-curable LMP inks or the introduction of an adhesive seed layer combined with a modified lift-off process further provide the micrometer-level LM patterns. Incorporating porous and adhesive substrates in LM-based electronics allows direct interfacing with the skin for robust and long-term monitoring of physiological signals. Combined with self-healing polymers in the form of substrates or composites, LM-based electronics can provide mechanical-robust devices to heal after damage for working in harsh environments. This review provides the latest advances in LM-based composites, fabrication methods, and their novel and unique applications in stretchable or reconfigurable sensors and resulting integrated systems. It is believed that the advancements in LM-based material preparation and high-resolution techniques have opened up opportunities for customized designs of LM-based stretchable sensors, as well as multifunctional, reconfigurable, highly integrated, and even standalone systems.
Collapse
Affiliation(s)
- Jia Zhu
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jiaying Li
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yao Tong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Taiqi Hu
- School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Ziqi Chen
- School of Physical Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Yang Xiao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Senhao Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Hongbo Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Min Gao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Taisong Pan
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuan Lin
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronics Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
9
|
Shukla D, Wang H, Awartani O, Dickey MD, Zhu Y. Surface Embedded Metal Nanowire-Liquid Metal-Elastomer Hybrid Composites for Stretchable Electronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14183-14197. [PMID: 38457372 DOI: 10.1021/acsami.4c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Both liquid metal (LM) and metallic filler-based conductive composites are promising stretchable conductors. LM alloys exhibit intrinsically high deformability but present challenges for patterning on polymeric substrates due to high surface tension. On the other hand, conductive composites comprising metallic fillers undergo considerable decrease in electrical conductivity under mechanical deformation. To address the challenges, we present silver nanowire (AgNW)-LM-elastomer hybrid composite films, where AgNWs and LM are embedded below the surface of an elastomeric matrix, using two fabrication approaches, sequential and mixed. We investigate and understand the process-structure-property relationship of the AgNW-LM-elastomer hybrid composites fabricated using two approaches. Different weight ratios of AgNWs and LM particles provide tunable electrical conductivity. The hybrid composites show more stable electromechanical performance than the composites with AgNWs alone. In particular, 1:2.4 (AgNW:LMP w/w) sequential hybrid composite shows electromechanical stability similar to that of the LM-elastomer composite, with a resistance increase of 2.04% at 90% strain. The sequential approach is found to form AgIn2 intermetallic compounds which along with Ga-In bonds, imparts large deformability to the sequential hybrid composite as well as mechanical robustness against scratching, cutting, peeling, and wiping. To demonstrate the application of the hybrid composite for stretchable electronics, a laser patterned stretchable heater on textile and a stretchable circuit including a light-emitting diode are fabricated.
Collapse
Affiliation(s)
- Darpan Shukla
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hongyu Wang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Omar Awartani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
10
|
Qi J, Yang S, Jiang Y, Cheng J, Wang S, Rao Q, Jiang X. Liquid Metal-Polymer Conductor-Based Conformal Cyborg Devices. Chem Rev 2024; 124:2081-2137. [PMID: 38393351 DOI: 10.1021/acs.chemrev.3c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Gallium-based liquid metal (LM) exhibits exceptional properties such as high conductivity and biocompatibility, rendering it highly valuable for the development of conformal bioelectronics. When combined with polymers, liquid metal-polymer conductors (MPC) offer a versatile platform for fabricating conformal cyborg devices, enabling functions such as sensing, restoration, and augmentation within the human body. This review focuses on the synthesis, fabrication, and application of MPC-based cyborg devices. The synthesis of functional materials based on LM and the fabrication techniques for MPC-based devices are elucidated. The review provides a comprehensive overview of MPC-based cyborg devices, encompassing their applications in sensing diverse signals, therapeutic interventions, and augmentation. The objective of this review is to serve as a valuable resource that bridges the gap between the fabrication of MPC-based conformal devices and their potential biomedical applications.
Collapse
Affiliation(s)
- Jie Qi
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Shuaijian Yang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yizhou Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P. R. China
| | - Jinhao Cheng
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Saijie Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Qingyan Rao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
11
|
Lu G, Ni E, Jiang Y, Wu W, Li H. Room-Temperature Liquid Metals for Flexible Electronic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304147. [PMID: 37875665 DOI: 10.1002/smll.202304147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Indexed: 10/26/2023]
Abstract
Room-temperature gallium-based liquid metals (RT-GaLMs) have garnered significant interest recently owing to their extraordinary combination of fluidity, conductivity, stretchability, self-healing performance, and biocompatibility. They are ideal materials for the manufacture of flexible electronics. By changing the composition and oxidation of RT-GaLMs, physicochemical characteristics of the liquid metal can be adjusted, especially the regulation of rheological, wetting, and adhesion properties. This review highlights the advancements in the liquid metals used in flexible electronics. Meanwhile related characteristics of RT-GaLMs and underlying principles governing their processing and applications for flexible electronics are elucidated. Finally, the diverse applications of RT-GaLMs in self-healing circuits, flexible sensors, energy harvesting devices, and epidermal electronics, are explored. Additionally, the challenges hindering the progress of RT-GaLMs are discussed, while proposing future research directions and potential applications in this emerging field. By presenting a concise and critical analysis, this paper contributes to the advancement of RT-GaLMs as an advanced material applicable for the new generation of flexible electronics.
