1
|
Li J, Mo D, Hu J, Wang S, Gong J, Huang Y, Li Z, Yuan Z, Xu M. PEDOT:PSS-based bioelectronics for brain monitoring and modulation. MICROSYSTEMS & NANOENGINEERING 2025; 11:87. [PMID: 40360495 PMCID: PMC12075682 DOI: 10.1038/s41378-025-00948-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 05/15/2025]
Abstract
The growing demand for advanced neural interfaces that enable precise brain monitoring and modulation has catalyzed significant research into flexible, biocompatible, and highly conductive materials. PEDOT:PSS-based bioelectronic materials exhibit high conductivity, mechanical flexibility, and biocompatibility, making them particularly suitable for integration into neural devices for brain science research. These materials facilitate high-resolution neural activity monitoring and provide precise electrical stimulation across diverse modalities. This review comprehensively examines recent advances in the development of PEDOT:PSS-based bioelectrodes for brain monitoring and modulation, with a focus on strategies to enhance their conductivity, biocompatibility, and long-term stability. Furthermore, it highlights the integration of multifunctional neural interfaces that enable synchronous stimulation-recording architectures, hybrid electro-optical stimulation modalities, and multimodal brain activity monitoring. These integrations enable fundamentally advancing the precision and clinical translatability of brain-computer interfaces. By addressing critical challenges related to efficacy, integration, safety, and clinical translation, this review identifies key opportunities for advancing next-generation neural devices. The insights presented are vital for guiding future research directions in the field and fostering the development of cutting-edge bioelectronic technologies for neuroscience and clinical applications.
Collapse
Affiliation(s)
- Jing Li
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Daize Mo
- School of Applied Physics and Materials, Wuyi University, Jiangmen, 529020, P. R. China
| | - Jinyuan Hu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Shichao Wang
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Jun Gong
- Central Laboratory of YunFu People's Hospital, Yunfu, Guangdong, China
| | - Yujing Huang
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, SAR 999078, China
| | - Zheng Li
- Department of Psychology, Faculty of Arts and Sciences, Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, SAR 999078, China
| | - Mengze Xu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China.
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, SAR 999078, China.
- Department of Psychology, Faculty of Arts and Sciences, Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China.
| |
Collapse
|
2
|
Guo Y, Liu Y, Zhang Z, Zhang X, Jin X, Zhang R, Chen G, Zhu L, Zhu M. Biopolymer based Fibrous Aggregate Materials for Diagnosis and Treatment: Design, Manufacturing, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414877. [PMID: 40351104 DOI: 10.1002/adma.202414877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 04/05/2025] [Indexed: 05/14/2025]
Abstract
Biopolymer-based fibrous aggregate materials (BFAMs) have gained increasing attention in biomedicine due to their excellent biocompatibility, processability, biodegradability, and multifunctionality. Especially, the medical applications of BFAMs demand advanced structure, performance, and function, which conventional trial-and-error methods struggle to provide. This necessitates the rational selection of materials and manufacturing methods to design BFAMs with various intended functions and structures. This review summarizes the current progress in raw material selection, structural and functional design, processing technology, and application of BFAMs. Additionally, the challenges encountered during the development of BFAMs are discussed, along with perspectives for future research offered.
Collapse
Affiliation(s)
- Ying Guo
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Yifan Liu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Zeqi Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Xiaozhe Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Xu Jin
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Ruxu Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Guoyin Chen
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Liping Zhu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Meifang Zhu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| |
Collapse
|
3
|
Yang J, Sun J, Yu T, Yao J, Wei K, Jiang Z, Fang M, Li W. Unleashing the power within: Enhancing hydrogel bio-mimetic polymer actuators (HBPA) through sodium alginate crosslinking with cordyceps polysaccharide (CO-PS). Int J Biol Macromol 2025; 309:142916. [PMID: 40203932 DOI: 10.1016/j.ijbiomac.2025.142916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/28/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Hydrogel crosslinking varies in properties and stability, with many physiochemical crosslinkers boosting hydrogel performance but raising issues about biotoxicity, sourcing, and compatibility. Cordyceps polysaccharide, from the rare Chinese herb cordyceps, offers antioxidant and anti-cancer benefits without biological toxicity. This study developed a new hydrogel actuating membrane by crosslinking cordyceps polysaccharide with sodium alginate. Hydrogel Bio-mimetic Polymer Actuators (HBPA) were then assembled using non-metallic electrode membranes and tested for electrical actuation properties. A mechanoelectric coupling model was used to study the electrically actuated deflection system of HBPA. Results showed that a crosslinking ratio of 3:5 increased the peak output force density of HBPA to 21.95 mN/g. The actuation speed increased by 8.05 % compared to the basement membrane, while the duty ratio dropped by 80.8 %, significantly enhancing the tremor index. Tremor frequency and amplitude decreased by 43.52 % and 64.88 %, respectively. Electrochemically, specific capacitance grew 3.9 times, resistance fell by 21.7 %, and specific energy rose by 102.42 %. The actuating membrane featured a dense, uniform structure with evenly distributed pores and well-coordinated active groups at the optimal crosslinking ratio. At 4 V, HBPA demonstrated excellent electrical actuation and significant rebound at 0.1 Hz. Moreover, the mechanoelectric coupling model effectively applied to electroactive polymer materials.
Collapse
Affiliation(s)
- Junjie Yang
- School of Mechanical Engineering, Northeast Electric Power University, Jilin City 132012, People's Republic of China.
| | - Jihong Sun
- School of Mechanical Engineering, Northeast Electric Power University, Jilin City 132012, People's Republic of China
| | - Tao Yu
- School of Mechanical Engineering, Northeast Electric Power University, Jilin City 132012, People's Republic of China.
| | - Jintong Yao
- University Hospital, Northeast Electric Power University, Jilin City 132012, People's Republic of China
| | - Kang Wei
- School of Mechanical Engineering, Northeast Electric Power University, Jilin City 132012, People's Republic of China
| | - Zhen Jiang
- School of Mechanical Engineering, Northeast Electric Power University, Jilin City 132012, People's Republic of China
| | - Mingjian Fang
- School of Mechanical Engineering, Northeast Electric Power University, Jilin City 132012, People's Republic of China
| | - Weilong Li
- School of Mechanical Engineering, Northeast Electric Power University, Jilin City 132012, People's Republic of China
| |
Collapse
|
4
|
Teng J, Jia X, Qiu Z, Yang H, Li H. Amino-ended hyperbranched polyamide-cross-linked conducting polymer hydrogels with enhanced performance for wearable electronics. NANOSCALE 2025; 17:9427-9435. [PMID: 40111285 DOI: 10.1039/d4nr05041j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Strain sensors are essential for accurately capturing intricate motions across various applications. However, achieving both high mechanical strength and stability in strain sensors remains challenging. Herein, we present a novel and high-performance strain sensor using an amino-ended hyperbranched polyamide (HBPN) as a cross-linker to construct a strong and tough conducting polymer hydrogel composed of polyvinyl alcohol (PVA) and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The terminal amino groups in HBPN create non-covalent cross-links within the network, resulting in a robust structure. Notably, the unique hyperbranched topology of HBPN significantly enhances the hydrogel's properties, providing superior strength and toughness compared to its non-hyperbranched counterparts. Specifically, the distinctive macromolecular structure and abundant hydrogen bonding in the HBPN-PVA-PEDOT:PSS conducting polymer hydrogel result in exceptional toughness (991.53 kJ m-3), which is five times higher than that of the PVA-PEDOT:PSS hydrogel without HBPN. Additionally, the HBPN cross-linker enhances the sensitivity of the conducting polymer hydrogel, making it more responsive than linear analogs when used as a strain sensor. The resulting sensors adapt dynamically to human motion, demonstrating excellent detection capabilities. This work showcases a promising approach for developing cost-effective, sustainable, flexible, and high-performance wearable devices.
