1
|
Zhou Z, Chen K, Shen Y, Zhu Y, Wang Q, Zeng X, Qin Y, Zhuang S. Light-driven soft robot with compound motion patterns based on gas-liquid phase transition chamber. Sci Rep 2025; 15:18098. [PMID: 40413263 PMCID: PMC12103575 DOI: 10.1038/s41598-025-03247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025] Open
Abstract
Light is increasingly being used to drive soft robots and soft actuators. In this paper, a light-driven soft robot with compound motion patterns based on gas-liquid phase transition chamber is proposed, which inspired by the frog and the larvae of gall midges. When a light source with a power density of about 1.25 W/cm2 is illuminated on the upper surface of the auxiliary pneumatic chamber, the previously non-existent main pneumatic chamber can be expanded quickly within less than 3 s, and generate enormous thrust. This allows the soft robot (length: 3 cm; width: 0.7 cm; weight: 0.36 g) to quickly release from the magnet attractive field and perform a jump with a height of 50.8 cm in less than 1 s, approximately 16 times the body length of the entire soft robot. The proposed soft robot can also be combined with a photothermal bending film to achieve directional crawling. At the same time, by fixing the foot of the soft robot on the base and using light irradiate it, an object weighing about 5 times the overall weight can be ejected to a horizontal distance of 16.9 cm. This untethered pneumatic soft robot has broad prospects in soft jumping robots and wireless actuators, and the proposed pneumatic triggered chamber can also be further applied to other application fields.
Collapse
Affiliation(s)
- Zheqi Zhou
- School of Optical-Electrical and Computer Engineering, Shanghai Key Lab of Modern Optical System, EngineeringResearch Center of Optical Instrument and System, Ministry of Education, University of Shanghai for Science and Technology, 516 Jungong Rd, Shanghai, 200093, China
| | - Kejian Chen
- School of Optical-Electrical and Computer Engineering, Shanghai Key Lab of Modern Optical System, EngineeringResearch Center of Optical Instrument and System, Ministry of Education, University of Shanghai for Science and Technology, 516 Jungong Rd, Shanghai, 200093, China.
| | - Yang Shen
- School of Optical-Electrical and Computer Engineering, Shanghai Key Lab of Modern Optical System, EngineeringResearch Center of Optical Instrument and System, Ministry of Education, University of Shanghai for Science and Technology, 516 Jungong Rd, Shanghai, 200093, China
| | - Yifan Zhu
- School of Optical-Electrical and Computer Engineering, Shanghai Key Lab of Modern Optical System, EngineeringResearch Center of Optical Instrument and System, Ministry of Education, University of Shanghai for Science and Technology, 516 Jungong Rd, Shanghai, 200093, China
| | - Qian Wang
- School of Optical-Electrical and Computer Engineering, Shanghai Key Lab of Modern Optical System, EngineeringResearch Center of Optical Instrument and System, Ministry of Education, University of Shanghai for Science and Technology, 516 Jungong Rd, Shanghai, 200093, China
| | - Xiaofen Zeng
- School of Optical-Electrical and Computer Engineering, Shanghai Key Lab of Modern Optical System, EngineeringResearch Center of Optical Instrument and System, Ministry of Education, University of Shanghai for Science and Technology, 516 Jungong Rd, Shanghai, 200093, China
| | - Yuke Qin
- School of Optical-Electrical and Computer Engineering, Shanghai Key Lab of Modern Optical System, EngineeringResearch Center of Optical Instrument and System, Ministry of Education, University of Shanghai for Science and Technology, 516 Jungong Rd, Shanghai, 200093, China
| | - Songlin Zhuang
- School of Optical-Electrical and Computer Engineering, Shanghai Key Lab of Modern Optical System, EngineeringResearch Center of Optical Instrument and System, Ministry of Education, University of Shanghai for Science and Technology, 516 Jungong Rd, Shanghai, 200093, China
| |
Collapse
|
2
|
Li X, Du Y, Pan X, Xiao C, Ding X, Zheng K, Liu X, Chen L, Gong Y, Xue M, Tian X, Zhang X. Leaf Vein-Inspired Programmable Superstructure Liquid Metal Photothermal Actuator for Soft Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416991. [PMID: 39955736 DOI: 10.1002/adma.202416991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Asymmetric-expansion photothermal actuators have attracted the attention of researchers owing to their simple structure, superior stability, rapid response, and precise controllability. However, their response speed, deformation capacity, and load-carrying capacity are mutually constrained by their thickness. Inspired by the veins and pulp in plant leaves, this study uses laser etching to apply a superstructure of ordered grooves to liquid metal (LM) photothermal actuators. The resulting LM@low-expansion polyimide (4.52 ppm K-1)/polydimethylsiloxane (LM@PI/PDMS) programmable photothermal actuators demonstrate exceptional performance, including a load-carrying capacity of 190 times their weight, a rapid oscillation frequency of 19 Hz, a response speed of 60.96 ± 3.08°/ s, and a bending angle of 159.05 ± 2.52°. Hence, the proposed design resolves the inherent conflict between the load-carrying capacity and response speed. Furthermore, incorporating LM microspheres into actuators increases their stability and allows them to endure more than 20 800 cycles without damage. The actuators are used to create versatile smart devices and robots, such as photothermally actuated robotic dogs that can function across various terrains. This study provides a novel strategy for the design and fabrication of programmable photothermal actuators and highlights their potential for applications in advanced robotics, which paves the way for their integration into complex environments.
