1
|
Mukhin N, Dietzel A, Issakov V, Bakhchova L. Balancing performance and stability characteristics in organic electrochemical transistor. Biosens Bioelectron 2025; 281:117476. [PMID: 40245610 DOI: 10.1016/j.bios.2025.117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Nowadays organic electrochemical transistors (OECTs) are becoming a promising platform for bioelectronics and biosensing due to its biocompatibility, high sensitivity and selectivity, low driving voltages, high transconductance and flexibility. However, the existing problems associated with degradation processes within the OECT during long-term operation hinder their widespread implementation. Moreover, trade-offs often arise between OECT transconductance and speed, fast ion transport and electron mobility, electrochemical stability and sensitivity, cycling stability and signal amplification, and other metrics. Ensuring high performance characteristics and achieving enhanced stability in OECTs are distinct strategies that do not always align, as progress in one aspect often necessitates a trade-off with the other. This dynamic arises from the need to find a balance between reversible and irreversible processes in the behavior of OECT active layers, and providing simultaneously favorable conditions for ion and electron transport and their efficient charge coupling. This review article systematically summarizes the phenomenological and physical-chemical aspects associated with factors and mechanisms that determine both performance and long-term stability of OECT, paying special attention to the consideration of existing and promising approaches to extend the OECT lifespan, while maintaining (or even increasing) high effectiveness of its operation.
Collapse
Affiliation(s)
- Nikolay Mukhin
- Institute for CMOS Design, Technical University of Braunschweig, 38106, Braunschweig, Germany.
| | - Andreas Dietzel
- Institute of Microtechnology, Technical University of Braunschweig, 38106, Braunschweig, Germany
| | - Vadim Issakov
- Institute for CMOS Design, Technical University of Braunschweig, 38106, Braunschweig, Germany
| | - Liubov Bakhchova
- Institute for CMOS Design, Technical University of Braunschweig, 38106, Braunschweig, Germany
| |
Collapse
|
2
|
Tang H, Xu Z, Liang Y, Cui W, Chen Y, Jiang Q, Lei T, Ma Y, Huang F. Highly Conductive Alcohol-Processable n-Type Conducting Polymer Enabled by Finely Tuned Electrostatic Interactions for Green Organic Electronics. Angew Chem Int Ed Engl 2025; 64:e202415349. [PMID: 39420479 DOI: 10.1002/anie.202415349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/22/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
Solution-processable conducting polymers open up a new era in organic electronics, fundamentally altering the processing methods of electronic devices. P-type conducting polymers, exemplified by aqueous solution-processed poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT : PSS), have been successfully commercialized. However, the performance of electron-transporting (n-type) materials remains considerably poorer. One of the primary challenges lies in striking a balance between conductivity and solvent processability. At present, most n-type conducting polymers necessitate toxic solvents for processing, which contradicts environmentally sustainable principles and impedes their potential for large-scale industrial applications. Herein, we developed an alcohol-processable high-performance n-type conducting polymer, poly(3,7-dihydrobenzo[1,2-b : 4,5-b']difuran-2,6-dione): poly(2-ethyl-2-oxazoline) (PBFDO : PEOx), which utilized electrostatic interactions between PEOx and PBFDO to simultaneously achieve high conductivity and alcohol-processability. The PBFDO : PEOx films exhibited remarkable electrical conductivity exceeding 1000 S cm-1 with outstanding stability even at temperatures up to 250 °C, establishing it as a prominent green solvent-processed n-type conducting polymer that rivals the most advanced p-type counterparts. Various applications including organic thermoelectric, electrochemical transistor, and electrochromic devices were showcased, highlighting the broad potential of PBFDO : PEOx in advancing green organic electronics.