Collapse
Affiliation(s)
- Juan Teng
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, PR China.
| | - Xiaokai Jia
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, PR China.
| | - Ziyang Qiu
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, PR China.
| | - Hanjun Yang
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, PR China.
| | - Hai Li
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, PR China.
| |
Collapse
|
5
|
Kalulu M, Chilikwazi B, Hu J, Fu G. Soft Actuators and Actuation: Design, Synthesis, and Applications. Macromol Rapid Commun 2025; 46:e2400282. [PMID: 38850266 DOI: 10.1002/marc.202400282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Soft actuators are one of the most promising technological advancements with potential solutions to diverse fields' day-to-day challenges. Soft actuators derived from hydrogel materials possess unique features such as flexibility, responsiveness to stimuli, and intricate deformations, making them ideal for soft robotics, artificial muscles, and biomedical applications. This review provides an overview of material composition and design techniques for hydrogel actuators, exploring 3D printing, photopolymerization, cross-linking, and microfabrication methods for improved actuation. It examines applications of hydrogel actuators in biomedical, soft robotics, bioinspired systems, microfluidics, lab-on-a-chip devices, and environmental, and energy systems. Finally, it discusses challenges, opportunities, advancements, and regulatory aspects related to hydrogel actuators.
Collapse
Affiliation(s)
- Mulenga Kalulu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Bright Chilikwazi
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Jun Hu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| |
Collapse
|
6
|
Li Z, Jiang J, Luo J, Meng J, Cheng L, Qin H. A robust and conductive hydrotalcite/nanocellulose/PVA hydrogel constructed based on the Hofmeister effect. Int J Biol Macromol 2025; 298:139994. [PMID: 39826723 DOI: 10.1016/j.ijbiomac.2025.139994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/30/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Conductive hydrogel is one of the basic materials for constructing flexible sensors, and polyvinyl alcohol (PVA) hydrogel is commonly used. However, the current PVA hydrogels have apparent defects in strength and conductivity. The freeze-salting-out process based on the Hofmeister effect can effectively improve the strength of PVA. This study uses hydrotalcite and nanocellulose as additives to construct PVA composite hydrogel using the freeze-salting-out method. Due to the reconstruction of the hydrogen bond and the construction of a multi-level three-dimensional network structure, the tensile strength and elongation of PVA composite hydrogels are improved to 8.2 times and 8.1 times that of the pure PVA hydrogels, respectively. Meanwhile, the conductivity of PVA composite hydrogel is increased by 6.4 times with the significant development of ion content and the effective establishment of the transport path. Based on the characteristics of high ion concentration and stable network structure, the composite hydrogels show excellent elastic and strain recovery properties at -20 °C and room temperature. The prepared composite hydrogels have good biocompatibility. This work realizes the construction of PVA composite hydrogel material with high strength, high conductivity and wide temperature application range. It provides a new idea for the development of flexible biosafety sensors.
Collapse
Affiliation(s)
- Ze Li
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Jie Jiang
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Jing Luo
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Juan Meng
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Long Cheng
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Hengfei Qin
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| |
Collapse
|
7
|
Li J, Bi X, Zhou B, Yang S, Yu C. Nanocellulose-toughened super-stretchable ionic conductive gel fibers for wearable strain sensors. Int J Biol Macromol 2025; 299:140227. [PMID: 39855520 DOI: 10.1016/j.ijbiomac.2025.140227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
In recent years, conductive gel materials have attracted extensive attention in the field of flexible electronics because of their excellent elasticity. When constructed as gel fibers, they can adapt to greater deformation, be woven, and be assembled with fabrics to make wearable smart devices without compromising comfort. However, gel fibers reported often exhibit insufficient mechanical properties and poor adaptability to different environment. Herein, a super-stretchable ionic conductive gel fiber is reported. It is formed via a solvent-free template-assisted strategy, with a polyacrylamide (PAM) - TEMPO-mediated oxidized cellulose nanofibrils (TOCNF) double-network as main structure. The influence of each component content was analyzed. The addition of TOCNF significantly toughens the fiber (breaking strength, strain and toughness of 3.55 MPa, 1715.66 % and 4.75 MJ/m3, respectively) and provides larger channels for ion transport. The synergistic effect of lithium chloride (LiCl) and glycerin in system endows the fiber with properties of anti-dehydrating, anti-freezing, and good ionic conductivity (0.128 S/m). When used as a wearable strain sensor, the gel fiber has good linear response (sensitivity gauge factor of 0.8128) in the strain range of 0-300 %, which can accurately and stably sense human body movement, such as finger bending, wrist activities, walking and running in real time.
Collapse
Affiliation(s)
- Jiawei Li
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Xuerong Bi
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Buguang Zhou
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Shu Yang
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Chongwen Yu
- College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
8
|
Roy A, Afshari R, Jain S, Zheng Y, Lin MH, Zenkar S, Yin J, Chen J, Peppas NA, Annabi N. Advances in conducting nanocomposite hydrogels for wearable biomonitoring. Chem Soc Rev 2025; 54:2595-2652. [PMID: 39927792 DOI: 10.1039/d4cs00220b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Recent advancements in wearable biosensors and bioelectronics have led to innovative designs for personalized health management devices, with biocompatible conducting nanocomposite hydrogels emerging as a promising building block for soft electronics engineering. In this review, we provide a comprehensive framework for advancing biosensors using these engineered nanocomposite hydrogels, highlighting their unique properties such as high electrical conductivity, flexibility, self-healing, biocompatibility, biodegradability, and tunable architecture, broadening their biomedical applications. We summarize key properties of nanocomposite hydrogels for thermal, biomechanical, electrophysiological, and biochemical sensing applications on the human body, recent progress in nanocomposite hydrogel design and synthesis, and the latest technologies in developing flexible and wearable devices. This review covers various sensor types, including strain, physiological, and electrochemical sensors, and explores their potential applications in personalized healthcare, from daily activity monitoring to versatile electronic skin applications. Furthermore, we highlight the blueprints of design, working procedures, performance, detection limits, and sensitivity of these soft devices. Finally, we address challenges, prospects, and future outlook for advanced nanocomposite hydrogels in wearable sensors, aiming to provide a comprehensive overview of their current state and future potential in healthcare applications.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Ronak Afshari
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Saumya Jain
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Min-Hsuan Lin
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Shea Zenkar
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Junyi Yin
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| |
Collapse
|
9
|
Chen Z, Sun W, Qian Q, Chen Z, Hou Y, Ouyang J. A Self-Adhesive Flexible and Stretchable Compliant Surface Sensor for Real-Time Monitoring of Starch-Based Food Processing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12755-12764. [PMID: 39945466 DOI: 10.1021/acsami.5c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Flexible sensors have attracted great attention because of their important applications in many areas. It is important to monitor the surface of starch-based food during food processing because it can provide key information related to the appearance, texture level, and chewiness of the food. However, there is no report on real-time monitoring of the surface of steamed bread in the literature. Here, we report a self-adhesive and stretchable compliant sensor that can be mounted to the surface of starch-based food and provides real-time signals for the steaming process. The sensors consisting of biocompatible poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS), poly(vinyl alcohol) (PVA), tannic acid (TA), and glycerol can be fabricated by solution processing. Because it is stretchable and self-adhesive to the dough surface, it is compliant with the expansion or contraction of the dough during food processing. Its resistance varies with the shape and volume of the dough and thus can be monitored in a real-time manner. This is the first report of a surface sensor that can monitor the steaming process of starch-based food.