Collapse
Affiliation(s)
- Guixuan Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Erli Ni
- The Institute for Advanced Studies of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Weikang Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| |
Collapse
|
12
|
Zhang Y, Pan C, Liu P, Peng L, Liu Z, Li Y, Wang Q, Wu T, Li Z, Majidi C, Jiang L. Coaxially printed magnetic mechanical electrical hybrid structures with actuation and sensing functionalities. Nat Commun 2023; 14:4428. [PMID: 37481621 PMCID: PMC10363174 DOI: 10.1038/s41467-023-40109-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023] Open
Abstract
Soft electromagnetic devices have great potential in soft robotics and biomedical applications. However, existing soft-magneto-electrical devices would have limited hybrid functions and suffer from damaging stress concentrations, delamination or material leakage. Here, we report a hybrid magnetic-mechanical-electrical (MME) core-sheath fiber to overcome these challenges. Assisted by the coaxial printing method, the MME fiber can be printed into complex 2D/3D MME structures with integrated magnetoactive and conductive properties, further enabling hybrid functions including programmable magnetization, somatosensory, and magnetic actuation along with simultaneous wireless energy transfer. To demonstrate the great potential of MME devices, precise and minimally invasive electro-ablation was performed with a flexible MME catheter with magnetic control, hybrid actuation-sensing was performed by a durable somatosensory MME gripper, and hybrid wireless energy transmission and magnetic actuation were demonstrated by an untethered soft MME robot. Our work thus provides a material design strategy for soft electromagnetic devices with unexplored hybrid functions.
Collapse
Affiliation(s)
- Yuanxi Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Chengfeng Pan
- The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Pengfei Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Lelun Peng
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Zhouming Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Yuanyuan Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Qingyuan Wang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Tong Wu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Zhe Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Carmel Majidi
- Soft Machines Lab, Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| |
Collapse
|
13
|
Guo Z, Xie W, Gao X, Lu J, Ye J, Li Y, Fahad A, Zhang G, Zhao L. Nanoheterostructure by Liquid Metal Sandwich-Based Interfacial Galvanic Replacement for Cancer Targeted Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300751. [PMID: 36828793 DOI: 10.1002/smll.202300751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Indexed: 06/02/2023]
Abstract
Nanoheterostructures with exquisite interface and heterostructure design find numerous applications in catalysis, plasmonics, electronics, and biomedicine. In the current study, series core-shell metal or metal oxide-based heterogeneous nanocomposite have been successfully fabricated by employing sandwiched liquid metal (LM) layer (i.e., LM oxide/LM/LM oxide) as interfacial galvanic replacement reaction environment. A self-limiting thin oxide layer, which would naturally occur at the metal-air interface under ambient conditions, could be readily delaminated onto the surface of core metal (Fe, Bi, carbonyl iron, Zn, Mo) or metal oxide (Fe3 O4 , Fe2 O3 , MoO3 , ZrO2 , TiO2 ) nano- or micro-particles by van der Waals (vdW) exfoliation. Further on, the sandwiched LM layer could be formed immediately and acted as the reaction site of galvanic replacement where metals (Au, Ag, and Cu) or metal oxide (MnO2 ) with higher reduction potential could be deposited as shell structure. Such strategy provides facile and versatile approaches to design and fabricate nanoheterostructures. As a model, nanocomposite of Fe@Sandwiched-GaIn-Au (Fe@SW-GaIn-Au) is constructed and their application in targeted magnetic resonance imaging (MRI) guided photothermal tumor ablation and chemodynamic therapy (CDT), as well as the enhanced radiotherapy (RT) against tumors, have been systematically investigated.
Collapse
Affiliation(s)
- Zhenhu Guo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing, 100190, China
| | - Wensheng Xie
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaohan Gao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Jingsong Lu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jielin Ye
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Ying Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Abdul Fahad
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Guifeng Zhang
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing, 100190, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Ping B, Zhou G, Zhang Z, Guo R. Liquid metal enabled conformal electronics. Front Bioeng Biotechnol 2023; 11:1118812. [PMID: 36815876 PMCID: PMC9935617 DOI: 10.3389/fbioe.2023.1118812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
The application of three-dimensional common electronics that can be directly pasted on arbitrary surfaces in the fields of human health monitoring, intelligent robots and wearable electronic devices has aroused people's interest, especially in achieving stable adhesion of electronic devices on biological dynamic three-dimensional interfaces and high-quality signal acquisition. In recent years, liquid metal (LM) materials have been widely used in the manufacture of flexible sensors and wearable electronic devices because of their excellent tensile properties and electrical conductivity at room temperature. In addition, LM has good biocompatibility and can be used in a variety of biomedical applications. Here, the recent development of LM flexible electronic printing methods for the fabrication of three-dimensional conformal electronic devices on the surface of human tissue is discussed. These printing methods attach LM to the deformable substrate in the form of bulk or micro-nano particles, so that electronic devices can adapt to the deformation of human tissue and other three-dimensional surfaces, and maintain stable electrical properties. Representative examples of applications such as self-healing devices, degradable devices, flexible hybrid electronic devices, variable stiffness devices and multi-layer large area circuits are reviewed. The current challenges and prospects for further development are also discussed.