Collapse
Affiliation(s)
- Haoran Tang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Zishuo Xu
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Yuanying Liang
- Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), 510335, Guangzhou, P. R. China
| | - Wei Cui
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Yiheng Chen
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, 100871, Beijing, P. R. China
| | - Qinglin Jiang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Ting Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, 100871, Beijing, P. R. China
| | - Yuguang Ma
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510640, Guangzhou, P. R. China
| |
Collapse
|
3
|
Cho Y, Gao L, Yao Y, Kim J, Zhang D, Forti G, Duplessis I, Wang Y, Pankow RM, Ji X, Rivnay J, Marks TJ, Facchetti A. Small-Molecule Mixed Ionic-Electronic Conductors for Efficient N-Type Electrochemical Transistors: Structure-Function Correlations. Angew Chem Int Ed Engl 2025; 64:e202414180. [PMID: 39312509 DOI: 10.1002/anie.202414180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
The fundamental challenge in electron-transporting organic mixed ionic-electronic conductors (OMIECs) is simultaneous optimization of electron and ion transport. Beginning from Y6-type/U-shaped non-fullerene solar cell acceptors, we systematically synthesize and characterize molecular structures that address the aforementioned challenge, progressively introducing increasing numbers of oligoethyleneglycol (OEG; g) sidechains from 1 g to 3 g, affording OMIECs 1gY, 2gY, and 3gY, respectively. The crystal structure of 1gY preserves key structural features of the Yn series: a U-shaped/planar core, close π-π molecular stacking, and interlocked acceptor groups. Versus inactive Y6 and Y11, all of the new glycolated compounds exhibit mixed ion-electron transport in both conventional organic electrochemical transistor (cOECT) and vertical OECT (vOECT) architectures. Notably, 3gY with the highest OEG density achieves a high transconductance of 16.5 mS, an on/off current ratio of ~106, and a turn-on/off response time of 94.7/5.7 ms in vOECTs. Systematic optoelectronic, electrochemical, architectural, and crystallographic analysis explains the superior 3gY-based OECT performance in terms of denser ngY OEG content, increased crystallite dimensions with decreased long-range crystalline order, and enhanced film hydrophilicity which facilitates ion transport and efficient redox processes. Finally, we demonstrate an efficient small-molecule-based complementary inverter using 3gY vOECTs, showcasing the bioelectronic applicability of these new small-molecule OMIECs.
Collapse
Affiliation(s)
- Yongjoon Cho
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Lin Gao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Yao Yao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Jaehyun Kim
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Dayong Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Giacomo Forti
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Isaiah Duplessis
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Yuyang Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Robert M Pankow
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Xudong Ji
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Tobin J Marks
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Antonio Facchetti
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Duan J, Xiao M, Zhu G, Chen J, Hou H, Gámez-Valenzuela S, Zelewski SJ, Dai L, Tao X, Ran C, Jay N, Lin Y, Guo X, Yue W. Molecular Ordering Manipulation in Fused Oligomeric Mixed Conductors for High-Performance n-Type Organic Electrochemical Transistors. ACS NANO 2024; 18:28070-28080. [PMID: 39370661 DOI: 10.1021/acsnano.4c07219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Advanced n-type organic electrochemical transistors (OECTs) play an important part in bioelectronics, facilitating the booming of complementary circuits-based biosensors. This necessitates the utilization of both n-type and p-type organic mixed ionic-electronic conductors (OMIECs) exhibiting a balanced performance. However, the observed subpar electron charge transport ability in most n-type OMIECs presents a significant challenge to the overall functionality of the circuits. In response to this issue, we achieve high-performance OMIECs by leveraging a series of fused electron-deficient monodisperse oligomers with mixed alkyl and glycol chains. Through molecular ordering manipulation by optimizing of their alkyl side chains, we attained a record-breaking OECT electron mobility of 0.62 cm2/(V s) and μC* of 63.2 F/(cm V s) for bgTNR-3DT with symmetrical alkyl chains. Notably, the bgTNR-3DT film also exhibits the highest structural ordering, smallest energetic disorder, and the lowest trap density among the series, potentially explaining its ideal charge transport property. Additionally, we demonstrate an organic inverter incorporating bgTNR-3DT OECTs with a gain above 30, showcasing the material's potential for constructing organic circuits. Our findings underscore the indispensable role of alkyl chain optimization in the evolution of prospective high performance OMIECs for constructing advanced organic complementary circuits.