Collapse
Affiliation(s)
- Zinuo Chen
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Wen Sun
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
- NUS Research Institute, No. 16 South Huashan Road, Liangjiang New Area, Chongqing 401123, China
| | - Qi Qian
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Zhijun Chen
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Yuxuan Hou
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Jianyong Ouyang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
- NUS Research Institute, No. 16 South Huashan Road, Liangjiang New Area, Chongqing 401123, China
| |
Collapse
|
10
|
Wang P, Wang G, Sun G, Bao C, Li Y, Meng C, Yao Z. A Flexible-Integrated Multimodal Hydrogel-Based Sensing Patch. NANO-MICRO LETTERS 2025; 17:156. [PMID: 39982550 PMCID: PMC11845634 DOI: 10.1007/s40820-025-01656-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/01/2025] [Indexed: 02/22/2025]
Abstract
Sleep monitoring is an important part of health management because sleep quality is crucial for restoration of human health. However, current commercial products of polysomnography are cumbersome with connecting wires and state-of-the-art flexible sensors are still interferential for being attached to the body. Herein, we develop a flexible-integrated multimodal sensing patch based on hydrogel and its application in unconstraint sleep monitoring. The patch comprises a bottom hydrogel-based dual-mode pressure-temperature sensing layer and a top electrospun nanofiber-based non-contact detection layer as one integrated device. The hydrogel as core substrate exhibits strong toughness and water retention, and the multimodal sensing of temperature, pressure, and non-contact proximity is realized based on different sensing mechanisms with no crosstalk interference. The multimodal sensing function is verified in a simulated real-world scenario by a robotic hand grasping objects to validate its practicability. Multiple multimodal sensing patches integrated on different locations of a pillow are assembled for intelligent sleep monitoring. Versatile human-pillow interaction information as well as their evolution over time are acquired and analyzed by a one-dimensional convolutional neural network. Track of head movement and recognition of bad patterns that may lead to poor sleep are achieved, which provides a promising approach for sleep monitoring.
Collapse
Affiliation(s)
- Peng Wang
- School of Mechanical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Guoqing Wang
- School of Information Science and Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Guifen Sun
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, Engineering Research Center of Ministry of Education for Intelligent Rehabilitation Device and Detection Technology, Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Chenchen Bao
- School of Information Science and Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yang Li
- School of Information Science and Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
- School of Integrated Circuits, Shandong University, Jinan, 250101, People's Republic of China.
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Chuizhou Meng
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, Engineering Research Center of Ministry of Education for Intelligent Rehabilitation Device and Detection Technology, Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China.
| | - Zhao Yao
- College of Electronics and Information, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
11
|
Wei Y, Yu Q, Zhan Y, Wu H, Sun Q. Piezoelectric hydrogels for accelerating healing of diverse wound types. Biomater Sci 2025; 13:568-586. [PMID: 39714223 DOI: 10.1039/d4bm01347f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The skin, as the body's largest organ, plays a crucial role in protecting against mechanical forces and infections, maintaining fluid balance, and regulating body temperature. Therefore, skin wounds can significantly threaten human health and cause a heavy economic burden on society. Recently, bioelectric fields and electrical stimulation (ES) have been recognized as a promising pathway for modulating tissue engineering and regeneration of wounded skin. However, conventional hydrogel dressing lacks electrical generation capabilities and usually requires external stimuli to initiate the cell regeneration process, and the role of ES in different stages of healing is not fully understood. Therefore, to endow hydrogel-based wound dressings with piezoelectric properties, which can accelerate wound healing and potentially suppress infection via introducing ES, piezoelectric hydrogels (PHs) have emerged recently, combining the advantages of both piezoelectric nanomaterials and hydrogels beneficial for wound healing. Given the scarcity of systematic literature on the application of PHs in wound healing, this paper systematically discusses the principles of the piezoelectric effects, the design and fabrication of PHs, their piezoelectric properties, the way PHs trigger ES and the mechanisms by which they promote wound healing. Additionally, it summarizes the recent applications of PHs in various types of wounds, including traumatic wounds, pressure injuries, diabetic wounds, and infected wounds. Finally, the paper proposes future directions and challenges for the development of PH wound dressings for wound healing.
Collapse
Affiliation(s)
- Yanxing Wei
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qiwei Yu
- The First Clinical College, Changsha Medical University, Changsha, Hunan, 410005, China
| | - Yuxi Zhan
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Hao Wu
- Department of Stomatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Qiang Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
12
|
Wu F, Shi H, Gao Y, Cheng L, Gu T, Liu T, Chen Z, Fan W. Wet-spun Ag/PEDOT: PSS composite fibers for high-sensitive SERS sensing and high electrical conducting. Sci Rep 2024; 14:29219. [PMID: 39587282 PMCID: PMC11589342 DOI: 10.1038/s41598-024-80655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024] Open
Abstract
Nanometal-based composite fibers have been widely explored in flexible sensors due to their outstanding optical and electrical properties. However, the weak binding force between metallic nanomaterial and fiber greatly limits the real application. In this work, nano silver (Ag) are strongly bonded with poly(3,4-ethylenedioxythiophene)-poly (styrene sulfonate) (PEDOT: PSS) fiber by the wet-spun process. Ag-S chemical bonds are formed by the interaction of Ag and PEDOT. The Ag/PEDOT: PSS composite fiber shows excellent surface-enhanced Raman scattering (SERS) sensitivity on Rhodamine 6G (R6G) molecules. The detection limit can reach 10-11 M and Raman enhancement factor (EF) is of 1.3 × 107. The high-sensitive SERS activity of Ag/PEDOT: PSS composite fiber mainly results from PEDOT: PSS, and the enhancement factor is 3 orders of magnitude better than that of other PEDOT: PSS based SERS substrates. Moreover, the composite fiber has metal-level conductivity of 1019 S/cm. This is 5 times higher than the conductivity of PEDOT: PSS fiber and a two-fold improvement over the reported values for nanometal/PEDOT: PSS based fabrics. The composite fiber has electric stability under bending test with bending speeds of 2 Hz indicating the composite fiber has good structural stability. In addition, the temperature of the composite fiber with 7 cm length can reach 76.5 °C at a voltage of 18 V. Additionally, the composite fiber shows anti-bacterial property and melting drop resistance, which pave the way for the integration of fiber-based optical and electrical sensors in the future multifunctional flexible devices.
Collapse
Affiliation(s)
- Fan Wu
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, China.
- Key Laboratory of Functional Textile Material and Product of Ministry of Education, Xi'an Polytechnic University, Xi'an, 710048, China.
| | - Haoyu Shi
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Yulong Gao
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Lin Cheng
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan, 030051, China
| | - Tongkai Gu
- School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Tong Liu
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Ziyun Chen
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Wei Fan
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, China.
