1
|
Liao W, Huang Y, Wang X, Hu Z, Zhao C, Wang G. Multidimensional excavation of the current status and trends of mechanobiology in cardiovascular homeostasis and remodeling within 20 years. MECHANOBIOLOGY IN MEDICINE 2025; 3:100127. [PMID: 40395770 PMCID: PMC12067904 DOI: 10.1016/j.mbm.2025.100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/12/2025] [Accepted: 03/09/2025] [Indexed: 05/22/2025]
Abstract
Mechanobiology is essential for cardiovascular structure and function and regulates the normal physiological and pathological processes of the cardiovascular system. Cells in the cardiovascular system are extremely sensitive to their mechanical environment, and once mechanical stimulation is abnormal, the homeostasis mechanism is damaged or lost, leading to the occurrence of pathological remodeling diseases. In the past 20 years, many articles concerning the mechanobiology of cardiovascular homeostasis and remodeling have been published. To better understand the current development status, research hotspots and future development trends in the field, this paper uses CiteSpace software for bibliometric analysis, quantifies and visualizes the articles published in this field in the past 20 years, and reviews the research hotspots and emerging trends. The regulatory effects of mechanical stimulation on the biological behavior of endothelial cells, smooth muscle cells and the extracellular matrix, as well as the mechanical-related remodeling mechanism in heart failure, have always been research hotspots in this field. This paper reviews the research advances of these research hotspots in detail. This paper also introduces the research status of emerging hotspots, such as those related to cardiac fibrosis, homeostasis, mechanosensitive transcription factors and mechanosensitive ion channels. We hope to provide a systematic framework and new ideas for follow-up research on mechanobiology in the field of cardiovascular homeostasis and remodeling and promote the discovery of more therapeutic targets and novel markers of mechanobiology in the cardiovascular system.
Collapse
Affiliation(s)
- Wei Liao
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Yuxi Huang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | | | - Ziqiu Hu
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Chuanrong Zhao
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- JinFeng Laboratory, Chongqing, 401329, China
| | - Guixue Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- JinFeng Laboratory, Chongqing, 401329, China
| |
Collapse
|
2
|
Kulkarni GC, Saha R, Peters CJ. Ion channel expression and function in glioblastoma multiforme (GBM): pathophysiological mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119982. [PMID: 40328081 DOI: 10.1016/j.bbamcr.2025.119982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/29/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
Glioblastoma Multiforme (GBM) is a highly malignant and diffusely invasive WHO Grade IV brain tumor arising from glial and neural stem cells. GBM is characterized by rapid proliferation and migration, aggressive invasion of local brain parenchyma, a hypoxic microenvironment, resistance to apoptosis and high vascular remodeling and angiogenesis. These hallmarks contribute to a near universal tumor recurrence after treatment or resection and poor patient prognosis. Ion channels, a superfamily of proteins responsible for permitting ion flux across otherwise impermeant membranes, show extensive remodeling in GBM with aberrant function mechanistically linked to manipulation of each of these hallmarks. In this review, we will discuss the known links between ion channel expression and activity and cellular processes that are enhanced or perturbed during GBM formation or progression. We will also discuss the extent to which basic or translational findings on ion channels in GBM samples or cell lines have shown preclinical promise towards the development of improved therapeutics against GBMs.
Collapse
Affiliation(s)
- Gauri C Kulkarni
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Rayna Saha
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Christian J Peters
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Wang L, Wei L, Wei J, Zhu Y, Zhao H, Zhang Y, Zhang S, Zhang P, Xing X, Wu D, Wang F, Yang S, Li Y, Huang J, Zhao Y, Zhang Y. 3D printed porous PEEK scaffolds with stable and durable gelatin composite hydrogel coating loaded Yoda1 for in vivo osseointegration. Int J Biol Macromol 2025; 307:141577. [PMID: 40054797 DOI: 10.1016/j.ijbiomac.2025.141577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/17/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025]
Abstract
Polyetheretherketone (PEEK) has emerged as a promising material for bone substitution; however, its limited osseointegration hinders its clinical applications. This research employs a porous structural design alongside surface modification techniques to improve the osseointegration properties of PEEK. Porous PEEK scaffolds were fabricated via 3D printing technology, followed by the application of a stable coating of Yoda1-loaded methacrylated gelatin (GelMA) on their surfaces. After modification, the hydrophilicity of the PEEK scaffolds was considerably improved, and the GelMA coating facilitated the sustained release of Yoda1. In vitro experiments demonstrated that the modified surfaces promoted cell proliferation and adhesion, facilitated angiogenesis, and enhanced osteoblast differentiation and mineral deposition. Furthermore, porous PEEK scaffolds were implanted into the femoral condyles of SD rats for 6 weeks to evaluate in vivo osseointegration The results showed that the tailored three-dimensional porous structure, along with the Yoda1-loaded GelMA coating, promoted bone ingrowth and enhanced osseointegration within the scaffold. This study offers a viable strategy for enhancing PEEK osseointegration through a combination of structural design and surface modification, and introduces new avenues for the application of Yoda1 in bone tissue engineering.
Collapse
Affiliation(s)
- Lei Wang
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Luxing Wei
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education School of Mechanical Engineering Shandong University, Jinan, Shandong 250061, China
| | - Jianlu Wei
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250000, China
| | - Yanbin Zhu
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Haiyue Zhao
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Yiran Zhang
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Shuo Zhang
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Pengfei Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250000, China
| | - Xin Xing
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Dengying Wu
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China; Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fengkun Wang
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Shuai Yang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China; Hebei Medical University, Shijiazhuang 050017, China
| | - Yonglong Li
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Jun Huang
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education School of Mechanical Engineering Shandong University, Jinan, Shandong 250061, China.
| | - Yunpeng Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250000, China.
| | - Yingze Zhang
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China.