Collapse
Affiliation(s)
- Jiayao Duan
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Mingfei Xiao
- The Microsystem Research Center, Department of Instruments Science and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- The State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology, Wuhan 430074, China
| | - Genming Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Junxin Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Huiqing Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Sergio Gámez-Valenzuela
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Szymon J Zelewski
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, U.K
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Linjie Dai
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, U.K
| | - Xudong Tao
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Chong Ran
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Nathan Jay
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Yuze Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wan Yue
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
5
|
Cong S, Chen J, Xie M, Deng Z, Chen C, Liu R, Duan J, Zhu X, Li Z, Cheng Y, Huang W, McCulloch I, Yue W. Single ambipolar OECT-based inverter with volatility and nonvolatility on demand. SCIENCE ADVANCES 2024; 10:eadq9405. [PMID: 39383214 PMCID: PMC11463256 DOI: 10.1126/sciadv.adq9405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Organic electrochemical transistor (OECT)-based inverter introduces new prospects for energy-efficient brain-inspired artificial intelligence devices. Here, we report single-component OECT-based inverters by incorporating ambipolar p(gDPP-V). Notably, p(gDPP-V) shows state-of-the-art ambipolar OECT performances in both conventional (p/n-type mode transconductance of 29/25 S cm-1) and vertical (transconductance of 297.2/292.4 μS μm-2 under p/n operation) device architectures. Especially, the resulting highly stable vertical OECT-based inverter shows a high voltage gain of 105 V V-1 under a low driving voltage of 0.8 V. The inverter exhibits undiscovered voltage-regulated dual mode: volatile receptor and nonvolatile synapse. Moreover, applications of physiology signal recording and demonstrations of NAND/NOR logic circuits are investigated within the volatile feature, while neuromorphic simulations with a convolutional neural network and image memorizing capabilities are explored under the nonvolatile behavior. The ambipolar OECT-based inverter, capable of both volatile and nonvolatile operations, provides possibilities for the applications of reconfigurable complementary logic circuits in novel neuromorphic computing paradigms.
Collapse
Affiliation(s)
- Shengyu Cong
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Junxin Chen
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Miao Xie
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Ziyi Deng
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Chaoyue Chen
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Riping Liu
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiayao Duan
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiuyuan Zhu
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhengke Li
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Iain McCulloch
- Andlinger Center for Energy and the Environment, and Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Wan Yue
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
6
|
Zhang L, Kuang Y, Ye G, Liu J. Tailoring the Density of State of n-Type Conjugated Polymers through Solvent Engineering for Organic Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39693-39700. [PMID: 39038079 DOI: 10.1021/acsami.4c04917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Conjugated polymers with ethylene glycol-type side chains are commonly used as channel materials in organic electrochemical transistors (OECTs). To improve the performance of these materials, new chemical structures are often created through synthetic routines. Herein, we demonstrate that the OECT performance of these polymers can also be improved by changing their density-of-state (DOS) profile through solvent engineering. Depending on the solvent polarity, it solvates the backbone and side chains of the conjugated polymer differently, leading to differences in molecule orientation, π-stacking paracrystallinity, and film defects, such as grain boundaries and pinholes. This then results in a change in the DOS profile of the polymer. A more intense and narrow-width DOS distribution is usually observed in organic films with an "edge on" orientation and fewer film defects, while films with a "face on" orientation and apparent defects show a broadened DOS profile. The OECT devices that use the polymer film with a more intense and narrow-width DOS profile exhibit a better-normalized transconductance and figure-of-merit μC* than those with a broadened DOS profile (0.74 to 4.29 S cm-1 and 3.5 to 14.3 F cm-1 V-1 s-1). This study provides useful insights into how the DOS profile affects the mixed ionic-electronic conduction performance and presents a new avenue for improving n-type OECT materials.