- Key Laboratory of Functional Textile Material and Product of Ministry of Education, Xi'an Polytechnic University, Xi'an, 710048, China.
| |
Collapse
|
13
|
Guo Z, Xu X, Qiu J, Yu W, Zhang S, Li J, Zhu Y, Lu J, Gao Q, Nie B, Zhang Y, Qi G, Wang W, Zhang X, Jiang L, Wei R. Fishing net-inspired PVA-chitosan-CNT hydrogels with high stretchability, sensitivity, and environmentally stability for textile strain sensors. Int J Biol Macromol 2024; 282:137576. [PMID: 39542290 DOI: 10.1016/j.ijbiomac.2024.137576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/03/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Soft electronic products are being extensively investigated in diverse applications including sensors and devices, due to their superior softness, responsiveness, and biocompatibility. One-dimensional (1-D) fiber electronic devices are recognized for their lightweight, wearable, and stretchable qualities, thus emerging as critical constituents for seamless integration with the human body and attire, exhibiting great potential in wearable applications. However, wearable conductive hydrogel fibers usually face challenges in combining stretchability and excellent stability, notably in high-temperature environment. Herein, a novel stretchable conductive hydrogel fiber, namely PVA-CS-CNT (Polyvinyl Alcohol-Chitosan-Carbon Nanotube) hydrogel fiber, was successfully prepared through a straightforward low-temperature process. This hydrogel fiber not only maintains stable signal transmission at high temperatures but also exhibits significant mechanical and sensing capabilities, ensuring signal stability during repetitive cyclic stretching. Inspired by fishing net, textile sensors were fabricated by weaving PVA-CS-CNT hydrogel fibers, which offered breathability, high stability (withstanding over 500 stretch cycles), high sensitivity (detecting strains as low as 1 %), and exceptional mechanical strength (exceeding 17 MPa). The wearable sensor could not only accurately monitor human movements like stretching and bending, but also adeptly captured delicate signals such as pulses and sounds. These characteristics demonstrated the potential applications of the hydrogel fibers encompassing human motion tracking, intelligent textiles, and soft robotics.
Collapse
Affiliation(s)
- Zhongwei Guo
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Province Engineering Technology Research Center of MEMS Manufacturing and Applications, Zhengzhou University, Zhengzhou 450001, China
| | - Xing Xu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jingjiang Qiu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Province Engineering Technology Research Center of MEMS Manufacturing and Applications, Zhengzhou University, Zhengzhou 450001, China.
| | - Wenlong Yu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shiqiang Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Junfu Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yihong Zhu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Junxia Lu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Qiulei Gao
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Bangbang Nie
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Province Engineering Technology Research Center of MEMS Manufacturing and Applications, Zhengzhou University, Zhengzhou 450001, China
| | - Yudong Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Province Engineering Technology Research Center of MEMS Manufacturing and Applications, Zhengzhou University, Zhengzhou 450001, China
| | - Guochen Qi
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Province Engineering Technology Research Center of MEMS Manufacturing and Applications, Zhengzhou University, Zhengzhou 450001, China
| | - Wen Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Province Engineering Technology Research Center of MEMS Manufacturing and Applications, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Liying Jiang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Ronghan Wei
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Province Engineering Technology Research Center of MEMS Manufacturing and Applications, Zhengzhou University, Zhengzhou 450001, China; Industrial Technology Research Institute, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
14
|
Zhou S, Zhang Z, Zhong W, Meng A, Su Y. Polyvinyl alcohol/PEDOT:PSS with Fe 3+/amylopectin enabled highly tough, anti-freezing and healable hydrogels for multifunctional wearable sensors. Talanta 2024; 279:126592. [PMID: 39053360 DOI: 10.1016/j.talanta.2024.126592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
In recent years, hydrogel-based flexible sensors have garnered increasing attention in research. Ionic hydrogels, enriched with large amounts of ionic liquids, exhibit electrical conductivity, excellent electrochemical stability, anti-freezing, and antimicrobial properties. However, most ionic hydrogels suffer from poor mechanical properties, limiting their adaptability to more complex application scenarios. Integrating conductive polymers into hydrogels leads to desirable features such as increased specific surface area, soft and biocompatible interfaces, and high electrolyte permeability. In this study, we successfully prepared Fe3+/Ap@PVA/PEDOT double-network hydrogel. Utilizing polyvinyl alcohol (PVA) as the primary matrix, we introduced PEDOT:PSS and FeCl3 to confer conductivity to the hydrogel. The incorporation of amylopectin (Ap) further enhanced mechanical performance. The resulted hydrogel sensor exhibits outstanding mechanical properties, allowing for stretching up to 347 % and withstanding a tensile force of 505 kPa. In addition, it exhibits excellent antifreeze properties (can work at -30 °C), healability, water retention, and high sensitivity to stretching (GF = 4.72 at a 200 % strain ratio), compression (GF = 2.97 at a 12 % compressive ratio), and temperature (TCR = 2.46). These remarkable properties of the hydrogel make it possible in applications such as human motion monitoring, handwriting recognition, and temperature sensing.
Collapse
Affiliation(s)
- Shuang Zhou
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, PR China
| | - Zheng Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, PR China
| | - Wei Zhong
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, PR China
| | - Aiyun Meng
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, PR China.
| | - Yaorong Su
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, PR China.
| |
Collapse
|
15
|
Li W, Li Y, Song Z, Wang YX, Hu W. PEDOT-based stretchable optoelectronic materials and devices for bioelectronic interfaces. Chem Soc Rev 2024; 53:10575-10603. [PMID: 39254255 DOI: 10.1039/d4cs00541d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The rapid development of wearable and implantable electronics has enabled the real-time transmission of electrophysiological signals in situ, thus allowing the precise monitoring and regulation of biological functions. Devices based on organic materials tend to have low moduli and intrinsic stretchability, making them ideal choices for the construction of seamless bioelectronic interfaces. In this case, as an organic ionic-electronic conductor, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has low impedance to offer a high signal-to-noise ratio for monitoring bioelectrical signals, which has become one of the most promising conductive polymers. However, the initial conductivity and stretchability of pristine PEDOT:PSS are insufficient to meet the application requirements, and there is a trade-off between their improvement. In addition, PEDOT:PSS has poor stability in aqueous environments due to the hygroscopicity of the PSS chains, which severely limits its long-term applications in water-rich bioelectronic interfaces. Considering the growing demands of multi-function integration, the high-resolution fabrication of electronic devices is urgent. It is a great challenge to maintain both electrical and mechanical performance after miniaturization, particularly at feature sizes below 100 μm. In this review, we focus on the combined improvement in the conductivity and stretchability of PEDOT:PSS, as well as the corresponding mechanisms in detail. Also, we summarize the effective strategies to improve the stability of PEDOT:PSS in aqueous environments, which plays a vital role in long-term applications. Finally, we introduce the reliable micropatterning technologies and PEDOT:PSS-based stretchable optoelectronic devices applied at bio-interfaces.
