1
|
Wu M, Li Y, Huang G, Xu R, Yin X, Zhang G. A leaf-like structured membrane for highly efficient and persistent radiative cooling. MATERIALS HORIZONS 2025; 12:3024-3035. [PMID: 39869078 DOI: 10.1039/d4mh01697a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Passive daytime radiative cooling offers a promising approach to address energy, environmental, and safety issues caused by global warming. However, the contradiction between high radiative cooling performance and long-lasting ultraviolet (UV) durability is a primary limitation at the current stage. Here, inspired by the ability of epidermal cells and palisade cells on the leaf surface to protect internal leaf structures (such as chloroplasts and nuclei) under drought and high-temperature conditions, a double-layer passive radiative cooling (PRC) porous membrane, which consists of an upper protective layer densely packed with highly ultraviolet-reflective inorganic particles and a bottom cooling layer doped with a variety of optically characterized inorganic particles, was developed to overcome these challenges. This special leaf-like structure and the synergistic effect of the inorganic particles ensure that the PRC membrane has a high solar reflectivity of 99.3% and a high mid-infrared (MIR) emissivity of ∼95%. In addition, the membrane still maintains excellent optical and mechanical performance after ultraviolet radiation treatment with a total radiation dose of 7000 MJ m-2. Therefore, the unique structural design and excellent comprehensive performance of the membrane can greatly promote the practical applications of the PRC technology.
Collapse
Affiliation(s)
- Minghan Wu
- Key Laboratory of Polymer Processing Engineering of the Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, People's Republic of China.
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Yu Li
- Key Laboratory of Polymer Processing Engineering of the Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, People's Republic of China.
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Gang Huang
- Key Laboratory of Polymer Processing Engineering of the Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, People's Republic of China.
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Ruiqi Xu
- Key Laboratory of Polymer Processing Engineering of the Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, People's Republic of China.
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Xiaochun Yin
- Key Laboratory of Polymer Processing Engineering of the Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, People's Republic of China.
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Guizhen Zhang
- Key Laboratory of Polymer Processing Engineering of the Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, People's Republic of China.
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| |
Collapse
|
2
|
Dong X, Chan KY, Yin X, Zhang Y, Zhao X, Yang Y, Wang Z, Shen X. Anisotropic Hygroscopic Hydrogels with Synergistic Insulation-Radiation-Evaporation for High-Power and Self-Sustained Passive Daytime Cooling. NANO-MICRO LETTERS 2025; 17:240. [PMID: 40299079 PMCID: PMC12041409 DOI: 10.1007/s40820-025-01766-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025]
Abstract
Hygroscopic hydrogel is a promising evaporative-cooling material for high-power passive daytime cooling with water self-regeneration. However, undesired solar and environmental heating makes it a challenge to maintain sub-ambient daytime cooling. While different strategies have been developed to mitigate heat gains, they inevitably sacrifice the evaporation and water regeneration due to highly coupled thermal and vapor transport. Here, an anisotropic synergistically performed insulation-radiation-evaporation (ASPIRE) cooler is developed by leveraging a dual-alignment structure both internal and external to the hydrogel for coordinated thermal and water transport. The ASPIRE cooler achieves an impressive average sub-ambient cooling temperature of ~ 8.2 °C and a remarkable peak cooling power of 311 W m-2 under direct sunlight. Further examining the cooling mechanism reveals that the ASPIRE cooler reduces the solar and environmental heat gains without comprising the evaporation. Moreover, self-sustained multi-day cooling is possible with water self-regeneration at night under both clear and cloudy days. The synergistic design provides new insights toward high-power, sustainable, and all-weather passive cooling applications.
Collapse
Affiliation(s)
- Xiuli Dong
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Kit-Ying Chan
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
- The Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Xuemin Yin
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Yu Zhang
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Xiaomeng Zhao
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Yunfei Yang
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Zhenyu Wang
- School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xi Shen
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China.
- The Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China.