| |
Collapse
|
4
|
Liu S, Chen Y, Zhou G, Sun C, Ma M, Huang R, Li X, Liang X, Shi C, Wu W, Yan X, Wang L, Han J. Uniform and controllable surface nano-structure on polyetheretherketone implants can regulate mechanical property to enhance soft tissue integration through Piezo1/TGF-β1 signaling axis. Mater Today Bio 2025; 31:101645. [PMID: 40151615 PMCID: PMC11946874 DOI: 10.1016/j.mtbio.2025.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Polyetheretherketone (PEEK) has potential to repair the orbital floor bone defects following craniofacial trauma and orbital surgery. However, the inertness of the material impedes the soft tissue integration of implants, leading to complications such as implant migration and infection. Surface patterning modification on PEEK can promote the surface hydrophily to enhance better soft tissue integration, but it is difficult to obtain the uniform and controllable nano-structure. In this study, hot-pressing technology on PEEK implant was used to produce surface nanopores with a uniform diameter of 200, 500, 800 nm. Depending on the controllable craft, the surficial mechanical properties of PEEK can be regulated and assessed by finite element analysis. Furthermore, 500 nm interface has better mechanical properties to promote the proliferation, migration, and fibrosis of fibroblasts and achieved optimal integration effects in animal implantation experiments. To explore the mechanism of biological responses, transcriptomics and molecular biology experiments revealed that Piezo1/TGF-β1 axis played a critical role in the response of soft tissue cells to the mechanical stimulation of PEEK. Our study has established a novel modification technology for constructing uniform and controllable nanostructures on the surface of PEEK, thereby promoting the soft tissues integration with implants and improving the anchoring effect.
Collapse
Affiliation(s)
- Sida Liu
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, 710038, Xi'an, Shaanxi Province, China
- The 940 Hospital of the Joint Logistic Support Force, 730050, Lanzhou, Gansu Province, China
| | - Yixuan Chen
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, 710038, Xi'an, Shaanxi Province, China
| | - Gandong Zhou
- School of Advanced Materials and Nanotechnology, Xidian University, 710126, Xi'an, Shaanxi Province, China
| | - Changning Sun
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054, Xi'an, Shaanxi Province, China
| | - Minghai Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, 710038, Xi'an, Shaanxi Province, China
| | - Rou Huang
- School of Advanced Materials and Nanotechnology, Xidian University, 710126, Xi'an, Shaanxi Province, China
| | - Xing Li
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, 710038, Xi'an, Shaanxi Province, China
| | - Xiao Liang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, 710038, Xi'an, Shaanxi Province, China
| | - Changquan Shi
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054, Xi'an, Shaanxi Province, China
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Xidian University, 710126, Xi'an, Shaanxi Province, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, 710038, Xi'an, Shaanxi Province, China
| | - Lei Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, 710038, Xi'an, Shaanxi Province, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, 710038, Xi'an, Shaanxi Province, China
| |
Collapse
|
5
|
Lacroix JJ, Wijerathne TD. PIEZO channels as multimodal mechanotransducers. Biochem Soc Trans 2025; 53:BST20240419. [PMID: 39936392 PMCID: PMC12010695 DOI: 10.1042/bst20240419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/13/2025]
Abstract
All living beings experience a wide range of endogenous and exogenous mechanical forces. The ability to detect these forces and rapidly convert them into specific biological signals is essential to a wide range of physiological processes. In vertebrates, these fundamental tasks are predominantly achieved by two related mechanosensitive ion channels called PIEZO1 and PIEZO2. PIEZO channels are thought to sense mechanical forces through flexible transmembrane blade-like domains. Structural studies indeed show that these mechanosensory domains adopt a curved conformation in a resting membrane but become flattened in a membrane under tension, promoting an open state. Yet, recent studies suggest the intriguing possibility that distinct mechanical stimuli activate PIEZO channels through discrete molecular rearrangements of these domains. In addition, biological signals downstream of PIEZO channel activation vary as a function of the mechanical stimulus and of the cellular context. These unique features could explain how PIEZOs confer cells the ability to differentially interpret a complex landscape of mechanical cues.
Collapse
Affiliation(s)
- Jérôme J Lacroix
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, U.S.A
| | - Tharaka D Wijerathne
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, U.S.A
| |
Collapse
|
6
|
Chandurkar MK, Yang M, Rostami M, Han SJ. TRPV4 Dominates High Shear-Induced Initial Traction Response and Long-Term Relaxation Over Piezo1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637570. [PMID: 39990362 PMCID: PMC11844455 DOI: 10.1101/2025.02.10.637570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Modulation of endothelial traction is critical for the responses of endothelial cells to fluid shear stress (FSS), which has profound implications for vascular health and atherosclerosis. Previously, we demonstrated that under high FSS, endothelial cells rapidly increase traction forces, followed by relaxation, with traction aligning in the flow direction. In contrast, low shear preconditioning induces a modest short-term increase in traction (<30 min), followed by a secondary long-term (>14 hr) rise, with traction/cells aligning perpendicular to the flow. The upstream mechanosensors driving these responses, however, remain unknown. Here, we sought the roles of Piezo1 and TRPV4 ion channels in shear-induced traction modulation. We report that HUVECs with Piezo1 silencing reduced the initial traction rise in half under high FSS compared to those by WT cells, while not affecting the traction modulation in response to low FSS or traction/cell alignment to the flow direction. Conversely, cells with siTRPV4 fully abrogated the initial traction rise, as well as alignment of traction and cells, in response to both high and low FSS conditions. Dual inhibition of Piezo1 and TRPV4 further impaired both initial and long-term traction under high FSS. Interestingly, dual-inhibited cells displayed larger initial traction responses to low FSS compared to control cells, suggesting the involvement of alternative calcium-independent pathways that become dominant when both ion channels are nonfunctional. Additionally, either ion channel inhibition led to secondary long-term traction increase even under high FSS condition. These findings suggest that while both Piezo1 and TRPV4 channels contribute to shear mechanotransduction, TRPV4 plays more dominant role than Piezo1 in mediating the initial traction rise and sustaining long-term relaxation under high or low shear stress, highlighting their critical and distinct contributions to endothelial mechanotransduction and remodeling.