Collapse
Affiliation(s)
- Weizhen Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yiming Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Ziyu Song
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yi-Xuan Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
16
|
Sun Z, Ou Q, Dong C, Zhou J, Hu H, Li C, Huang Z. Conducting polymer hydrogels based on supramolecular strategies for wearable sensors. EXPLORATION (BEIJING, CHINA) 2024; 4:20220167. [PMID: 39439497 PMCID: PMC11491309 DOI: 10.1002/exp.20220167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Conductive polymer hydrogels (CPHs) are gaining considerable attention in developing wearable electronics due to their unique combination of high conductivity and softness. However, in the absence of interactions, the incompatibility between hydrophobic conductive polymers (CPs) and hydrophilic polymer networks gives rise to inadequate bonding between CPs and hydrogel matrices, thereby significantly impairing the mechanical and electrical properties of CPHs and constraining their utility in wearable electronic sensors. Therefore, to endow CPHs with good performance, it is necessary to ensure a stable and robust combination between the hydrogel network and CPs. Encouragingly, recent research has demonstrated that incorporating supramolecular interactions into CPHs enhances the polymer network interaction, improving overall CPH performance. However, a comprehensive review focusing on supramolecular CPH (SCPH) for wearable sensing applications is currently lacking. This review provides a summary of the typical supramolecular strategies employed in the development of high-performance CPHs and elucidates the properties of SCPHs that are closely associated with wearable sensors. Moreover, the review discusses the fabrication methods and classification of SCPH sensors, while also exploring the latest application scenarios for SCPH wearable sensors. Finally, it discusses the challenges of SCPH sensors and offers suggestions for future advancements.
Collapse
Affiliation(s)
- Zhiyuan Sun
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Qingdong Ou
- Macao Institute of Materials Science and Engineering (MIMSE)Faculty of Innovation EngineeringMacau University of Science and TechnologyMacao TaipaPeople's Republic of China
| | - Chao Dong
- Chemistry and Physics DepartmentCollege of Art and ScienceThe University of Texas of Permian BasinOdessaTexasUSA
| | - Jinsheng Zhou
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenPeople's Republic of China
| | - Huiyuan Hu
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenPeople's Republic of China
| | - Chong Li
- Guangdong Polytechnic of Science and TechnologyZhuhaiPeople's Republic of China
| | - Zhandong Huang
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'anPeople's Republic of China
| |
Collapse
|
17
|
Jia M, Guan M, Yao R, Qing Y, Hou X, Zhang J. Facile Formation of Multifunctional Biomimetic Hydrogel Fibers for Sensing Applications. Gels 2024; 10:590. [PMID: 39330192 PMCID: PMC11431008 DOI: 10.3390/gels10090590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
To face the challenges in preparing hydrogel fibers with complex structures and functions, this study utilized a microfluidic coaxial co-extrusion technique to successfully form functional hydrogel fibers through rapid ionic crosslinking. Functional hydrogel fibers with complex structures, including linear fibers, core-shell structure fibers, embedded helical channels, hollow tubes, and necklaces, were generated by adjusting the composition of internal and external phases. The characteristic parameters of the hydrogel fibers (inner and outer diameter, helix generation position, pitch, etc.) were achieved by adjusting the flow rate of the internal and external phases. As biocompatible materials, hydrogel fibers were endowed with electrical conductivity, temperature sensitivity, mechanical enhancement, and freeze resistance, allowing for their use as temperature sensors for human respiratory monitoring and other biomimetic application developments. The hydrogel fibers had a conductivity of up to 22.71 S/m, a response time to respiration of 37 ms, a recovery time of 1.956 s, and could improve the strength of respiration; the tensile strength at break up to 8.081 MPa, elongation at break up to 159%, and temperature coefficient of resistance (TCR) up to -13.080% °C-1 were better than the existing related research.
Collapse
Affiliation(s)
- Mengwei Jia
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214126, China
| | - Mingle Guan
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Ryan Yao
- College of Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Yuan Qing
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaoya Hou
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214126, China
| | - Jie Zhang
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214126, China
| |
Collapse
|
18
|
Gong X, Hu T, Zhang Y, Zeng Y, Zhang Y, Jiang Z, Tan Y, Zou Y, Wang J, Dai J, Chu Z. Trunk-Inspired SWCNT-Based Wrinkled Films for Highly-Stretchable Electromagnetic Interference Shielding and Wearable Thermotherapy. NANO-MICRO LETTERS 2024; 16:243. [PMID: 38990359 PMCID: PMC11239633 DOI: 10.1007/s40820-024-01454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024]
Abstract
Nowadays, the increasing electromagnetic waves generated by wearable devices are becoming an emerging issue for human health, so stretchable electromagnetic interference (EMI) shielding materials are highly demanded. Elephant trunks are capable of grabbing fragile vegetation and tearing trees thanks not only to their muscles but also to their folded skins. Inspired by the wrinkled skin of the elephant trunks, herein, we propose a winkled conductive film based on single-walled carbon nanotubes (SWCNTs) for multifunctional EMI applications. The conductive film has a sandwich structure, which was prepared by coating SWCNTs on both sides of the stretched elastic latex cylindrical substrate. The shrinking-induced winkled conductive network could withstand up to 200% tensile strain. Typically, when the stretching direction is parallel to the polarization direction of the electric field, the total EMI shielding effectiveness could surprisingly increase from 38.4 to 52.7 dB at 200% tensile strain. It is mainly contributed by the increased connection of the SWCNTs. In addition, the film also has good Joule heating performance at several voltages, capable of releasing pains in injured joints. This unique property makes it possible for strain-adjustable multifunctional EMI shielding and wearable thermotherapy applications.
Collapse
Affiliation(s)
- Xiaofeng Gong
- College of Science, National University of Defense Technology, Changsha, 410073, People's Republic of China
| | - Tianjiao Hu
- College of Science, National University of Defense Technology, Changsha, 410073, People's Republic of China
| | - You Zhang
- College of Science, National University of Defense Technology, Changsha, 410073, People's Republic of China
| | - Yanan Zeng
- School of Physics and Electronics, Hunan University, Changsha, 410082, People's Republic of China
| | - Ye Zhang
- College of Science, National University of Defense Technology, Changsha, 410073, People's Republic of China
| | - Zhenhua Jiang
- College of Science, National University of Defense Technology, Changsha, 410073, People's Republic of China
| | - Yinlong Tan
- Beijing Interdisciplinary Research Center, National University of Defense Technology, Changsha, 410073, People's Republic of China.
| | - Yanhong Zou
- School of Physics and Electronics, Hunan University, Changsha, 410082, People's Republic of China
| | - Jing Wang
- College of Science, National University of Defense Technology, Changsha, 410073, People's Republic of China
| | - Jiayu Dai
- College of Science, National University of Defense Technology, Changsha, 410073, People's Republic of China.
| | - Zengyong Chu
- College of Science, National University of Defense Technology, Changsha, 410073, People's Republic of China.