- The Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
3
|
Xue J, Ma C, Yang S, Guo S, Yin X, Fan J, Li X, Wang M, Teng G. Janus hydrogel loaded with a CO 2-generating chemical reaction system: Construction, characterization, and application in fruit and vegetable preservation. Food Chem 2024; 458:140271. [PMID: 38964097 DOI: 10.1016/j.foodchem.2024.140271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
In this study, we inserted a dynamic chemical reaction system that can generate CO2 into Janus hydrogel (JH) to develop a multidimensional preservation platform that integrates hygroscopicity, antibacterial activity, and modified atmospheric capacity. The double gel system developed using sodium alginate/trehalose at a 1:1 ratio effectively encapsulated 90% of citric acid. Furthermore, CO2 loss was avoided by separately embedding NaHCO3/cinnamon essential oil and citric acid microcapsules into a gelatin pad to develop JH. Freeze-dried JH exhibited a porous and asymmetric structure, very strongly absorbing moisture, conducting water, and rapidly releasing CO2 and essential oils. Furthermore, when preserving various fruits and vegetables in practical settings, JH provided several preservation effects, including color protection, microbial inhibition, and antioxidant properties. Our study findings broaden the application of JH technology for developing chemical reaction systems, with the resulting JH holding substantial promise for cold chain logistics.
Collapse
Affiliation(s)
- Jiawei Xue
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
| | - Changyao Ma
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
| | - Shuqi Yang
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
| | - Shuchang Guo
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
| | - Xiaoyu Yin
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
| | - Junfeng Fan
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China.
| | - Xiuting Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China.
| | - Mengze Wang
- Horticulture Technology Extension Center of Ningxia, Yinchuan, China
| | - Guoxin Teng
- Shanghai Milkground Food Tech Co., Ltd., Shanghai, China
| |
Collapse
|
4
|
Sun L, Sun DW, Xu L, Tian Y, Zhu Z. Tunable thermoresponsive hydrogels for temperature regulation and warning in fruit and vegetables preservation. Food Chem 2024; 456:139962. [PMID: 38945049 DOI: 10.1016/j.foodchem.2024.139962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 07/02/2024]
Abstract
Fresh fruit and vegetables usually suffer from quality deterioration when exposed to inappropriate temperatures. Common energy-input temperature regulation is widely applied but there remain challenges of increasing energy consumption. Passive temperature management regulates the heat transfer without energy consumption, showing a sustainable strategy for food preservation. Here, thermoresponsive hydrogels were constructed by incorporating NaCl and sodium dodecyl sulfate (SDS) micelles into a poly(N-isopropylacrylamide-co-acrylamide) (P(NIPAM-co-AM)) network. Due to the excellent mechanical properties and reversible thermochromism at 14 °C and 37 °C, Gel-8 wt%-NaCl could inhibit temperature rise and avoid sunburn damage to peppers under direct sunlight by blocking the input of solar energy and accelerating moisture evaporation. Additionally, hydrogels could act as a feasible sensor by providing real-time visual warnings for inappropriate temperatures during banana storage. Based on the self-adaptive thermoresponsive behaviour, the prepared hydrogels showed effective performance of temperature regulation and quality preservation of fruit and vegetables.
Collapse
Affiliation(s)
- Libin Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - Liang Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - You Tian
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhiwei Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
5
|
He C, Yuan L, Bi S, Zhou C, Yang Q, Gu J, Yan B, He J. Modified Chitosan-Based Coating/Packaging Composites with Enhanced Antibacterial, Antioxidant, and UV-Resistant Properties for Fresh Food Preservation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48352-48362. [PMID: 39221854 DOI: 10.1021/acsami.4c10643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Chitosan-based biomass packaging materials are a promising material for food preservation, but their limited solubility, antioxidant capacity, UV resistance, and mechanical properties severely restrict their application. In this study, we developed a novel chitosan-based coating/packaging composite (QCTO) using quaternary ammonium salt and tannic acid (TA)-modified chitosan (QCS-TA) and oxidized chitosan (OCS). The introduction of quaternary ammonium salt and TA effectively improves the water solubility and antibacterial, antioxidant, and UV-resistant properties of chitosan. The Schiff-base bond formed between OCS and QCS-TA, along with the TA-mediated multiple interactions, conferred the prepared composite film with good mechanical properties (69.9 MPa tensile strength) and gas barrier performance to water (14.3 g·h-1·m-2) and oxygen (3.5 g·mm·m-2·h-1). Meanwhile, the prepared QCTO composites demonstrate excellent biocompatibility and safety and are applied as coatings for strawberries and bananas as well as packaging films for mushrooms. These preservation experiments demonstrated that the prepared composites are able to effectively reduce weight loss, prevent microbial growth, maintain color, and significantly prolong the shelf life of fresh products (bananas, strawberries, and mushrooms extended shelf life by 6, 5, and 6 days, respectively). Therefore, the developed QCTO coating/packaging film shows great potential for applications in the field of food preservation and packaging.