Collapse
Affiliation(s)
- Linlong Zhang
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yazhuo Kuang
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Gang Ye
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
7
|
Nguyen-Dang T, Bao ST, Kaiyasuan C, Li K, Chae S, Yi A, Joy S, Harrison K, Kim JY, Pallini F, Beverina L, Graham KR, Nuckolls C, Nguyen TQ. Air-Stable Perylene Diimide Trimer Material for N-Type Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312254. [PMID: 38521992 DOI: 10.1002/adma.202312254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/18/2024] [Indexed: 03/25/2024]
Abstract
A new method is reported to make air-stable n-type organic mixed ionic-electronic conductor (OMIEC) films for organic electrochemical transistors (OECTs) using a solution-processable small molecule helical perylene diimide trimer, hPDI[3]-C11. Alkyl side chains are attached to the conjugated core for processability and film making, which are then cleaved via thermal annealing. After the sidechains are removed, the hPDI[3] film becomes less hydrophobic, more ordered, and has a deeper lowest unoccupied molecular orbital (LUMO). These features provide improved ionic transport, greater electronic mobility, and increased stability in air and in aqueous solution. Subsequently, hPDI[3]-H is used as the active material in OECTs and a device with a transconductance of 44 mS, volumetric capacitance of ≈250 F cm-3, µC* value of 1 F cm-1 V-1 s-1, and excellent stability (> 5 weeks) is demonstrated. As proof of their practical applications, a hPDI[3]-H-based OECTs as a glucose sensor and electrochemical inverter is utilized. The approach of side chain removal after film formation charts a path to a wide range of molecular semiconductors to be used as stable, mixed ionic-electronic conductors.
Collapse
Affiliation(s)
- Tung Nguyen-Dang
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
- College of Engineering and Computer Science (CECS) and Center for Environmental Intelligence, VinUniversity, Gia-Lam, Hanoi, 12400, Vietnam
| | - Si Tong Bao
- Department of Chemistry, University of Columbia, New York, NY 10027, USA
| | - Chokchai Kaiyasuan
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Kunyu Li
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Sangmin Chae
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Ahra Yi
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Syed Joy
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Kelsey Harrison
- Department of Chemistry, University of Columbia, New York, NY 10027, USA
| | - Jae Young Kim
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Francesca Pallini
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
- Department of Materials Science, State University of Milano-Bicocca, Via Cozzi 55, Milano, I-20126, Italy
| | - Luca Beverina
- Department of Materials Science, State University of Milano-Bicocca, Via Cozzi 55, Milano, I-20126, Italy
| | - Kenneth R Graham
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Colin Nuckolls
- Department of Chemistry, University of Columbia, New York, NY 10027, USA
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| |
Collapse
|
8
|
Song J, Liu H, Zhao Z, Lin P, Yan F. Flexible Organic Transistors for Biosensing: Devices and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300034. [PMID: 36853083 DOI: 10.1002/adma.202300034] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable biosensors can offer seamless and conformable biological-electronic interfaces for continuously acquiring high-fidelity signals, permitting numerous emerging applications. Organic thin film transistors (OTFTs) are ideal transducers for flexible and stretchable biosensing due to their soft nature, inherent amplification function, biocompatibility, ease of functionalization, low cost, and device diversity. In consideration of the rapid advances in flexible-OTFT-based biosensors and their broad applications, herein, a timely and comprehensive review is provided. It starts with a detailed introduction to the features of various OTFTs including organic field-effect transistors and organic electrochemical transistors, and the functionalization strategies for biosensing, with a