1
|
Wu Q, Li L, Zhang Y, Ming X, Feng N. Measurement methods, influencing factors and applications of intercellular receptor-ligand binding kinetics in diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 194:43-54. [PMID: 39491758 DOI: 10.1016/j.pbiomolbio.2024.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Receptor-ligand binding on contacting cells dictates the extent of transmembrane signaling through membrane receptors during cell communication, influencing both the physiological and pathological activities of cells. This process is integral to fundamental biological mechanisms including signal transduction, cancer metastasis, immune responses, and inflammatory cascades, all of which are profoundly influenced by the cell microenvironment. This article provides an overview of the kinetic theory of receptor-ligand binding and examines methods for measuring this interaction, along with their respective advantages and disadvantages. Furthermore, it comprehensively explores the factors that impact receptor-ligand binding, encompassing protein-membrane interactions, the bioelectric microenvironment, auxiliary factors, hydrogen bond strength, pH levels, cis and trans interactions between ligands and receptors. The application of receptor-ligand binding kinetics in various diseases such as immunity, cancer, and inflammation are also discussed. Additionally, the investigation into how functional substances alter receptor-ligand binding dynamics within specific cellular microenvironments presents a promising new approach to treating related diseases.
Collapse
Affiliation(s)
- Qian Wu
- Hubei Key Laboratoy of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| | - Liangchao Li
- Hubei Key Laboratoy of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| | - Yuyan Zhang
- Hubei Key Laboratoy of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| | - Xiaozhi Ming
- Hubei Key Laboratoy of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| | - Nianjie Feng
- Hubei Key Laboratoy of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| |
Collapse
|
2
|
Shrestha D, Bahasoan Y, Eggeling C. Cellular Output and Physicochemical Properties of the Membrane-Derived Vesicles Depend on Chemical Stimulants. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48982-48992. [PMID: 39250321 PMCID: PMC11420866 DOI: 10.1021/acsami.4c07234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Synthetic liposomes are widely used as drug delivery vehicles in biomedical treatments, such as for mRNA-based antiviral vaccines like those recently developed against SARS-CoV-2. Extracellular vesicles (EVs), which are naturally produced by cells, have emerged as a next-generation delivery system. However, key questions regarding their origin within cells remain unresolved. In this regard, plasma membrane vesicles (PMVs), which are essentially produced from the cellular plasma membrane (PM), present a promising alternative. Unfortunately, their properties relevant to biomedical applications have not be extensively studied. Therefore, we conducted a thorough investigation of the methods used in the production of PMVs. By leveraging advanced fluorescence techniques in microscopy and flow cytometry, we demonstrated a strong dependence of the physicochemical attributes of PMVs on the chemicals used during their production. Following established protocols employing chemicals such as paraformaldehyde (PFA), N-ethylmaleimide (NEM) or dl-dithiothreitol (DTT) and by developing a modified NEM-based method that involved a hypotonic shock step, we generated PMVs from THP-1 CD1d cells. We systematically compared key parameters such as vesicle output, their size distribution, vesicular content analysis, vesicular membrane lipid organization and the mobility of a transmembrane protein. Our results revealed distinct trends: PMVs isolated using NEM-based protocols closely resembled natural vesicles, whereas PFA induced significant molecular cross-linking, leading to notable changes in the biophysical properties of the vesicles. Furthermore, our novel NEM protocol enhanced the efficiency of PMV production. In conclusion, our study highlights the unique characteristics of chemically produced PMVs and offers insights into their potentially diverse yet valuable biological functions.
Collapse
Affiliation(s)
- Dilip Shrestha
- MRC
Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K.
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Yusuf Bahasoan
- MRC
Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K.
| | - Christian Eggeling
- MRC
Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K.
- Department
of Biophysical Imaging, Leibniz Institute
of Photonic Technologies e.V., member of the Leibniz Centre for Photonics
in Infection Research (LPI), Albert- Einstein Strasse 9, 07745 Jena, Germany
- Institute
of Applied Optics and Biophysics, Friedrich Schiller University Jena, Max-Wien Platz 1, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
3
|
Vaknin A, Grossman A, Durham ND, Lupovitz I, Goren S, Golani G, Roichman Y, Munro JB, Sorkin R. Ebola Virus Glycoprotein Strongly Binds to Membranes in the Absence of Receptor Engagement. ACS Infect Dis 2024; 10:1590-1601. [PMID: 38684073 PMCID: PMC11091876 DOI: 10.1021/acsinfecdis.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Ebola virus (EBOV) is an enveloped virus that must fuse with the host cell membrane in order to release its genome and initiate infection. This process requires the action of the EBOV envelope glycoprotein (GP), encoded by the virus, which resides in the viral envelope and consists of a receptor binding subunit, GP1, and a membrane fusion subunit, GP2. Despite extensive research, a mechanistic understanding of the viral fusion process is incomplete. To investigate GP-membrane association, a key step in the fusion process, we used two approaches: high-throughput measurements of single-particle diffusion and single-molecule measurements with optical tweezers. Using these methods, we show that the presence of the endosomal Niemann-Pick C1 (NPC1) receptor is not required for primed GP-membrane binding. In addition, we demonstrate this binding is very strong, likely attributed to the interaction between the GP fusion loop and the membrane's hydrophobic core. Our results also align with previously reported findings, emphasizing the significance of acidic pH in the protein-membrane interaction. Beyond Ebola virus research, our approach provides a powerful toolkit for studying other protein-membrane interactions, opening new avenues for a better understanding of protein-mediated membrane fusion events.