Collapse
Affiliation(s)
- Xiaofei Li
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Yiming Du
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoshuan Pan
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Chao Xiao
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xin Ding
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Kang Zheng
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xianglan Liu
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Lin Chen
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yi Gong
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Meng Xue
- Guangdong Banggu Film Coatings Innovation Academy Co., Ltd., Nanxiong, 512400, China
| | - Xingyou Tian
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Xian Zhang
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Chen H, Chen Z, Liu Z, Xiong J, Yan Q, Fei T, Zhao X, Xue F, Zheng H, Lian H, Chen Y, Xu L, Peng Q, He X. From Coils to Crawls: A Snake-Inspired Soft Robot for Multimodal Locomotion and Grasping. NANO-MICRO LETTERS 2025; 17:243. [PMID: 40304871 PMCID: PMC12043558 DOI: 10.1007/s40820-025-01762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025]
Abstract
Currently, numerous biomimetic robots inspired by natural biological systems have been developed. However, creating soft robots with versatile locomotion modes remains a significant challenge. Snakes, as invertebrate reptiles, exhibit diverse and powerful locomotion abilities, including prey constriction, sidewinding, accordion locomotion, and winding climbing, making them a focus of robotics research. In this study, we present a snake-inspired soft robot with an initial coiling structure, fabricated using MXene-cellulose nanofiber ink printed on pre-expanded polyethylene film through direct ink writing technology. The controllable fabrication of initial coiling structure soft robot (ICSBot) has been achieved through theoretical calculations and finite element analysis to predict and analyze the initial structure of ICSBot, and programmable ICSBot has been designed and fabricated. This robot functions as a coiling gripper capable of grasping objects with complex shapes under near infrared light stimulation. Additionally, it demonstrates multi-modal crawling locomotion in various environments, including confined spaces, unstructured terrains, and both inside and outside tubes. These results offer a novel strategy for designing and fabricating coiling-structured soft robots and highlight their potential applications in smart and multifunctional robotics.
Collapse
Affiliation(s)
- He Chen
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Zhong Chen
- Dongfang Electric Academy of Science and Technology Co. Ltd, Chengdu, 611731, People's Republic of China.
| | - Zonglin Liu
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Jinhua Xiong
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Qian Yan
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Teng Fei
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Xu Zhao
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Fuhua Xue
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Haowen Zheng
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Huanxin Lian
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Yunxiang Chen
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Liangliang Xu
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Qingyu Peng
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China.
- Suzhou Research Institute of HIT, Suzhou, 215104, People's Republic of China.
| | - Xiaodong He
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China.
| |
Collapse
|
4
|
Yao X, Gong Z, Yin W, Li H, Douroumis D, Huang L, Li H. Islet cell spheroids produced by a thermally sensitive scaffold: a new diabetes treatment. J Nanobiotechnology 2024; 22:657. [PMID: 39456025 PMCID: PMC11515210 DOI: 10.1186/s12951-024-02891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
The primary issues in treating type 1 diabetes mellitus (T1DM) through the transplantation of healthy islets or islet β-cells are graft rejection and a lack of available donors. Currently, the majority of approaches use cell encapsulation technology and transplant replacement cells that can release insulin to address transplant rejection and donor shortages. However, existing encapsulation materials merely serve as carriers for islet cell growth. A new treatment approach for T1DM could be developed by creating a smart responsive material that encourages the formation of islet cell spheroids to replicate their 3D connections in vivo and controls the release of insulin aggregates. In this study, we used microfluidics to create thermally sensitive porous scaffolds made of poly(N-isopropyl acrylamide)/graphene oxide (PNIPAM/GO). The material was carefully shrunk under near-infrared light, enriched with mouse insulinoma pancreatic β cells (β-TC-6 cells), encapsulated, and cultivated to form 3D cell spheroids. The controlled contraction of the thermally responsive porous scaffold regulated insulin release from the spheroids, demonstrated using the glucose-stimulated insulin release assay (GSIS), enzyme-linked immunosorbent assay (ELISA), and immunofluorescence assay. Eventually, implantation of the spheroids into C57BL/6 N diabetic mice enhanced the therapeutic effect, potentially offering a novel approach to the management of T1DM.