highlight on the seminal work and up-to-date achievements. Then, the applications of flexible-OTFT-based biosensors in wearable, implantable, and portable electronics, as well as neuromorphic biointerfaces are detailed. Subsequently, special attention is paid to emerging stretchable organic transistors including planar and fibrous devices. The routes to impart stretchability, including structural engineering and material engineering, are discussed, and the implementations of stretchable organic transistors in e-skin and smart textiles are included. Finally, the remaining challenges and the future opportunities in this field are summarized.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials and Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
9
|
Cameron J, Kanibolotsky AL, Skabara PJ. Lest We Forget-The Importance of Heteroatom Interactions in Heterocyclic Conjugated Systems, from Synthetic Metals to Organic Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302259. [PMID: 37086184 DOI: 10.1002/adma.202302259] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The field of synthetic metals is, and remains, highly influential for the development of organic semiconductor materials. Yet, with the passing of time and the rapid development of conjugated materials in recent years, the link between synthetic metals and organic semiconductors is at risk of being forgotten. This review reflects on one of the key concepts developed in synthetic metals - heteroatom interactions. The application of this strategy in recent organic semiconductor materials, small molecules and polymers, is highlighted, with analysis of X-ray crystal structures and comparisons with model systems used to determine the influence of these non-covalent short contacts. The case is made that the wide range of effective heteroatom interactions and the high performance that has been achieved in devices from organic solar cells to transistors is testament to the seeds sown by the synthetic metals research community.
Collapse
Affiliation(s)
- Joseph Cameron
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom
| | - Alexander L Kanibolotsky
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom
- Institute of Physical-Organic Chemistry and Coal Chemistry, Kyiv, 02160, Ukraine
| | - Peter J Skabara
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom
| |
Collapse
|
10
|
Jo IY, Jeong D, Moon Y, Lee D, Lee S, Choi JG, Nam D, Kim JH, Cho J, Cho S, Kim DY, Ahn H, Kim BJ, Yoon MH. High-Performance Organic Electrochemical Transistors Achieved by Optimizing Structural and Energetic Ordering of Diketopyrrolopyrrole-Based Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307402. [PMID: 37989225 DOI: 10.1002/adma.202307402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/15/2023] [Indexed: 11/23/2023]
Abstract
For optimizing steady-state performance in organic electrochemical transistors (OECTs), both molecular design and structural alignment approaches must work in tandem to minimize energetic and microstructural disorders in polymeric mixed ionic-electronic conductor films. Herein, a series of poly(diketopyrrolopyrrole)s bearing various lengths of aliphatic-glycol hybrid side chains (PDPP-mEG; m = 2-5) is developed to achieve high-performance p-type OECTs. PDPP-4EG polymer with the optimized length of side chains exhibits excellent crystallinity owing to enhanced lamellar and backbone interactions. Furthermore, the improved structural ordering in PDPP-4EG films significantly decreases trap state density and energetic disorder. Consequently, PDPP-4EG-based OECT devices produce a mobility-volumetric capacitance product ([µC*]) of 702 F V-1 cm-1 s-1 and a hole mobility of 6.49 ± 0.60 cm2 V-1 s-1 . Finally, for achieving the optimal structural ordering along the OECT channel direction, a floating film transfer method is employed to reinforce the unidirectional orientation of polymer chains, leading to a substantially increased figure-of-merit [µC*] to over 800 F V-1 cm-1 s-1 . The research demonstrates the importance of side chain engineering of polymeric mixed ionic-electronic conductors in conjunction with their anisotropic microstructural optimization to maximize OECT characteristics.