Collapse
Affiliation(s)
- Mohanish K Chandurkar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan, United States
| | - Manli Yang
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States
| | - Majid Rostami
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan, United States
| | - Sangyoon J Han
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan, United States
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States
- Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological University, Houghton, Michigan, United States
| |
Collapse
|
7
|
Duan X, Liu R, Xi Y, Tian Z. The mechanisms of exercise improving cardiovascular function by stimulating Piezo1 and TRP ion channels: a systemic review. Mol Cell Biochem 2025; 480:119-137. [PMID: 38625513 DOI: 10.1007/s11010-024-05000-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
Mechanosensitive ion channels are widely distributed in the heart, lung, bladder and other tissues, and plays an important role in exercise-induced cardiovascular function promotion. By reviewing the PubMed databases, the results were summarized using the terms "Exercise/Sport", "Piezo1", "Transient receptor potential (TRP)" and "Cardiovascular" as the keywords, 124-related papers screened were sorted and reviewed. The results showed that: (1) Piezo1 and TRP channels play an important role in regulating blood pressure and the development of cardiovascular diseases such as atherosclerosis, myocardial infarction, and cardiac fibrosis; (2) Exercise promotes cardiac health, inhibits the development of pathological heart to heart failure, regulating the changes in the characterization of Piezo1 and TRP channels; (3) Piezo1 activates downstream signaling pathways with very broad pathways, such as AKT/eNOS, NF-κB, p38MAPK and HIPPO-YAP signaling pathways. Piezo1 and Irisin regulate nuclear localization of YAP and are hypothesized to act synergistically to regulate tissue mechanical properties of the cardiovascular system and (4) The cardioprotective effects of exercise through the TRP family are mostly accomplished through Ca2+ and involve many signaling pathways. TRP channels exert their important cardioprotective effects by reducing the TRPC3-Nox2 complex and mediating Irisin-induced Ca2+ influx through TRPV4. It is proposed that exercise stimulates the mechanosensitive cation channel Piezo1 and TRP channels, which exerts cardioprotective effects. The activation of Piezo1 and TRP channels and their downstream targets to exert cardioprotective function by exercise may provide a theoretical basis for the prevention of cardiovascular diseases and the rehabilitation of clinical patients.
Collapse
Affiliation(s)
- Xinyan Duan
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Renhan Liu
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yue Xi
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, 710119, China.
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
8
|
Schliefsteiner C, Wadsack C, Allerkamp HH. Exploring the Lifeline: Unpacking the Complexities of Placental Vascular Function in Normal and Preeclamptic Pregnancies. Compr Physiol 2024; 14:5763-5787. [PMID: 39699084 DOI: 10.1002/cphy.c230020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The proper development and function of the placenta are essential for the success of pregnancy and the well-being of both the fetus and the mother. Placental vascular function facilitates efficient fetal development during pregnancy by ensuring adequate gas exchange with low vascular resistance. This review focuses on how placental vascular function can be compromised in the pregnancy pathology preeclampsia, and conversely, how placental vascular dysfunction might contribute to this condition. While the maternal endothelium is widely recognized as a key focus in preeclampsia research, this review emphasizes the importance of understanding how this condition affects the development and function of the fetal placental vasculature. The placental vascular bed, consisting of microvasculature and macrovasculature, is discussed in detail, as well as structural and functional changes associated with preeclampsia. The complexity of placental vascular reactivity and function, its mediators, its impact on placental exchange and blood distribution, and how these factors are most affected in early-onset preeclampsia are further explored. These factors include foremost lipoproteins and their cargo, oxygen levels and oxidative stress, biomechanics, and shear stress. Challenges in studying placental pathophysiology are discussed, highlighting the necessity of innovative research methodologies, including ex vivo experiments, in vivo imaging tools, and computational modeling. Finally, an outlook on the potential of drug interventions targeting the placental endothelium to improve placental vascular function in preeclampsia is provided. Overall, this review highlights the need for further research and the development of models and tools to better understand and address the challenges posed by preeclampsia and its effects on placental vascular function to improve short- and long-term outcomes for the offspring of preeclamptic pregnancies. © 2024 American Physiological Society. Compr Physiol 14:5763-5787, 2024.
Collapse
Affiliation(s)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Hanna H Allerkamp
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
9
|
Mikesell AR, Isaeva E, Schulte ML, Menzel AD, Sriram A, Prahl MM, Shin SM, Sadler KE, Yu H, Stucky CL. Increased keratinocyte activity and PIEZO1 signaling contribute to paclitaxel-induced mechanical hypersensitivity. Sci Transl Med 2024; 16:eadn5629. [PMID: 39661703 DOI: 10.1126/scitranslmed.adn5629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 11/18/2024] [Indexed: 12/13/2024]
Abstract
Recent work demonstrates that epidermal keratinocytes are critical for normal touch sensation. However, it is unknown whether keratinocytes contribute to touch-evoked pain and hypersensitivity after tissue injury. Here, we used a mouse model of paclitaxel treatment to determine the extent to which keratinocyte activity contributes to the severe neuropathic pain that accompanies chemotherapy. We found that keratinocyte inhibition by either optogenetic or chemogenetic methods largely alleviated paclitaxel-induced mechanical hypersensitivity across acute and persistent time points from 2 days through 3 weeks. Furthermore, we found that paclitaxel exposure sensitized mouse and human keratinocytes to mechanical stimulation and enhanced currents of PIEZO1, a mechanosensitive channel highly expressed in keratinocytes. Deletion of PIEZO1 from keratinocytes alleviated paclitaxel-induced mechanical hypersensitivity in mice. These findings suggest that nonneuronal cutaneous cells contribute substantially to neuropathic pain and pave the way for the development of new pain relief strategies that target epidermal keratinocytes and PIEZO1.
Collapse
Affiliation(s)
- Alexander R Mikesell
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elena Isaeva
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Anthony D Menzel
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anvitha Sriram
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Megan M Prahl
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Katelyn E Sadler
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
10
|
Cubero-Sarabia M, Kapetanaki AM, Vassalli M. Biophysical assays to test cellular mechanosensing: moving towards high throughput. Biophys Rev 2024; 16:875-882. [PMID: 39830126 PMCID: PMC11735701 DOI: 10.1007/s12551-024-01263-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Mechanosensitivity is the ability of cells to sense and respond to mechanical stimuli. In order to do this, cells are endowed with different components that allow them to react to a broad range of stimuli, such as compression or shear forces, pressure, and vibrations. This sensing process, mechanosensing, is involved in fundamental physiological mechanisms, such as stem cell differentiation and migration, but it is also central to the development of pathogenic states. Here, we review the approaches that have been proposed to quantify mechanosensation in living cells, with a specific focus on methodologies that enable higher experimental throughput. This aspect is crucial to fully understand the nuances of mechanosensation and how it impacts the physiology and pathology of living systems. We will discuss traditional methods for studying mechanosensing at the level of single cells, with particular attention to the activation of the mechanosensitive ion channel piezo1. Moreover, we will present recent attempts to push the analysis towards higher throughput.