Collapse
Affiliation(s)
- Xueting Yao
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, 315700, P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang, 325000, P. R. China
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, P. R. China
| | - Zehua Gong
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellent in Nanoscience, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hanbing Li
- Department of Pharmaceutical Sciences, Institute of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China.
| | - Dennis Douroumis
- Centre for Research Innovation, CRI, University of Greenwich, Kent, ME4 4TB, UK
| | - Lijiang Huang
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, 315700, P. R. China.
| | - Huaqiong Li
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, 315700, P. R. China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang, 325000, P. R. China.
| |
Collapse
|
5
|
Shi R, Chen KL, Fern J, Deng S, Liu Y, Scalise D, Huang Q, Cowan NJ, Gracias DH, Schulman R. Programming gel automata shapes using DNA instructions. Nat Commun 2024; 15:7773. [PMID: 39237499 PMCID: PMC11377784 DOI: 10.1038/s41467-024-51198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/31/2024] [Indexed: 09/07/2024] Open
Abstract
The ability to transform matter between numerous physical states or shapes without wires or external devices is a major challenge for robotics and materials design. Organisms can transform their shapes using biomolecules carrying specific information and localize at sites where transitions occur. Here, we introduce gel automata, which likewise can transform between a large number of prescribed shapes in response to a combinatorial library of biomolecular instructions. Gel automata are centimeter-scale materials consisting of multiple micro-segments. A library of DNA activator sequences can each reversibly grow or shrink different micro-segments by polymerizing or depolymerizing within them. We develop DNA activator designs that maximize the extent of growth and shrinking, and a photolithography process for precisely fabricating gel automata with elaborate segmentation patterns. Guided by simulations of shape change and neural networks that evaluate gel automata designs, we create gel automata that reversibly transform between multiple, wholly distinct shapes: four different letters and every even or every odd numeral. The sequential and repeated metamorphosis of gel automata demonstrates how soft materials and robots can be digitally programmed and reprogrammed with information-bearing chemical signals.
Collapse
Affiliation(s)
- Ruohong Shi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kuan-Lin Chen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Joshua Fern
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Siming Deng
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, USA
| | - Yixin Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Dominic Scalise
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Qi Huang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Noah J Cowan
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, USA
| | - David H Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Center for MicroPhysiological Systems (MPS), Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA.
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, USA.
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA.
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Hwang I, Mun S, Youn JH, Kim HJ, Park SK, Choi M, Kang TJ, Pei Q, Yun S. Height-renderable morphable tactile display enabled by programmable modulation of local stiffness in photothermally active polymer. Nat Commun 2024; 15:2554. [PMID: 38519461 PMCID: PMC10959967 DOI: 10.1038/s41467-024-46709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Reconfigurable tactile displays are being used to provide refreshable Braille information; however, the delivered information is currently limited to an alternative of Braille because of difficulties in controlling the deformation height. Herein, we present a photothermally activated polymer-bilayer-based morphable tactile display that can programmably generate tangible three-dimensional topologies with varying textures on a thin film surface. The morphable tactile display was composed of a heterogeneous polymer structure that integrated a stiffness-tunable polymer into a light-absorbing elastomer, near-infra-red light-emitting diode (NIR-LED) array, and small pneumatic chamber. Topological expression was enabled by producing localized out-of-plane deformation that was reversible, height-adjustable, and latchable in response to light-triggered stiffness modulation at each target area under switching of stationary pneumatic pressure. Notably, the tactile display could express a spatial softness map of the latched topology upon re-exposing the target areas to modulated light from the NIR-LED array. We expect the developed tactile display to open a pathway for generating high-dimensional tactile information on electronic devices and enable realistic interaction in augmented and virtual environments.
Collapse
Affiliation(s)
- Inwook Hwang
- Tangible Interface Creative Research Section, Electronics and Telecommunications Research Institute, Daejeon, South Korea
| | - Seongcheol Mun
- Tangible Interface Creative Research Section, Electronics and Telecommunications Research Institute, Daejeon, South Korea
| | - Jung-Hwan Youn
- Tangible Interface Creative Research Section, Electronics and Telecommunications Research Institute, Daejeon, South Korea
| | - Hyeong Jun Kim
- Department of Mechanical Engineering, Inha University, Incheon, South Korea
| | - Seung Koo Park
- Human Enhancement & Assistive Technology Research Section, Electronics and Telecommunications Research Institute, Daejeon, South Korea
| | - Meejeong Choi
- Tangible Interface Creative Research Section, Electronics and Telecommunications Research Institute, Daejeon, South Korea
| | - Tae June Kang
- Department of Mechanical Engineering, Inha University, Incheon, South Korea
| | - Qibing Pei
- Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
| | - Sungryul Yun
- Tangible Interface Creative Research Section, Electronics and Telecommunications Research Institute, Daejeon, South Korea.