Collapse
Affiliation(s)
- Il-Young Jo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Dahyun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yina Moon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Dongchan Lee
- Department of Physics and EHSRC, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Seungjin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jun-Gyu Choi
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Donghyeon Nam
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Hwan Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jinhan Cho
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Shinuk Cho
- Department of Physics and EHSRC, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Dong-Yu Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - HyungJu Ahn
- Industrial Technology Convergence Center, Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| |
Collapse
|
11
|
Wang XY, Yu ZD, Lu Y, Yao ZF, Zhou YY, Pan CK, Liu Y, Wang ZY, Ding YF, Wang JY, Pei J. Density of States Engineering of n-Doped Conjugated Polymers for High Charge Transport Performances. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300634. [PMID: 36905682 DOI: 10.1002/adma.202300634] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Indexed: 05/26/2023]
Abstract
Charge transport of conjugated polymers in functional devices closely relates to their density of states (DOS) distributions. However, systemic DOS engineering for conjugated polymers is challenging due to the lack of modulated methods and the unclear relationship between DOS and electrical properties. Here, the DOS distribution of conjugated polymers is engineered to enhance their electrical performances. The DOS distributions of polymer films are tailored using three processing solvents with different Hansen solubility parameters. The highest n-type electrical conductivity (39 ± 3 S cm-1 ), the highest power factor (63 ± 11 µW m-1 K-2 ), and the highest Hall mobility (0.14 ± 0.02 cm2 V-1 s-1 ) of the polymer (FBDPPV-OEG) are obtained in three films with three various DOS distributions, respectively. Through theoretical and experimental exploration, it is revealed that the carrier concentration and transport property of conjugated polymers can be efficiently controlled by DOS engineering, paving the way for rationally fabricating organic semiconductors.
Collapse
Affiliation(s)
- Xin-Yi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zi-Di Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yang Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yang-Yang Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chen-Kai Pan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yi Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zi-Yuan Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yi-Fan Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
12
|
Giri D, Saha SK, Siemons N, Anderson I, Yu H, Nelson J, Canjeevaram Balasubramanyam RK, Patil S. Ion Size-Dependent Electrochromism in Air-Stable Napthalenediimide-Based Conjugated Polymers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17767-17778. [PMID: 37011231 DOI: 10.1021/acsami.2c21394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Conjugated polymers (CPs) that show stable and reversible cation insertion/deinsertion under ambient conditions hold great potential for optoelectronic and energy storage devices. However, n-doped CPs are prone to parasitic reactions upon exposure to moisture or oxygen. This study reports a new family of napthalenediimide (NDI) based conjugated polymers capable of undergoing electrochemical n-type doping in ambient air. By functionalizing the NDI-NDI repeating unit with alternating triethylene glycol and octadecyl side chains, the polymer backbone shows stable electrochemical doping at ambient conditions. We systematically investigate the extent of volumetric doping involving monovalent cations of varying size (Li+, Na+, tetraethylammonium (TEA+)) with electrochemical methods, including cyclic voltammetry, differential pulse voltammetry, spectroelectrochemistry, and electrochemical impedance spectroscopy. We observed that introducing hydrophilic side chains on the polymer backbone improves the local dielectric environment of the backbones and lowers the energetic barrier for ion insertion. Surprisingly, when using Na+ electrolyte, the polymer films exhibit higher volumetric doping efficiency, faster-switching kinetics, higher optical contrast, and selective multielectrochromism when compared to Li+ or TEA+ electrolytes. Using well-tempered metadynamics, we characterize the free energetics of side chain-ion interactions to find that Li+ binds more tightly to the glycolated NDI moieties than Na+, hindering Li+ ion transport, switching kinetics, and limiting the films' doping efficiency.