Collapse
|
15
|
Kim M, Lim H, Ko SH. Liquid Metal Patterning and Unique Properties for Next-Generation Soft Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205795. [PMID: 36642850 PMCID: PMC9951389 DOI: 10.1002/advs.202205795] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/27/2022] [Indexed: 05/28/2023]
Abstract
Room-temperature liquid metal (LM)-based electronics is expected to bring advancements in future soft electronics owing to its conductivity, conformability, stretchability, and biocompatibility. However, various difficulties arise when patterning LM because of its rheological features such as fluidity and surface tension. Numerous attempts are made to overcome these difficulties, resulting in various LM-patterning methods. An appropriate choice of patterning method based on comprehensive understanding is necessary to fully utilize the unique properties. Therefore, the authors aim to provide thorough knowledge about patterning methods and unique properties for LM-based future soft electronics. First, essential considerations for LM-patterning are investigated. Then, LM-patterning methods-serial-patterning, parallel-patterning, intermetallic bond-assisted patterning, and molding/microfluidic injection-are categorized and investigated. Finally, perspectives on LM-based soft electronics with unique properties are provided. They include outstanding features of LM such as conformability, biocompatibility, permeability, restorability, and recyclability. Also, they include perspectives on future LM-based soft electronics in various areas such as radio frequency electronics, soft robots, and heterogeneous catalyst. LM-based soft devices are expected to permeate the daily lives if patterning methods and the aforementioned features are analyzed and utilized.
Collapse
Affiliation(s)
- Minwoo Kim
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
| | - Hyungjun Lim
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Department of Mechanical EngineeringPohang University of Science and Technology77 Chungam‐ro, Nam‐guPohang37673South Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Institute of Advanced Machinery and Design/Institute of Engineering ResearchSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
| |
Collapse
|
16
|
Choe M, Sin D, Bhuyan P, Lee S, Jeon H, Park S. Ultrasoft and Ultrastretchable Wearable Strain Sensors with Anisotropic Conductivity Enabled by Liquid Metal Fillers. MICROMACHINES 2022; 14:17. [PMID: 36677078 PMCID: PMC9862167 DOI: 10.3390/mi14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Herein, ultrasoft and ultrastretchable wearable strain sensors enabled by liquid metal fillers in an elastic polymer are described. The wearable strain sensors that can change the effective resistance upon strains are prepared by mixing silicone elastomer with liquid metal (EGaIn, Eutectic gallium-indium alloy) fillers. While the silicone is mixed with the liquid metal by shear mixing, the liquid metal is rendered into small droplets stabilized by an oxide, resulting in a non-conductive liquid metal elastomer. To attain electrical conductivity, localized mechanical pressure is applied using a stylus onto the thermally cured elastomer, resulting in the formation of a handwritten conductive trace by rupturing the oxide layer of the liquid metal droplets and subsequent percolation. Although this approach has been introduced previously, the liquid metal dispersed elastomers developed here are compelling because of their ultra-stretchable (elongation at break of 4000%) and ultrasoft (Young’s modulus of <0.1 MPa) mechanical properties. The handwritten conductive trace in the elastomers can maintain metallic conductivity when strained; however, remarkably, we observed that the electrical conductivity is anisotropic upon parallel and perpendicular strains to the conductive trace. This anisotropic conductivity of the liquid metal elastomer film can manipulate the locomotion of a robot by routing the power signals between the battery and the driving motor of a robot upon parallel and perpendicular strains to the hand-written circuit. In addition, the liquid metal dispersed elastomers have a high degree of deformation and adhesion; thus, they are suitable for use as a wearable sensor for monitoring various body motions.
Collapse
Affiliation(s)
- Minjae Choe
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dongho Sin
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Priyanuj Bhuyan
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sangmin Lee
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hongchan Jeon
- Sustainable Materials Research Team, Research & Development Division, Hyundai Motor Group, Uiwang 16082, Republic of Korea
| | - Sungjune Park
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
17
|
Akyildiz K, Kim JH, So JH, Koo HJ. Recent progress on micro- and nanoparticles of gallium-based liquid metal: From preparation to applications. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|