Collapse
Affiliation(s)
| | | | - Massimo Vassalli
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
| |
Collapse
|
11
|
Roeterink RMA, Casadevall I Solvas X, Collins DJ, Scott DJ. Force versus Response: Methods for Activating and Characterizing Mechanosensitive Ion Channels and GPCRs. Adv Healthc Mater 2024; 13:e2402167. [PMID: 39402780 DOI: 10.1002/adhm.202402167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/20/2024] [Indexed: 12/18/2024]
Abstract
Mechanotransduction is the process whereby cells convert mechanical signals into electrochemical responses, where mechanosensitive proteins mediate this interaction. To characterize these critical proteins, numerous techniques have been developed that apply forces and measure the subsequent cellular responses. While these approaches have given insight into specific aspects of many such proteins, subsequent validation and cross-comparison between techniques remain difficult given significant variations in reported activation thresholds and responses for the same protein across different studies. Accurately determining mechanosensitivity responses for various proteins, however, is essential for understanding mechanotransduction and potential physiological implications, including therapeutics. This critical review provides an assessment of current and emerging approaches used for mechanosensitive ion channel and G-Coupled Receptors (GPCRs) stimulation and measurement, with a specific focus on the ability to quantitatively measure mechanosensitive responses.
Collapse
Affiliation(s)
- Renate M A Roeterink
- Department of Biomedical Engineering, The University of Melbourne, VIC, Parkville, Victoria, 3010, Australia
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, Leuven, 3001, Belgium
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | | | - David J Collins
- Department of Biomedical Engineering, The University of Melbourne, VIC, Parkville, Victoria, 3010, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
12
|
Tang M, Feng X, Ma L, Yu Y, Zhu H, Fu Y, Sun K, Wu X, Wang J, Li X, Zhang Y. Utilizing superheated steam to prepare traditional Chinese twice-cooked pork bellies, exploring its effects on the texture and flavor of fat layers. Meat Sci 2024; 217:109616. [PMID: 39089087 DOI: 10.1016/j.meatsci.2024.109616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Fat greatly impacts the overall texture and flavor of pork belly. Twice-cooked pork bellies (TPB), typically boiled and sliced before "back to pot" being stir-fried, is a classic Sichuan cuisine among stir-fried dishes. In this study, the effects of substituting conventional pan-frying (PCV) with superheated steam (SHS) technology on the sensory, texture, microstructure and flavor of the fat layers were investigated. SHS was used as an alternative to boiling (120 °C for 15, 20, 25, and 30 min), and "back to pot" stir-frying was also by SHS. TPB precooked for 25 min (P25) with SHS performed better quality characteristics than PCV, with less collagen fiber disruption and lipid droplet area, resulting in a lower hardness and higher shear force. Besides, the low-oxygen environment of SHS retarded the lipid peroxidation, showing a significantly lower MDA content than PCV. Differently, PCV exhibited more grassy and fatty flavors, while P25 exhibited a unique aroma of fruity and creamy due to its higher UFA/SFA ratios in the pre-cooking stage. Overall, the sensory scores of P25 were comparable to those of PCV (with no significant difference), revealing that SHS is expected to be applied to the industrial production of stir-fried dishes.
Collapse
Affiliation(s)
- Mi Tang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xin Feng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Yong Yu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hankun Zhu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Kangting Sun
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoqian Wu
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Academy of Animal Science, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Xiang Li
- Culinary Institute of Sichuan Tourism University, Chengdu 610100, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
13
|
Lichtenstein L, Cheng CW, Bajarwan M, Evans EL, Gaunt HJ, Bartoli F, Chuntharpursat-Bon E, Patel S, Konstantinou C, Futers TS, Reay M, Parsonage G, Moore JB, Bertrand-Michel J, Sukumar P, Roberts LD, Beech DJ. Endothelial force sensing signals to parenchymal cells to regulate bile and plasma lipids. SCIENCE ADVANCES 2024; 10:eadq3075. [PMID: 39331703 PMCID: PMC11430402 DOI: 10.1126/sciadv.adq3075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/21/2024] [Indexed: 09/29/2024]
Abstract
How cardiovascular activity interacts with lipid homeostasis is incompletely understood. We postulated a role for blood flow acting at endothelium in lipid regulatory organs. Transcriptome analysis was performed on livers from mice engineered for deletion of the flow-sensing PIEZO1 channel in endothelium. This revealed unique up-regulation of Cyp7a1, which encodes the rate-limiting enzyme for bile synthesis from cholesterol in hepatocytes. Consistent with this effect were increased gallbladder and plasma bile acids and lowered hepatic and plasma cholesterol. Elevated portal fluid flow acting via endothelial PIEZO1 and genetically enhanced PIEZO1 conversely suppressed Cyp7a1. Activation of hepatic endothelial PIEZO1 channels promoted phosphorylation of nitric oxide synthase 3, and portal flow-mediated suppression of Cyp7a1 depended on nitric oxide synthesis, suggesting endothelium-to-hepatocyte coupling via nitric oxide. PIEZO1 variants in people were associated with hepatobiliary disease and dyslipidemia. The data suggest an endothelial force sensing mechanism that controls lipid regulation in parenchymal cells to modulate whole-body lipid homeostasis.