Collapse
Affiliation(s)
- Alisa Vaknin
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Alon Grossman
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Natasha D. Durham
- Department
of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Inbal Lupovitz
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shahar Goren
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gonen Golani
- Department
of Physics and Haifa Research Center for Theoretical Physics and Astrophysics, University of Haifa, Haifa 3498838, Israel
| | - Yael Roichman
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- Raymond
and Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
| | - James B. Munro
- Department
of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
- Department
of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Raya Sorkin
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
Dey M, Sharma A, Dhanawat G, Gupta D, Harshan KH, Parveen N. Synergistic Binding of SARS-CoV-2 to ACE2 and Gangliosides in Native Lipid Membranes. ACS Infect Dis 2024; 10:907-916. [PMID: 38412250 DOI: 10.1021/acsinfecdis.3c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Viruses utilize cell surface glycans and plasma membrane receptors to attain an adequate attachment strength for initiating cellular entry. We show that SARS-CoV-2 particles bind to endogenous ACE2 receptors and added sialylated gangliosides in near-native membranes. This was explored using supported membrane bilayers (SMBs) that were formed using plasma membrane vesicles having endogenous ACE2 and GD1a gangliosides reconstituted in lipid vesicles. The virus binding rate to the SMBs is influenced by GD1a and inhibition of the ganglioside reduces the extent of virus binding to the membrane receptors. Using combinations of inhibition assays, we confirm that added GD1a in lipid membranes increases the availability of the endogenous ACE2 receptor and results in the synergistic binding of SARS-CoV-2 to the membrane receptors in SMBs.
Collapse
Affiliation(s)
- Manorama Dey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Anurag Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Garvita Dhanawat
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Divya Gupta
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Krishnan H Harshan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nagma Parveen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
5
|
Yu H, Jia ZS, Xu PF, Liu Y, Xu DD, Li YY, Tang HW. Multiple miRNA Detection through a Suspended Microbead Array Encoded by Triple-Color Upconversion Luminescent Nanotags via Bi-Beam Splitter Hybrid-Multitrap Optical Tweezers. Anal Chem 2023; 95:14086-14093. [PMID: 37665143 DOI: 10.1021/acs.analchem.3c02842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In recent years, optical tweezers have become a novel tool for biodetection, and to improve the inefficiency of a single trap, the development of multitraps is required. Herein, we constructed a set of hybrid multitrap optical tweezers with the balance of stability and flexibility by the combination of two different beam splitters, a diffraction optical element (DOE) and galvano mirrors (GMs), to capture polystyrene (PS) microbeads in aqueous solutions to create an 18-trap suspended array. A sandwich hybridization strategy of DNA-miRNA-DNA was adopted to detect three kinds of target miRNAs associated with triple negative breast cancer (TNBC), in which different upconversion nanoparticles (UCNPs) with red, green, and blue emissions were applied as luminescent tags to encode the carrier PS microbeads to further indicate the levels of the targets. With encoded luminescent microbeads imaged by a three-channel microscopic system, the biodetection displayed high sensitivity with low limits of detection (LODs) of 0.27, 0.32, and 0.33 fM and exceptional linear ranges of 0.5 fM to 1 nM, 0.7 fM to 1 nM, and 1 fM to 1 nM for miR-343-3p, miR-155, and miR-199a-5p, respectively. In addition, this bead-based assay method was demonstrated to have the potential for being applied in patients' serum by satisfactory standard addition recovery experiment results.