| |
Collapse
|
19
|
Zhang C, Kwon SH, Dong L. Piezoelectric Hydrogels: Hybrid Material Design, Properties, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310110. [PMID: 38329191 DOI: 10.1002/smll.202310110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Hydrogels show great potential in biomedical applications due to their inherent biocompatibility, high water content, and resemblance to the extracellular matrix. However, they lack self-powering capabilities and often necessitate external stimulation to initiate cell regenerative processes. In contrast, piezoelectric materials offer self-powering potential but tend to compromise flexibility. To address this, creating a novel hybrid biomaterial of piezoelectric hydrogels (PHs), which combines the advantageous properties of both materials, offers a systematic solution to the challenges faced by these materials when employed separately. Such innovative material system is expected to broaden the horizons of biomedical applications, such as piezocatalytic medicinal and health monitoring applications, showcasing its adaptability by endowing hydrogels with piezoelectric properties. Unique functionalities, like enabling self-powered capabilities and inducing electrical stimulation that mimics endogenous bioelectricity, can be achieved while retaining hydrogel matrix advantages. Given the limited reported literature on PHs, here recent strategies concerning material design and fabrication, essential properties, and distinctive applications are systematically discussed. The review is concluded by providing perspectives on the remaining challenges and the future outlook for PHs in the biomedical field. As PHs emerge as a rising star, a comprehensive exploration of their potential offers insights into the new hybrid biomaterials.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, 07114, USA
| | - Sun Hwa Kwon
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, 07114, USA
| | - Lin Dong
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, 07114, USA
| |
Collapse
|
20
|
Yu J, Wan R, Tian F, Cao J, Wang W, Liu Q, Yang H, Liu J, Liu X, Lin T, Xu J, Lu B. 3D Printing of Robust High-Performance Conducting Polymer Hydrogel-Based Electrical Bioadhesive Interface for Soft Bioelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308778. [PMID: 38063822 DOI: 10.1002/smll.202308778] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/15/2023] [Indexed: 05/12/2024]
Abstract
Electrical bioadhesive interface (EBI), especially conducting polymer hydrogel (CPH)-based EBI, exhibits promising potential applications in various fields, including biomedical devices, neural interfaces, and wearable devices. However, current fabrication techniques of CPH-based EBI mostly focus on conventional methods such as direct casting, injection, and molding, which remains a lingering challenge for further pushing them toward customized practical bioelectronic applications and commercialization. Herein, 3D printable high-performance CPH-based EBI precursor inks are developed through composite engineering of PEDOT:PSS and adhesive ionic macromolecular dopants within tough hydrogel matrices (PVA). Such inks allow the facile fabrication of high-resolution and programmable patterned EBI through 3D printing. Upon successive freeze-thawing, the as-printed PEDOT:PSS-based EBI simultaneously exhibits high conductivity of 1.2 S m-1, low interfacial impedance of 20 Ω, high stretchability of 349%, superior toughness of 109 kJ m-3, and satisfactory adhesion to various materials. Enabled by these advantageous properties and excellent printability, the facile and continuous manufacturing of EBI-based skin electrodes is further demonstrated via 3D printing, and the fabricated electrodes display excellent ECG and EMG signal recording capability superior to commercial products. This work may provide a new avenue for rational design and fabrication of next-generation EBI for soft bioelectronics, further advancing seamless human-machine integration.
Collapse
Affiliation(s)
- Jiawen Yu
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Rongtai Wan
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Fajuan Tian
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Jie Cao
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Wen Wang
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Qi Liu
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Hanjun Yang
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Jingcheng Liu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Ximei Liu
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Tao Lin
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, P. R. China
| | - Jingkun Xu
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Baoyang Lu
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| |
Collapse
|
21
|
Li H, Liu Y, Liu S, Li P, Zhang H, Zhang C, He C. High-Performance Polyaniline-Coated Carbon Nanotube Yarns for Wearable Thermoelectric Generators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17598-17606. [PMID: 38551818 DOI: 10.1021/acsami.4c00935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Carbon nanotubes/polyaniline (CNTs/PANI) composites have attracted significant attention in thermoelectric (TE) conversion due to their excellent stability and easy synthesis. However, their TE performance is far from practical demands, and few flexible yarns/fibers have been developed for wearable electronics. Herein, we developed flexible CNTs/PANI yarns with outstanding TE properties via facile soaking of CNT yarns in a PANI solution, in which the PANI layer was coated on the CNT surface and served as a bridge to interconnect adjacent CNT filaments. With optimizing PANI concentration, immersing duration, and doping level of PANI, the power factor reached 1294 μW m-1 K-2 with a high electrical conductivity of 3651 S cm-1, which is superior to that of most of the reported CNTs/PANI composites and organic yarns. Combining outstanding TE performance with excellent bending stability, a highly integrated and flexible TE generator was assembled consisting of 40 pairs of interval p-n segments, which generate a high power of 377 nW at a temperature gradient of 10 K along the out-of-plane direction. These results indicate the promising application of CNTs/PANI yarns in wearable energy harvesting.
Collapse
Affiliation(s)
- Hui Li
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yalong Liu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Siqi Liu
- Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117574, Singapore
| | - Pengcheng Li
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University, Hefei 230601, China
| | - Han Zhang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Chun Zhang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Chaobin He
- Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117574, Singapore
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| |
Collapse
|
22
|
Zhao Q, Zhao L, Zhang Y, Chen W, Tang S. Design of smart temperature-sensitive terpolymeric hydrogel for multi-applications in liquid chromatography. J Chromatogr A 2024; 1722:464867. [PMID: 38598895 DOI: 10.1016/j.chroma.2024.464867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Hydrogels with a unique three-dimensional network structure have been widely used in a variety of fields. However, hydrogels are prone to swelling under water-rich conditions, which severely limits their application in liquid chromatography. Therefore, producing a hydrogel with reliable performance and good mechanical property is essential. Smart temperature-sensitive chromatographic packings have attracted extensive attentions in recent years. In this work, sodium 4-styrenesulfonate and 1-octadecene were introduced into the poly(N-isopropylacrylamide) hydrogel to improve mechanical property and separation performance. As a consequence, a smart temperature-sensitive terpolymeric hydrogel modified silica stationary phase (ION-hydrogel@SiO2) was synthesized for multimode liquid chromatographic separation. It was found that this new ION-hydrogel@SiO2 column exhibited excellent chromatographic separation ability for a wide range of analytes. To a certain extent, this new column has a higher chromatographic separation efficiency compared to the commercial C18 column and XAmide column. Moreover, the use of low proportion of organic phase in chromatographic separation is conducive to the realization of green chromatography. By investigating the chromatographic separation mechanism, it has been demonstrated that the hydrogen bonding interaction is primarily responsible for the temperature-sensitive behavior of the hydrogel. Finally, the ION-hydrogel@SiO2 column was used for the determination of pyridoxine in the commercially available tablet samples. In conclusion, this study presents a feasible idea for the development of novel copolymer hydrogels as liquid chromatographic stationary phases.
Collapse
Affiliation(s)
- Qian Zhao
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lulu Zhao
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yuefei Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
23
|
Li P, Wang H, Ju Z, Jin Z, Ma J, Yang L, Zhao X, Xu H, Liu Y. Ti 3C 2T x MXene- and Sulfuric Acid-Treated Double-Network Hydrogel with Ultralow Conductive Filler Content for Stretchable Electromagnetic Interference Shielding. ACS NANO 2024; 18:2906-2916. [PMID: 38252027 DOI: 10.1021/acsnano.3c07233] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Hydrogels are emerging as stretchable electromagnetic interference (EMI) shielding materials because of their tissue-like mechanical properties and water-rich porous cellular structures. However, achieving high-performance hydrogel shields remains a challenge because enhancing conductivity often results in a compromise in deformation adoptability. This work proposes a treatment strategy involving sulfuric acid/titanium carbide MXene, which can simultaneously enhance the conductivity and stretchability of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/poly(vinyl alcohol) (PVA) double-network hydrogels. Multiple spectroscopic characterizations reveal that sulfuric acid promotes the linear conformation transition of the PEDOT molecular chain, while MXene increases charge delocalization and hydrogen bond cross-linking sites. The hydrogels, synthesized with a combined content of 0.6 wt % of MXene and PEDOT:PSS, exhibit an average X-band EMI SE of 41 dB. This performance is sustained at 94.5%, even following stretching and release at a strain of 200%. Interestingly, the EMI SE is found to linearly increase, reaching a value of 99 dB as the frequency is increased to 26.5 GHz. This increase is attributed to the enhanced water molecular polarization process, as supported by theoretical calculations of the impedance and attenuation constant. This work introduces a post-treatment technique that optimizes double-network hydrogels, providing deep insights into their EMI shielding mechanism and enabling high-performance EMI shielding with an ultralow conductive filler content.