Collapse
Affiliation(s)
- Laeticia Lichtenstein
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Chew W. Cheng
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Muath Bajarwan
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | | | - Fiona Bartoli
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | - Shaili Patel
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Department of Hepatobiliary and Transplant Surgery, St James's University Hospital, Leeds LS9 7TF, UK
| | - Charalampos Konstantinou
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Department of Hepatobiliary and Transplant Surgery, St James's University Hospital, Leeds LS9 7TF, UK
| | | | - Melanie Reay
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | - J. Bernadette Moore
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Justine Bertrand-Michel
- MetaToul-Lipidomics Facility, INSERM UMR1048, Toulouse, France
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1297/I2MC, INSERM, Toulouse, France
| | | | - Lee D. Roberts
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - David J. Beech
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
14
|
Nwokoye PN, Abilez OJ. Bioengineering methods for vascularizing organoids. CELL REPORTS METHODS 2024; 4:100779. [PMID: 38759654 PMCID: PMC11228284 DOI: 10.1016/j.crmeth.2024.100779] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/01/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024]
Abstract
Organoids, self-organizing three-dimensional (3D) structures derived from stem cells, offer unique advantages for studying organ development, modeling diseases, and screening potential therapeutics. However, their translational potential and ability to mimic complex in vivo functions are often hindered by the lack of an integrated vascular network. To address this critical limitation, bioengineering strategies are rapidly advancing to enable efficient vascularization of organoids. These methods encompass co-culturing organoids with various vascular cell types, co-culturing lineage-specific organoids with vascular organoids, co-differentiating stem cells into organ-specific and vascular lineages, using organoid-on-a-chip technology to integrate perfusable vasculature within organoids, and using 3D bioprinting to also create perfusable organoids. This review explores the field of organoid vascularization, examining the biological principles that inform bioengineering approaches. Additionally, this review envisions how the converging disciplines of stem cell biology, biomaterials, and advanced fabrication technologies will propel the creation of increasingly sophisticated organoid models, ultimately accelerating biomedical discoveries and innovations.
Collapse
Affiliation(s)
- Peter N Nwokoye
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Oscar J Abilez
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; Division of Pediatric CT Surgery, Stanford University, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Maternal and Child Health Research Institute, Stanford University, Stanford, CA 94305, USA; Bio-X Program, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
15
|
Yuan X, Zhao X, Wang W, Li C. Mechanosensing by Piezo1 and its implications in the kidney. Acta Physiol (Oxf) 2024; 240:e14152. [PMID: 38682304 DOI: 10.1111/apha.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Piezo1 is an essential mechanosensitive transduction ion channel in mammals. Its unique structure makes it capable of converting mechanical cues into electrical and biological signals, modulating biological and (patho)physiological processes in a wide variety of cells. There is increasing evidence demonstrating that the piezo1 channel plays a vital role in renal physiology and disease conditions. This review summarizes the current evidence on the structure and properties of Piezo1, gating modulation, and pharmacological characteristics, with special focus on the distribution and (patho)physiological significance of Piezo1 in the kidney, which may provide insights into potential treatment targets for renal diseases involving this ion channel.
Collapse
Affiliation(s)
- Xi Yuan
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoduo Zhao
- Department of Pathology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunling Li
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Vanderroost J, Parpaite T, Avalosse N, Henriet P, Pierreux CE, Lorent JH, Gailly P, Tyteca D. Piezo1 Is Required for Myoblast Migration and Involves Polarized Clustering in Association with Cholesterol and GM1 Ganglioside. Cells 2023; 12:2784. [PMID: 38132106 PMCID: PMC10741634 DOI: 10.3390/cells12242784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
A specific plasma membrane distribution of the mechanosensitive ion channel Piezo1 is required for cell migration, but the mechanism remains elusive. Here, we addressed this question using WT and Piezo1-silenced C2C12 mouse myoblasts and WT and Piezo1-KO human kidney HEK293T cells. We showed that cell migration in a cell-free area and through a porous membrane decreased upon Piezo1 silencing or deletion, but increased upon Piezo1 activation by Yoda1, whereas migration towards a chemoattractant gradient was reduced by Yoda1. Piezo1 organized into clusters, which were preferentially enriched at the front. This polarization was stimulated by Yoda1, accompanied by Ca2+ polarization, and abrogated by partial cholesterol depletion. Piezo1 clusters partially colocalized with cholesterol- and GM1 ganglioside-enriched domains, the proportion of which was increased by Yoda1. Mechanistically, Piezo1 activation induced a differential mobile fraction of GM1 associated with domains and the bulk membrane. Conversely, cholesterol depletion abrogated the differential mobile fraction of Piezo1 associated with clusters and the bulk membrane. In conclusion, we revealed, for the first time, the differential implication of Piezo1 depending on the migration mode and the interplay between GM1/cholesterol-enriched domains at the front during migration in a cell-free area. These domains could provide the optimal biophysical properties for Piezo1 activity and/or spatial dissociation from the PMCA calcium efflux pump.
Collapse
Affiliation(s)
- Juliette Vanderroost
- de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (J.V.); (N.A.); (P.H.); (C.E.P.)
| | - Thibaud Parpaite
- Institute of Neuroscience, UCLouvain, 1200 Brussels, Belgium; (T.P.); (P.G.)
| | - Noémie Avalosse
- de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (J.V.); (N.A.); (P.H.); (C.E.P.)
| | - Patrick Henriet
- de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (J.V.); (N.A.); (P.H.); (C.E.P.)
| | | | - Joseph H. Lorent
- Louvain Drug Research Institute, UCLouvain, 1200 Brussels, Belgium;
| | - Philippe Gailly
- Institute of Neuroscience, UCLouvain, 1200 Brussels, Belgium; (T.P.); (P.G.)
| | - Donatienne Tyteca
- de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (J.V.); (N.A.); (P.H.); (C.E.P.)
| |
Collapse
|
17
|
Cheng D, Wang J, Yao M, Cox CD. Joining forces: crosstalk between mechanosensitive PIEZO1 ion channels and integrin-mediated focal adhesions. Biochem Soc Trans 2023; 51:1897-1906. [PMID: 37772664 DOI: 10.1042/bst20230042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
Both integrin-mediated focal adhesions (FAs) and mechanosensitive ion channels such as PIEZO1 are critical in mechanotransduction processes that influence cell differentiation, development, and cancer. Ample evidence now exists for regulatory crosstalk between FAs and PIEZO1 channels with the molecular mechanisms underlying this process remaining unclear. However, an emerging picture is developing based on spatial crosstalk between FAs and PIEZO1 revealing a synergistic model involving the cytoskeleton, extracellular matrix (ECM) and calcium-dependent signaling. Already cell type, cell contractility, integrin subtypes and ECM composition have been shown to regulate this crosstalk, implying a highly fine-tuned relationship between these two major mechanosensing systems. In this review, we summarize the latest advances in this area, highlight the physiological implications of this crosstalk and identify gaps in our knowledge that will improve our understanding of cellular mechanosensing.