Collapse
Affiliation(s)
- Changyuan He
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Liubo Yuan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Siwei Bi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Chaomei Zhou
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Qin Yang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jin He
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| |
Collapse
|
6
|
Gang F, Xu M, Zhang S, Zhang C, He J, Xiao Y, Wang H, Liu Z, Sun X, Zhang J. Biodegradable active composite hydrogel packaging for postharvest climacteric bananas preservation. Food Chem 2024; 442:138494. [PMID: 38266413 DOI: 10.1016/j.foodchem.2024.138494] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Climacteric bananas are susceptible to endogenous ethylene and temperature, resulting in dehydration, accelerated senescence and deterioration. The widely-used plastic cling films is particularly complicated due to their high consumption and non-degradability. Herein, this study proposed to fabricate a carboxymethyl cellulose/polyvinyl alcohol/pyrazoic acid (CPP) hydrogel for postharvest banana preservation. The hydrogel demonstrated excellent potential as a packaging film, including natural degradability (complete degradation within 50 days), high tensile performance, transparent visibility and biosafety. As a validation experiment, bananas in a 30 °C environment confirmed the effectiveness of CPP hydrogels in banana postharvest preservation. Compared with the blank control and CP hydrogel, CPP packaging film delayed the processes of browning, dehydration, softening, nutrients loss, ripening and senescence in bananas, thereby maintaining their commercial value. Accordingly, this study demonstrates the potential of hydrogel materials as an alternative strategy to climacteric fruit preservation and plastic film.
Collapse
Affiliation(s)
- Fangli Gang
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, China.
| | - Mengjie Xu
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, China
| | - Shiyu Zhang
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, China
| | - Chenyang Zhang
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, China
| | - Junjie He
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, China
| | - Yi Xiao
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, China
| | - Huixiang Wang
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, China
| | - Ziyu Liu
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Xiaodan Sun
- Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jiwen Zhang
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Wan H, Zhu Z, Sun DW. Deep eutectic solvents (DESs) films based on gelatin as active packaging for moisture regulation in fruit preservation. Food Chem 2024; 439:138114. [PMID: 38100877 DOI: 10.1016/j.foodchem.2023.138114] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
To develop a novel active packaging for fruit preservation, two different deep eutectic solvents (DESs) comprising choline chloride, betaine and glycerol [ChCl:Gly (1:2) and Be:Gly (1:2)] were prepared and the corresponding DESs-based films (DES@Gel) using gelatin as polymer matrix were fabricated. DES@Gel showed smoother morphologies and better optical and mechanical properties as compared with Gel. Moisture sorption isotherm curves, the enhancement of water vapour permeability (WVP) and the excellent moisture absorption-desorption cyclist performance illustrated the moisture regulation hypothesis mechanism of DES@Gel. Furthermore, cherry tomato preservation experiment was carried out and the groups treated with DES@Gel showed better performances. The moisture regulation property of DES@Gel could broaden new avenues for active packaging.