Collapse
Affiliation(s)
- Peng Li
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Henan Wang
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zhongshi Ju
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zhongzheng Jin
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jiangang Ma
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Lin Yang
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiaoning Zhao
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Haiyang Xu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
24
|
Liu Y, Wang C, Liu Z, Qu X, Gai Y, Xue J, Chao S, Huang J, Wu Y, Li Y, Luo D, Li Z. Self-encapsulated ionic fibers based on stress-induced adaptive phase transition for non-contact depth-of-field camouflage sensing. Nat Commun 2024; 15:663. [PMID: 38253700 PMCID: PMC10803323 DOI: 10.1038/s41467-024-44848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Ionically conductive fibers have promising applications; however, complex processing techniques and poor stability limit their practicality. To overcome these challenges, we proposed a stress-induced adaptive phase transition strategy to conveniently fabricate self-encapsulated hydrogel-based ionically conductive fibers (se-HICFs). se-HICFs can be produced simply by directly stretching ionic hydrogels with ultra-stretchable networks (us-IHs) or by dip-drawing from molten us-IHs. During this process, stress facilitated the directional migration and evaporation of water molecules in us-IHs, causing a phase transition in the surface layer of ionic fibers to achieve self-encapsulation. The resulting sheath-core structure of se-HICFs enhanced mechanical strength and stability while endowing se-HICFs with powerful non-contact electrostatic induction capabilities. Mimicking nature, se-HICFs were woven into spider web structures and camouflaged in wild environments to achieve high spatiotemporal resolution 3D depth-of-field sensing for different moving media. This work opens up a convenient route to fabricate stable functionalized ionic fibers.
Collapse
Affiliation(s)
- Ying Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chan Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuo Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Xuecheng Qu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yansong Gai
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Jiangtao Xue
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, China
| | - Shengyu Chao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Huang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxiang Wu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, 430056, China
| | - Yusheng Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
25
|
Yan M, Wang L, Wu Y, Liao X, Zhong C, Wang L, Lu Y. Conducting Polymer-Hydrogel Interpenetrating Networks for Improving the Electrode-Neural Interface. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41310-41323. [PMID: 37590473 DOI: 10.1021/acsami.3c07189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Implantable neural microelectrodes are recognized as a bridge for information exchange between inner organisms and outer devices. Combined with novel modulation technologies such as optogenetics, it offers a highly precise methodology for the dissection of brain functions. However, achieving chronically effective and stable microelectrodes to explore the electrophysiological characteristics of specific neurons in free-behaving animals continually poses great challenges. To resolve this, poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)/poly(vinyl alcohol) (PEDOT/PSS/PVA) interpenetrating conducting polymer networks (ICPN) are fabricated via a hydrogel scaffold precoating and electrochemical polymerization process to improve the performance of neural microelectrodes. The ICPN films exhibit robust interfacial adhesion, a significantly lower electrochemical impedance, superior mechanical properties, and improved electrochemical stability compared to the pure poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)(PEDOT/PSS) films, which may be attributed to the three-dimensional (3D) porous microstructure of the ICPN. Hippocampal neurons and rat pheochromocytoma cells (PC12 cells) adhesion on ICPN and neurite outgrowth are observed, indicating enhanced biocompatibility. Furthermore, alleviated tissue response at the electrode-neural tissue interface and improved recording signal quality are confirmed by histological and electrophysiological studies, respectively. Owing to these merits, optogenetic modulations and electrophysiological recordings are performed in vivo, and an anxiolytic effect of hippocampal glutamatergic neurons on behavior is shown. This study demonstrates the effectiveness and advantages of ICPN-modified neural implants for in vivo applications.
Collapse
Affiliation(s)
- Mengying Yan
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Lulu Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Yiyong Wu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Xin Liao
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Cheng Zhong
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Yi Lu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| |
Collapse
|
26
|
Cao J, Zhang Z, Li K, Ma C, Zhou W, Lin T, Xu J, Liu X. Self-Healable PEDOT:PSS-PVA Nanocomposite Hydrogel Strain Sensor for Human Motion Monitoring. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2465. [PMID: 37686973 PMCID: PMC10489763 DOI: 10.3390/nano13172465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Strain sensors based on conducting polymer hydrogels are considered highly promising candidates for wearable electronic devices. However, existing conducting polymer hydrogels are susceptible to aging, damage, and failure, which can greatly deteriorate the sensing performance of strain sensors based on these substances and the accuracy of data collection under large deformation. Developing conductive polymer hydrogels with concurrent high sensing performance and self-healing capability is a critical yet challenging task to improve the stability and lifetime of strain sensors. Herein, we design a self-healable conducting polymer hydrogel by compositing poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) nanofibers and poly(vinyl alcohol) (PVA) via both physical and chemical crosslinking. This PEDOT:PSS-PVA nanocomposite hydrogel strain sensor displays an excellent strain monitoring range (>200%), low hysteresis (<1.6%), a high gauge factor (GF = 3.18), and outstanding self-healing efficiency (>83.5%). Electronic skins based on such hydrogel strain sensors can perform the accurate monitoring of various physiological signals, including swallowing, finger bending, and knee bending. This work presents a novel conducting polymer hydrogel strain sensor demonstrating both high sensing performance and self-healability, which can satisfy broad application scenarios, such as wearable electronics, health monitoring, etc.
Collapse
Affiliation(s)
- Jie Cao
- Jiangxi Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (J.C.); (Z.Z.)
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Zhilin Zhang
- Jiangxi Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (J.C.); (Z.Z.)
| | - Kaiyun Li
- Jiangxi Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (J.C.); (Z.Z.)
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Cha Ma
- Key Laboratory of Organic Chemistry in Jiangxi Province, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China;
| | - Weiqiang Zhou
- Jiangxi Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (J.C.); (Z.Z.)
| | - Tao Lin
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Jingkun Xu
- Jiangxi Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (J.C.); (Z.Z.)
- School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ximei Liu
- Jiangxi Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (J.C.); (Z.Z.)
| |
Collapse
|
27
|
Chen Z, Liu H, Lin X, Mei X, Lyu W, Liao Y. Competitive proton-trapping strategy enhanced anti-freezing organohydrogel fibers for high-strain-sensitivity wearable sensors. MATERIALS HORIZONS 2023; 10:3569-3581. [PMID: 37306627 DOI: 10.1039/d3mh00459g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stretchable organohydrogel fibers are attracting considerable interest for next-generation flexible and wearable soft strain sensors due to their excellent stability in harsh environments. However, due to the uniformly distributed ions and reduced number of carriers in the whole material, the sensitivity of organohydrogel fibers under subzero temperature is not desirable, which significantly hinders their practical application. Herein, a newly competitive proton-trapping strategy was designed to obtain anti-freezing organohydrogel fibers for high-performance wearable strain sensors via a simple freezing-thawing process, in which tetraaniline (TANI), serving as the proton trapper, and representing the shortest repeated structural unit of polyaniline (PANI), was physically crosslinked with polyvinyl alcohol (PVA) (PTOH). The as-prepared PTOH fiber exhibited an outstanding sensing performance at -40 °C due to the unevenly distributed ion carriers and the highly breakable proton-migration pathways, with a high gauge factor of 24.6 at a strain of 200-300%. Moreover, the existence of hydrogen bonds between the TANI and PVA chains endowed PTOH with a high tensile strength (1.96 MPa) and toughness (8.0 MJ m-3). Accordingly, strain sensors made from PTOH fibers and knitted textiles could monitor human motions rapidly and sensitively, demonstrating their potential as wearable anti-freezing anisotropic strain sensors.