Collapse
Affiliation(s)
- He Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zeng-Shuai Jia
- School of Information Management, Wuhan University, Wuhan 430072, People's Republic of China
| | - Peng-Fei Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Da-Di Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yu-Yao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
6
|
Xu D, Jiang W, Wu L, Gaudet RG, Park ES, Su M, Cheppali SK, Cheemarla NR, Kumar P, Uchil PD, Grover JR, Foxman EF, Brown CM, Stansfeld PJ, Bewersdorf J, Mothes W, Karatekin E, Wilen CB, MacMicking JD. PLSCR1 is a cell-autonomous defence factor against SARS-CoV-2 infection. Nature 2023; 619:819-827. [PMID: 37438530 PMCID: PMC10371867 DOI: 10.1038/s41586-023-06322-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Understanding protective immunity to COVID-19 facilitates preparedness for future pandemics and combats new SARS-CoV-2 variants emerging in the human population. Neutralizing antibodies have been widely studied; however, on the basis of large-scale exome sequencing of protected versus severely ill patients with COVID-19, local cell-autonomous defence is also crucial1-4. Here we identify phospholipid scramblase 1 (PLSCR1) as a potent cell-autonomous restriction factor against live SARS-CoV-2 infection in parallel genome-wide CRISPR-Cas9 screens of human lung epithelia and hepatocytes before and after stimulation with interferon-γ (IFNγ). IFNγ-induced PLSCR1 not only restricted SARS-CoV-2 USA-WA1/2020, but was also effective against the Delta B.1.617.2 and Omicron BA.1 lineages. Its robust activity extended to other highly pathogenic coronaviruses, was functionally conserved in bats and mice, and interfered with the uptake of SARS-CoV-2 in both the endocytic and the TMPRSS2-dependent fusion routes. Whole-cell 4Pi single-molecule switching nanoscopy together with bipartite nano-reporter assays found that PLSCR1 directly targeted SARS-CoV-2-containing vesicles to prevent spike-mediated fusion and viral escape. A PLSCR1 C-terminal β-barrel domain-but not lipid scramblase activity-was essential for this fusogenic blockade. Our mechanistic studies, together with reports that COVID-associated PLSCR1 mutations are found in some susceptible people3,4, identify an anti-coronavirus protein that interferes at a late entry step before viral RNA is released into the host-cell cytosol.
Collapse
Affiliation(s)
- Dijin Xu
- Howard Hughes Medical Institute, New Haven, CT, USA
- Yale Systems Biology Institute, West Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Weiqian Jiang
- Howard Hughes Medical Institute, New Haven, CT, USA
- Yale Systems Biology Institute, West Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lizhen Wu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ryan G Gaudet
- Howard Hughes Medical Institute, New Haven, CT, USA
- Yale Systems Biology Institute, West Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Eui-Soon Park
- Howard Hughes Medical Institute, New Haven, CT, USA
- Yale Systems Biology Institute, West Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Maohan Su
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Sudheer Kumar Cheppali
- Yale Nanobiology Institute, West Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nagarjuna R Cheemarla
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Pradeep Kumar
- Howard Hughes Medical Institute, New Haven, CT, USA
- Yale Systems Biology Institute, West Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Jonathan R Grover
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Ellen F Foxman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Chelsea M Brown
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry, UK
| | - Phillip J Stansfeld
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry, UK
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Erdem Karatekin
- Yale Nanobiology Institute, West Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Saints-Pères Paris Institute for the Neurosciences, Université de Paris, Centre National de la Recherche Scientifique UMR 8003, Paris, France
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Craig B Wilen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - John D MacMicking
- Howard Hughes Medical Institute, New Haven, CT, USA.
- Yale Systems Biology Institute, West Haven, CT, USA.
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
7
|
Schlegel J, Porebski B, Andronico L, Hanke L, Edwards S, Brismar H, Murrell B, McInerney GM, Fernandez-Capetillo O, Sezgin E. A Multiparametric and High-Throughput Platform for Host-Virus Binding Screens. NANO LETTERS 2023; 23:3701-3707. [PMID: 36892970 PMCID: PMC10176574 DOI: 10.1021/acs.nanolett.2c04884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Speed is key during infectious disease outbreaks. It is essential, for example, to identify critical host binding factors to pathogens as fast as possible. The complexity of host plasma membrane is often a limiting factor hindering fast and accurate determination of host binding factors as well as high-throughput screening for neutralizing antimicrobial drug targets. Here, we describe a multiparametric and high-throughput platform tackling this bottleneck and enabling fast screens for host binding factors as well as new antiviral drug targets. The sensitivity and robustness of our platform were validated by blocking SARS-CoV-2 particles with nanobodies and IgGs from human serum samples.
Collapse
Affiliation(s)
- Jan Schlegel
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Bartlomiej Porebski
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Luca Andronico
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Steven Edwards
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, 17165 Solna, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, 17165 Solna, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Oscar Fernandez-Capetillo
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| |
Collapse
|