Collapse
Affiliation(s)
- Delfine Cheng
- The Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW 2052, Australia
| | - Junfan Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingxi Yao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Charles D Cox
- The Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Kensington, NSW 2052, Australia
| |
Collapse
|
18
|
Xiao R, Liu J, Xu XZS. Mechanosensitive GPCRs and ion channels in shear stress sensing. Curr Opin Cell Biol 2023; 84:102216. [PMID: 37595342 PMCID: PMC10528224 DOI: 10.1016/j.ceb.2023.102216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/20/2023]
Abstract
As a universal mechanical cue, shear stress plays essential roles in many physiological processes, ranging from vascular morphogenesis and remodeling to renal transport and airway barrier function. Disrupted shear stress is commonly regarded as a major contributor to various human diseases such as atherosclerosis, hypertension, and chronic kidney disease. Despite the importance of shear stress in physiology and pathophysiology, our current understanding of mechanosensors that sense shear stress is far from complete. An increasing number of candidate mechanosensors have been proposed to mediate shear stress sensing in distinct cell types, including G protein-coupled receptors (GPCRs), G proteins, receptor tyrosine kinases, ion channels, glycocalyx proteins, and junctional proteins. Although multiple types of mechanosensors might be able to convert shear stress into downstream biochemical signaling events, in this review, we will focus on discussing the mechanosensitive GPCRs (angiotensin II type 1 receptor, GPR68, histamine H1 receptor, adhesion GPCRs) and ion channels (Piezo, TRP) that have been reported to be directly activated by shear stress.
Collapse
Affiliation(s)
- Rui Xiao
- Department of Physiology and Aging, Institute on Aging, Center for Smell and Taste, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Jie Liu
- Neuroscience Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - X Z Shawn Xu
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Pardo-Pastor C, Rosenblatt J. Piezo1 activates noncanonical EGFR endocytosis and signaling. SCIENCE ADVANCES 2023; 9:eadi1328. [PMID: 37756411 PMCID: PMC10530101 DOI: 10.1126/sciadv.adi1328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
EGFR-ERK signaling controls cell cycle progression during development, homeostasis, and disease. While EGF ligand and mechanical inputs can activate EGFR-ERK signaling, the molecules linking mechanical force to this axis have remained mysterious. We previously found that stretch promotes mitosis via the stretch-activated ion channel Piezo1 and ERK signaling. Here, we show that Piezo1 provides the missing link between mechanical signals and EGFR-ERK activation. While both EGF- and Piezo1-dependent activation trigger clathrin-mediated EGFR endocytosis and ERK activation, EGF relies on canonical tyrosine autophosphorylation, whereas Piezo1 involves Src-p38 kinase-dependent serine phosphorylation. In addition, unlike EGF, ex vivo lung slices treated with Piezo1 agonist promoted cell cycle re-entry via nuclear ERK, AP-1 (FOS and JUN), and YAP accumulation, typical of regenerative and malignant signaling. Our results suggest that mechanical activation via Piezo1, Src, and p38 may be more relevant to controlling repair, regeneration, and cancer growth than tyrosine kinase signaling via canonical EGF signaling, suggesting an alternative therapeutic approach.
Collapse
Affiliation(s)
- Carlos Pardo-Pastor
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, School of Basic & Medical Sciences, Faculty of Life Sciences & Medicine, King’s College London, SE1 1UL London, UK
| | - Jody Rosenblatt
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, School of Basic & Medical Sciences, Faculty of Life Sciences & Medicine, King’s College London, SE1 1UL London, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, SE1 1UL London, UK
| |
Collapse
|
20
|
Endesh N, Chuntharpursat‐Bon E, Revill C, Yuldasheva NY, Futers TS, Parsonage G, Humphreys N, Adamson A, Morley LC, Cubbon RM, Prasad KR, Foster R, Lichtenstein L, Beech DJ. Independent endothelial functions of PIEZO1 and TRPV4 in hepatic portal vein and predominance of PIEZO1 in mechanical and osmotic stress. Liver Int 2023; 43:2026-2038. [PMID: 37349903 PMCID: PMC10946873 DOI: 10.1111/liv.15646] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND & AIMS PIEZO1 and TRPV4 are mechanically and osmotically regulated calcium-permeable channels. The aim of this study was to determine the relevance and relationship of these channels in the contractile tone of the hepatic portal vein, which experiences mechanical and osmotic variations as it delivers blood to the liver from the intestines, gallbladder, pancreas and spleen. METHODS Wall tension was measured in freshly dissected portal veins from adult male mice, which were genetically unmodified or modified for either a non-disruptive tag in native PIEZO1 or endothelial-specific PIEZO1 deletion. Pharmacological agents were used to activate or inhibit PIEZO1, TRPV4 and associated pathways, including Yoda1 and Yoda2 for PIEZO1 and GSK1016790A for TRPV4 agonism, respectively. RESULTS PIEZO1 activation leads to nitric oxide synthase- and endothelium-dependent relaxation of the portal vein. TRPV4 activation causes contraction, which is also endothelium-dependent but independent of nitric oxide synthase. The TRPV4-mediated contraction is suppressed by inhibitors of phospholipase A2 and cyclooxygenases and mimicked by prostaglandin E2 , suggesting mediation by arachidonic acid metabolism. TRPV4 antagonism inhibits the effect of agonising TRPV4 but not PIEZO1. Increased wall stretch and hypo-osmolality inhibit TRPV4 responses while lacking effects on or amplifying PIEZO1 responses. CONCLUSIONS The portal vein contains independently functioning PIEZO1 channels and TRPV4 channels in the endothelium, the pharmacological activation of which leads to opposing effects of vessel relaxation (PIEZO1) and contraction (TRPV4). In mechanical and osmotic strain, the PIEZO1 mechanism dominates. Modulators of these channels could present important new opportunities for manipulating liver perfusion and regeneration in disease and surgical procedures.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Neil Humphreys
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Antony Adamson
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | | | | | - K. Raj Prasad
- Department of Hepatobiliary and Transplant SurgerySt James's University HospitalLeedsUK
| | | | | | | |
Collapse
|
21
|