Collapse
Affiliation(s)
- Zhujun Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - He Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Xinyiming Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Xianming Mei
- Tengfei Technology Limited Company, Kunshan, 215000, China
| | - Wei Lyu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
28
|
Jia H, Shahi S, Shrestha LK, Ariga K, Michinobu T. Improved supercapacitor performances by adding carbonized C 60-based nanospheres to PVA/TEMPO-cellulose hydrogel-based electrolyte. RSC Adv 2023; 13:21502-21509. [PMID: 37469969 PMCID: PMC10352703 DOI: 10.1039/d3ra03349j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023] Open
Abstract
With the emergence of the energy crisis and the development of flexible electronics, there is an urgent need to develop new reliable energy supply devices with good flexibility, stable energy storage, and efficient energy transfer. Porous carbon materials have been proven to enhance the efficiency of ion transport, as the nanospaces within them serve as pathways for mass transport. However, they have been mainly investigated in the electrodes of supercapacitors and batteries. To elucidate their function in the solid electrolytes, we introduced C60-based carbonized nanospheres into PVA/TEMPO-cellulose-based hydrogels by exploiting the electrostatic interaction between the carboxyl groups of TEMPO-cellulose and the carbonized nanospheres. The obtained hydrogels were further utilized as the solid electrolytes for the supercapacitors. Through a comprehensive investigation, we found that the carbonized nanospheres can act as physical crosslinking points and increase the maximum stress of the hydrogel from 0.12 to 0.31 MPa without affecting the maximum strain. In addition, the nanospaces of the carbonized nanospheres provided a pathway for ion transport, improving the capacitance of the supercapacitor from 344.83 to 369.18 mF cm-2 at 0.5 mA cm-2. The capacitance retention was also improved from 53% to 62% at 10 mA cm-2. Collectively, this study provides new insights into the application of carbonized materials to solid electrolytes.
Collapse
Affiliation(s)
- Han Jia
- Department of Materials Science and Engineering, Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| | - Sabina Shahi
- Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44613 Nepal
| | - Lok Kumar Shrestha
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Japan
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba 305-8573 Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha Kashiwa 277-8561 Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and Engineering, Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| |
Collapse
|
29
|
Abstract
Owing to superior softness, wetness, responsiveness, and biocompatibility, bulk hydrogels are being intensively investigated for versatile functions in devices and machines including sensors, actuators, optics, and coatings. The one-dimensional (1D) hydrogel fibers possess the metrics from both the hydrogel materials and structural topology, endowing them with extraordinary mechanical, sensing, breathable and weavable properties. As no comprehensive review has been reported for this nascent field, this article aims to provide an overview of hydrogel fibers for soft electronics and actuators. We first introduce the basic properties and measurement methods of hydrogel fibers, including mechanical, electrical, adhesive, and biocompatible properties. Then, typical manufacturing methods for 1D hydrogel fibers and fibrous films are discussed. Next, the recent progress of wearable sensors (e.g., strain, temperature, pH, and humidity) and actuators made from hydrogel fibers is discussed. We conclude with future perspectives on next-generation hydrogel fibers and the remaining challenges. The development of hydrogel fibers will not only provide an unparalleled one-dimensional characteristic, but also translate fundamental understanding of hydrogels into new application boundaries.
Collapse
Affiliation(s)
- Jiaxuan Du
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Qing Ma
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Binghao Wang
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Litao Sun
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Limei Liu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| |
Collapse
|
30
|
Ahmad Ruzaidi DA, Maurya MR, Yempally S, Abdul Gafoor S, Geetha M, Che Roslan N, Cabibihan JJ, Kumar Sadasivuni K, Mahat MM. Revealing the improved sensitivity of PEDOT:PSS/PVA thin films through secondary doping and their strain sensors application. RSC Adv 2023; 13:8202-8219. [PMID: 36922951 PMCID: PMC10009655 DOI: 10.1039/d3ra00584d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
The field of strain sensing involves the ability to measure an electrical response that corresponds to a strain. The integration of synthetic and conducting polymers can create a flexible strain sensor with a wide range of applications, including soft robotics, sport performance monitoring, gaming and virtual reality, and healthcare and biomedical engineering. However, the use of insulating synthetic polymers can impede the semiconducting properties of sensors, which may reduce sensor sensitivity. Previous research has shown that the doping process can significantly enhance the electrical performance and ionic conduction of conducting polymers, thereby strengthening their potential for use in electronic devices. However the full effects of secondary doping on the crystallinity, stretchability, conductivity, and sensitivity of conducting polymer blends have not been studied. In this study, we investigated the effects of secondary doping on the properties of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/poly(vinyl alcohol) (PEDOT:PSS/PVA) polymer blend thin films and their potential use as strain sensors. The thin films were prepared using a facile drop-casting method. Morphology analysis using profilometry and atomic force microscopy confirmed the occurrence of phase segregation and revealed surface roughness values. This evidence provided a comprehensive understanding of the chemical interactions and physical properties of the thin films, and the effects of doping on these properties. The best films were selected and applied as sensitive strain sensors. EG-PEDOT:PSS/PVA thin films showing a significant increase of conductivity values from the addition of 1 vol% to 12 vol% addition, with conductivity values of 8.51 × 10-5 to 9.42 × 10-3 S cm-1. Our 12% EG-PEDOT:PSS/PVA sensors had the highest GF value of 2000 too. We compared our results with previous studies on polymeric sensors, and it was found that our sensors quantitatively had better GF values. Illustration that demonstrates the DMSO and EG dopant effects on PEDOT:PSS structure through bonding interaction, crystallinity, thermal stability, surface roughness, conductivity and stretchability was also provided. This study suggests a new aspect of doping interaction that can enhance the conductivity and sensitivity of PEDOT:PSS for device applications.
Collapse
Affiliation(s)
- Dania Adila Ahmad Ruzaidi
- Center for Advanced Materials, Qatar University P. O. Box 2713 Doha Qatar
- Faculty of Applied Sciences, Universiti Teknologi MARA Shah Alam 40450 Malaysia
| | - Muni Raj Maurya
- Center for Advanced Materials, Qatar University P. O. Box 2713 Doha Qatar
| | - Swathi Yempally
- Center for Advanced Materials, Qatar University P. O. Box 2713 Doha Qatar
| | | | - Mithra Geetha
- Center for Advanced Materials, Qatar University P. O. Box 2713 Doha Qatar
| | - Nazreen Che Roslan
- Center for Advanced Materials, Qatar University P. O. Box 2713 Doha Qatar
- Faculty of Applied Sciences, Universiti Teknologi MARA Shah Alam 40450 Malaysia
| | - John-John Cabibihan
- Mechanical and Industrial Engineering Department, College of Engineering, Qatar University P. O. Box 2713 Doha Qatar
| | | | - Mohd Muzamir Mahat
- Faculty of Applied Sciences, Universiti Teknologi MARA Shah Alam 40450 Malaysia
| |
Collapse
|