Collapse
Affiliation(s)
- Dipanjan Giri
- Solid State and Structural Chemistry Unit, Indian Institute of Science (IISc), Bengaluru 560012, Karnataka, India
| | - Shraman Kumar Saha
- Solid State and Structural Chemistry Unit, Indian Institute of Science (IISc), Bengaluru 560012, Karnataka, India
| | - Nicholas Siemons
- Department of Physics and Centre for Processible Electronics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Iona Anderson
- Department of Physics and Centre for Processible Electronics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hang Yu
- Department of Physics and Centre for Processible Electronics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jenny Nelson
- Department of Physics and Centre for Processible Electronics, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Satish Patil
- Solid State and Structural Chemistry Unit, Indian Institute of Science (IISc), Bengaluru 560012, Karnataka, India
| |
Collapse
|
13
|
Duan J, Zhu G, Chen J, Zhang C, Zhu X, Liao H, Li Z, Hu H, McCulloch I, Nielsen CB, Yue W. Highly Efficient Mixed Conduction in a Fused Oligomer n-Type Organic Semiconductor Enabled by 3D Transport Pathways. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300252. [PMID: 36918256 DOI: 10.1002/adma.202300252] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/23/2023] [Indexed: 05/17/2023]
Abstract
Tailoring organic semiconductors to facilitate mixed conduction of ionic and electronic charges when interfaced with an aqueous media has spurred many recent advances in organic bioelectronics. The field is still restricted, however, by very few n-type (electron-transporting) organic semiconductors with adequate performance metrics. Here, a new electron-deficient, fused polycyclic aromatic system, TNR, is reported with excellent n-type mixed conduction properties including a µC* figure-of-merit value exceeding 30 F cm-1 V-1 s-1 for the best performing derivative. Comprising three naphthalene bis-isatin moieties, this new molecular design builds on successful small-molecule mixed conductors; by extending the molecular scaffold into the oligomer domain, good film-forming properties, strong π-π interactions, and consequently excellent charge-transport properties are obtained. Through judicious optimization of the side chains, the linear oligoether and branched alkyl chain derivative bgTNR is obtained which shows superior mixed conduction in an organic electrochemical transistor configuration including an electron mobility around 0.3 cm2 V-1 s-1 . By optimizing the side chains, the dominant molecular packing can be changed from a preferential edge-on orientation (with high charge-transport anisotropy) to an oblique orientation that can support 3D transport pathways which in turn ensure highly efficient mixed conduction properties across the bulk semiconductor film.
Collapse
Affiliation(s)
- Jiayao Duan
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Genming Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Junxin Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Chenyang Zhang
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, 518055, China
| | - Xiuyuan Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Hailiang Liao
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhengke Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Hanlin Hu
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, 518055, China
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Christian B Nielsen
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Wan Yue
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
14
|
Duan J, Zhu G, Lan L, Chen J, Zhu X, Chen C, Yu Y, Liao H, Li Z, McCulloch I, Yue W. Electron-Deficient Polycyclic Molecules via Ring Fusion for n-Type Organic Electrochemical Transistors. Angew Chem Int Ed Engl 2023; 62:e202213737. [PMID: 36349830 DOI: 10.1002/anie.202213737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Indexed: 11/11/2022]
Abstract
The primary challenge for n-type small-molecule organic electrochemical transistors (OECTs) is to improve their electron mobilities and thus the key figure of merit μC*. Nevertheless, few reports in OECTs have specially proposed to address this issue. Herein, we report a 10-ring-fused polycyclic π-system consisting of the core of naphthalene bis-isatin dimer and the terminal moieties of rhodanine, which features intramolecular noncovalent interactions, high π-delocalization and strong electron-deficient characteristics. We find that this extended π-conjugated system using the ring fusion strategy displays improved electron mobilities up to 0.043 cm2 V-1 s-1 compared to our previously reported small molecule gNR, and thereby leads to a remarkable μC* of 10.3 F cm-1 V-1 s-1 in n-type OECTs, which is the highest value reported to date for small-molecule OECTs. This work highlights the importance of π-conjugation extension in polycyclic-fused molecules for enhancing the performance of n-type small-molecule OECTs.
Collapse
Affiliation(s)
- Jiayao Duan
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Genming Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liuyuan Lan
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Junxin Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiuyuan Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chaoyue Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yaping Yu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hailiang Liao
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhengke Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Wan Yue
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|