Zong B, Yu F, Zhang X, Pang Y, Zhao W, Sun P, Li L. Mechanosensitive Piezo1 channel in physiology and pathophysiology of the central nervous system. Ageing Res Rev 2023; 90:102026. [PMID: 37532007 DOI: 10.1016/j.arr.2023.102026] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Since the discovery of the mechanosensitive Piezo1 channel in 2010, there has been a significant amount of research conducted to explore its regulatory role in the physiology and pathology of various organ systems. Recently, a growing body of compelling evidence has emerged linking the activity of the mechanosensitive Piezo1 channel to health and disease of the central nervous system. However, the exact mechanisms underlying these associations remain inadequately comprehended. This review systematically summarizes the current research on the mechanosensitive Piezo1 channel and its implications for central nervous system mechanobiology, retrospects the results demonstrating the regulatory role of the mechanosensitive Piezo1 channel on various cell types within the central nervous system, including neural stem cells, neurons, oligodendrocytes, microglia, astrocytes, and brain endothelial cells. Furthermore, the review discusses the current understanding of the involvement of the Piezo1 channel in central nervous system disorders, such as Alzheimer's disease, multiple sclerosis, glaucoma, stroke, and glioma.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Fengzhi Yu
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoyou Zhang
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Yige Pang
- Department of Neurosurgery, Zibo Central Hospital, Zibo 255000, Shandong, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
22
|
Ozkan AD, Wijerathne TD, Gettas T, Lacroix JJ. Force-induced motions of the PIEZO1 blade probed with fluorimetry. Cell Rep 2023; 42:112837. [PMID: 37471225 PMCID: PMC10530446 DOI: 10.1016/j.celrep.2023.112837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Mechanical forces are thought to activate mechanosensitive PIEZO channels by changing the conformation of a large transmembrane blade domain. Yet, whether different stimuli induce identical conformational changes in this domain remains unclear. Here, we repurpose a cyclic permuted green fluorescent protein as a conformation-sensitive probe to track local rearrangements along the PIEZO1 blade. Two independent probes, one inserted in an extracellular site distal to the pore and the other in a distant intracellular proximal position, elicit sizable fluorescence signals when the tagged channels activate in response to fluid shear stress of low intensity. Neither cellular indentations nor osmotic swelling of the cell elicit detectable fluorescence signals from either probe, despite the ability of these stimuli to activate the tagged channels. High-intensity flow stimuli are ineffective at eliciting fluorescence signals from either probe. Together, these findings suggest that low-intensity fluid shear stress causes a distinct form of mechanical stress to the cell.
Collapse
Affiliation(s)
- Alper D Ozkan
- Department of Pharmaceutical Microbiology, Bahçeşehir University, Yıldız, Çırağan Cd, 34349 Beşiktaş/İstanbul, Turkey
| | - Tharaka D Wijerathne
- Department of Basic Medical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA
| | - Tina Gettas
- Department of Basic Medical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA
| | - Jérôme J Lacroix
- Department of Basic Medical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA.
| |
Collapse
|
23
|
Wang D, Brady T, Santhanam L, Gerecht S. The extracellular matrix mechanics in the vasculature. NATURE CARDIOVASCULAR RESEARCH 2023; 2:718-732. [PMID: 39195965 DOI: 10.1038/s44161-023-00311-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/20/2023] [Indexed: 08/29/2024]
Abstract
Mechanical stimuli from the extracellular matrix (ECM) modulate vascular differentiation, morphogenesis and dysfunction of the vasculature. With innovation in measurements, we can better characterize vascular microenvironment mechanics in health and disease. Recent advances in material sciences and stem cell biology enable us to accurately recapitulate the complex and dynamic ECM mechanical microenvironment for in vitro studies. These biomimetic approaches help us understand the signaling pathways in disease pathologies, identify therapeutic targets, build tissue replacement and activate tissue regeneration. This Review analyzes how ECM mechanics regulate vascular homeostasis and dysfunction. We highlight approaches to examine ECM mechanics at tissue and cellular levels, focusing on how mechanical interactions between cells and the ECM regulate vascular phenotype, especially under certain pathological conditions. Finally, we explore the development of biomaterials to emulate, measure and alter the physical microenvironment of pathological ECM to understand cell-ECM mechanical interactions toward the development of therapeutics.
Collapse
Affiliation(s)
- Dafu Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Travis Brady
- Department of Anesthesiology and Critical Care Medicine and Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lakshmi Santhanam
- Department of Anesthesiology and Critical Care Medicine and Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
24
|
Yang J, Yuan K, Zhang T, Zhou S, Li W, Chen Z, Wang Y. Accelerated Bone Reconstruction by the Yoda1 Bilayer Membrane via Promotion of Osteointegration and Angiogenesis. Adv Healthc Mater 2023; 12:e2203105. [PMID: 36912184 DOI: 10.1002/adhm.202203105] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/28/2023] [Indexed: 03/14/2023]
Abstract
Guided bone regeneration membranes are widely used to prevent fibroblast penetration and facilitate bone defect repair by osteoblasts. However, the current clinically available collagen membranes lack bone induction and angiogenic capacities, exhibiting limited bone regeneration. The mechanically sensitive channel, Piezo1, which is activated by Yoda1, has been reported to play crucial roles in osteogenesis and angiogenesis. Nevertheless, the application of Yoda1 alone is unsustainable to maintain this activity. Therefore, this study fabricates a Yoda1-loading bilayer membrane using electrospinning technology. Its inner layer in contact with the bone defect is composed of vertically aligned fibers, which regulate the proliferation and differentiation of cells, release Yoda1, and promote bone regeneration. Its outer layer in contact with the soft tissue is dense with oriented fibers by UV cross-linking, mainly preventing fibroblast infiltration and inhibiting the immune response. Furthermore, the loaded Yoda1 affects osteogenesis and angiogenesis via the Piezo1/RhoA/Rho-associated coiled-coil-containing protein kinase 1/Yes1-associated transcriptional regulator signaling pathway. The results reveal that the Yoda1 bilayer membrane is efficient and versatile in accelerating bone regeneration, suggesting its potential as a novel therapeutic agent for various clinical issues.