Collapse
Affiliation(s)
- Hongchen Wan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhiwei Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
8
|
Xu L, Sun DW, Tian Y, Zhu Z. Minimizing polyphenols and enzymes degradation using hydrogel packaging with combined evaporative and daytime radiative cooling functions during ambient transportation. Food Chem 2024; 437:137804. [PMID: 37924758 DOI: 10.1016/j.foodchem.2023.137804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Polyphenols and enzymes usually suffer from degradation during transportation due to the lack of a cold chain system in developing countries and regions. In this study, anthocyanin and trypsin were selected as examples of polyphenols and enzymes and investigated for minimizing their degradation during ambient transportation using hydrogel packaging with combined evaporative and daytime radiative cooling functions. A polyacrylamide/polyvinyl alcohol contained with nanoparticles (NPs@PAAm/PVA) hydrogel packaging was thus developed. The NPs@PAAm/PVA packaging exhibited desirable swelling behaviour, high solar reflectance, and strong atmospheric emissivity to synergistically achieve evaporative and daytime radiative cooling. The indoor experiments indicated that the vial with NPs@PAAm/PVA packaging realised sub-ambient temperatures under different working temperatures and humidities, and the field tests indicated that the vial with NPs@PAAm/PVA packaging could effectively preserve the anthocyanin and trypsin without degradation caused by strong sunlight and high temperature. Consequently, the NPs@PAAm/PVA packaging with evaporative and daytime radiative cooling effects has promising prospects for anthocyanin and trypsin transportation in an energy-saving and sustainable manner.
Collapse
Affiliation(s)
- Liang Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - You Tian
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhiwei Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
9
|
Li R, Wang W, Shi Y, Wang CT, Wang P. Advanced Material Design and Engineering for Water-Based Evaporative Cooling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209460. [PMID: 36638501 DOI: 10.1002/adma.202209460] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Water-based evaporative cooling is emerging as a promising technology to provide sustainable and low-cost cold to alleviate the rising global cooling demand. Given the significant and fast progress made in recent years, this review aims to provide a timely overview on the state-of-the-art material design and engineering in water-based evaporative cooling. The fundamental mechanisms and major components of three water-based evaporative cooling processes are introduced, including direct evaporative cooling, cyclic sorption-driven liquid water evaporative cooling (CSD-LWEC), and atmospheric water harvesting-based evaporative cooling (AWH-EC). The distinctive requirements on the sorbent materials in CSD-LWEC and AWH-EC are highlighted, which helps synthesize the literature information on the advanced material design and engineering for the purpose of improving cooling performance. The challenges and future outlooks on further improving the water-based evaporative cooling performance are also provided.
Collapse
Affiliation(s)
- Renyuan Li
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Wenbin Wang
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Yifeng Shi
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Chang-Ting Wang
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Peng Wang
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| |
Collapse
|
10
|
Tang H, Guo C, Xu Q, Zhao D. Boosting Evaporative Cooling Performance with Microporous Aerogel. MICROMACHINES 2023; 14:219. [PMID: 36677280 PMCID: PMC9862351 DOI: 10.3390/mi14010219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Hydrogel-based evaporative cooling with a low carbon footprint is regarded as a promising technology for thermal regulation. Yet, the efficiency of hydrogel regeneration at night generally mismatches with vapor evaporation during the day, resulting in a limited cooling time span, especially in arid regions. In this work, we propose an efficient approach to improve hydrogel cooling performance, especially the cooling time span, with a bilayer structure, which comprises a bottom hydrogel layer and an upper aerogel layer. The microporous aerogel layer can reduce the saturation vapor density at the hydrogel surface by employing daytime radiative cooling, together with increased convective heat transfer resistance by thermal insulation, thus boosting the duration of evaporative cooling. Specifically, the microstructure of porous aerogel for efficient radiative cooling and vapor transfer is synergistically optimized with a cooling performance model. Results reveal that the proposed structure with a 2-mm-thick SiO2 aerogel can reduce the temperature by 1.4 °C, meanwhile extending the evaporative cooling time span by 11 times compared to a single hydrogel layer.
Collapse
Affiliation(s)
- Huajie Tang
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Chenyue Guo
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Qihao Xu
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Dongliang Zhao
- School of Energy and Environment, Southeast University, Nanjing 210096, China
- Engineering Research Center of Building Equipment, Energy, and Environment, Ministry of Education, Nanjing 210096, China
| |
Collapse
|