Collapse
Affiliation(s)
- Jinghong Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Kaiting Yuan
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Tingting Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Shiqi Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| |
Collapse
|
25
|
Du R, Li L, Ji J, Fan Y. Receptor-Ligand Binding: Effect of Mechanical Factors. Int J Mol Sci 2023; 24:ijms24109062. [PMID: 37240408 DOI: 10.3390/ijms24109062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Gaining insight into the in situ receptor-ligand binding is pivotal for revealing the molecular mechanisms underlying the physiological and pathological processes and will contribute to drug discovery and biomedical application. An important issue involved is how the receptor-ligand binding responds to mechanical stimuli. This review aims to provide an overview of the current understanding of the effect of several representative mechanical factors, such as tension, shear stress, stretch, compression, and substrate stiffness on receptor-ligand binding, wherein the biomedical implications are focused. In addition, we highlight the importance of synergistic development of experimental and computational methods for fully understanding the in situ receptor-ligand binding, and further studies should focus on the coupling effects of these mechanical factors.
Collapse
Affiliation(s)
- Ruotian Du
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
26
|
Kumar V, Packirisamy G. 3D porous sodium alginate-silk fibroin composite bead based in vitro tumor model for screening of anti-cancer drug and induction of magneto-apoptosis. Int J Biol Macromol 2023:124827. [PMID: 37207758 DOI: 10.1016/j.ijbiomac.2023.124827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
The development of 3D scaffold-based in vitro tumor models can help to address the limitations of cell culture and animal models for designing and screening anticancer drugs. In this study, in vitro 3D tumor models using sodium alginate (SA) and sodium alginate/silk fibroin (SA/SF) porous beads were developed. The beads were non-toxic and A549 cells had a high tendency to adhere, proliferate, and form tumor-like aggregates within SA/SF beads. The 3D tumor model based on these beads had better efficacy for anti-cancer drug screening than the 2D cell culture model. Additionally, the SA/SF porous beads loaded with superparamagnetic iron oxide nanoparticles were used to explore their magneto-apoptosis ability. The cells exposed to a high magnetic field were more likely to undergo apoptosis than those exposed to a low magnetic field. These findings suggest that the SA/SF porous beads and SPIONs loaded SA/SF porous beads-based tumor models could be useful for drug screening, tissue engineering, and mechanobiology studies.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Gopinath Packirisamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
27
|
Nader E, Conran N, Leonardo FC, Hatem A, Boisson C, Carin R, Renoux C, Costa FF, Joly P, Brito PL, Esperti S, Bernard J, Gauthier A, Poutrel S, Bertrand Y, Garcia C, Saad STO, Egée S, Connes P. Piezo1 activation augments sickling propensity and the adhesive properties of sickle red blood cells in a calcium-dependent manner. Br J Haematol 2023. [PMID: 37011913 DOI: 10.1111/bjh.18799] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/07/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Haemoglobin S polymerization in the red blood cells (RBCs) of individuals with sickle cell anaemia (SCA) can cause RBC sickling and cellular alterations. Piezo1 is a mechanosensitive protein that modulates intracellular calcium (Ca2+ ) influx, and its activation has been associated with increased RBC surface membrane phosphatidylserine (PS) exposure. Hypothesizing that Piezo1 activation, and ensuing Gárdos channel activity, alter sickle RBC properties, RBCs from patients with SCA were incubated with the Piezo1 agonist, Yoda1 (0.1-10 μM). Oxygen-gradient ektacytometry and membrane potential measurement showed that Piezo1 activation significantly decreased sickle RBC deformability, augmented sickling propensity, and triggered pronounced membrane hyperpolarization, in association with Gárdos channel activation and Ca2+ influx. Yoda1 induced Ca2+ -dependent adhesion of sickle RBCs to laminin, in microfluidic assays, mediated by increased BCAM binding affinity. Furthermore, RBCs from SCA patients that were homo-/heterozygous for the rs59446030 gain-of-function Piezo1 variant demonstrated enhanced sickling under deoxygenation and increased PS exposure. Thus, Piezo1 stimulation decreases sickle RBC deformability, and increases the propensities of these cells to sickle upon deoxygenation and adhere to laminin. Results support a role of Piezo1 in some of the RBC properties that contribute to SCA vaso-occlusion, indicating that Piezo1 may represent a potential therapeutic target molecule for this disease.
Collapse
Affiliation(s)
- Elie Nader
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| | - Nicola Conran
- Hematology and Transfusion Center, University of Campinas, Campinas, Brazil
| | - Flavia C Leonardo
- Hematology and Transfusion Center, University of Campinas, Campinas, Brazil
| | - Aline Hatem
- Sorbonne Université, CNRS, UMR 8227 LBI2M, Station Biologique de Roscoff SBR, Roscoff, France
| | - Camille Boisson
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-site, Hospices Civils de Lyon, Lyon, France
| | - Romain Carin
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| | - Céline Renoux
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-site, Hospices Civils de Lyon, Lyon, France
| | - Fernando F Costa
- Hematology and Transfusion Center, University of Campinas, Campinas, Brazil
| | - Philippe Joly
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-site, Hospices Civils de Lyon, Lyon, France
| | - Pamela L Brito
- Hematology and Transfusion Center, University of Campinas, Campinas, Brazil
| | - Sofia Esperti
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Erytech Pharma, Lyon, France
| | - Joelle Bernard
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-site, Hospices Civils de Lyon, Lyon, France
| | - Alexandra Gauthier
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Institut d'Hématologique et d'Oncologique Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Solene Poutrel
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Service de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Yves Bertrand
- Institut d'Hématologique et d'Oncologique Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Caroline Garcia
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-site, Hospices Civils de Lyon, Lyon, France
| | - Sara T O Saad
- Hematology and Transfusion Center, University of Campinas, Campinas, Brazil
| | - Stéphane Egée
- Sorbonne Université, CNRS, UMR 8227 LBI2M, Station Biologique de Roscoff SBR, Roscoff, France
| | - Philippe Connes
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| |
Collapse
|
28
|
Dienes B, Bazsó T, Szabó L, Csernoch L. The Role of the Piezo1 Mechanosensitive Channel in the Musculoskeletal System. Int J Mol Sci 2023; 24:ijms24076513. [PMID: 37047487 PMCID: PMC10095409 DOI: 10.3390/ijms24076513] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Since the recent discovery of the mechanosensitive Piezo1 channels, many studies have addressed the role of the channel in various physiological or even pathological processes of different organs. Although the number of studies on their effects on the musculoskeletal system is constantly increasing, we are still far from a precise understanding. In this review, the knowledge available so far regarding the musculoskeletal system is summarized, reviewing the results achieved in the field of skeletal muscles, bones, joints and cartilage, tendons and ligaments, as well as intervertebral discs.
Collapse
|