| |
Collapse
|
7
|
Tian Z, Xue J, Xiao X, Du C, Liu Y. Optomagnetic Coordination Helical Robot with Shape Transformation and Multimodal Motion Capabilities. NANO LETTERS 2024; 24:2885-2893. [PMID: 38407034 DOI: 10.1021/acs.nanolett.4c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Soft robots with magnetic responsiveness exhibit diverse motion modes and programmable shape transformations. While the fixed magnetization configuration facilitates coupling control of robot posture and motion, it limits individual posture control to some extent. This poses a challenge in independently controlling the robot's transformation and motion, restricting its versatile applications. This research introduces a multifunctional helical robot responsive to both light and magnetism, segregating posture control from movements. Light fields assist in robot shaping, achieving a 78% maximum diameter shift. Magnetic fields guide helical robots in multimodal motions, encompassing rotation, flipping, rolling, and spinning-induced propulsion. By controlling multimodal locomotion and shape transformation on demand, helical robots gain enhanced flexibility. This innovation allows them to tightly grip and wirelessly transport designated payloads, showcasing potential applications in drug delivery, soft grippers, and chemical reaction platforms. The unique combination of structural design and control methods holds promise for intelligent robots in the future.
Collapse
Affiliation(s)
- Zhuangzhuang Tian
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
| | - Jingze Xue
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
| | - Xinze Xiao
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
| | - Chuankai Du
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
- Weihai Institute for Bionics, Jilin University, Weihai, 264402, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| |
Collapse
|
8
|
Wu J, Jiang W, Gu M, Sun F, Han C, Gong H. Flexible Actuators with Hygroscopic Adaptability for Smart Wearables and Soft Grippers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59989-60001. [PMID: 38085924 DOI: 10.1021/acsami.3c16532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Flexible actuators have garnered significant interest in the domains of biomedical devices, human-machine interfaces, and smart wearables. However, the mechanical properties of existing materials are not sufficiently robust, and the expensive and time-consuming pretreatment process and the ambiguous high-degree-of-freedom deformation mechanism make it difficult to meet the demands of industrialized production. Hence, drawing inspiration from the adaptable movement of living organisms in the natural world, this research created and engineered a fully textile-based humidity-sensitive flexible actuator (TbHs-FA) using high-cost-effective viscose/PET fibers as raw materials. The breakthrough development in actuation performance is covered, including substantial contraction force (92.53 cN), high actuation curvature (16.78 cm-1), and fast response (264 cN s-1 and 46.61 cm-1 s-1). Additionally, the programmable stiffness system and weave structure give TbHs-FAs low hysteresis and fatigue resistance, narrowing the gap between the conceptual laboratory-scale design of existing fully textile-based humidity-sensitive flexible actuators and actual textiles. The high-degree-of-freedom and large bending deformation mechanisms are elucidated for the first time by combining microscopic mechanical structure simulation and macroscopic energy conversion analysis. The novel humidity-sensitive flexible actuator possesses strong mechanical qualities, making it suitable for applications such as flexible robots, medicinal devices, and smart wearables.
Collapse
Affiliation(s)
- Jing Wu
- MOE Key Laboratory of Eco-textiles, Jiangnan University, Wuxi 214122, China
| | - Wenjie Jiang
- Textile Intelligent Manufacture, Jiangnan University, Wuxi 214122, China
| | - Mengshang Gu
- Textile Intelligent Manufacture, Jiangnan University, Wuxi 214122, China
| | - Fengxin Sun
- MOE Key Laboratory of Eco-textiles, Jiangnan University, Wuxi 214122, China
- Laboratory of Soft Fibrous Materials, College of Textiles Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Chenchen Han
- MOE Key Laboratory of Eco-textiles, Jiangnan University, Wuxi 214122, China
| | - Hugh Gong
- University of Manchester, Manchester M139PL, U.K
| |
Collapse
|
9
|
Chen G, Chen L, Li N, Li J, Huang M, Gong C, Peng Y. Salt-Assisted Fabrication of a Water-Based Covalent Organic Framework Ink and Its Hybrid Films for Photothermal Actuators. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37478481 DOI: 10.1021/acsami.3c06435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
The exceptional properties of two-dimensional covalent organic framework materials (2D-COFs), including their large π-conjugated structure at the molecular level and π-π multilayer stacking, have attracted interest for soft photothermal actuator applications. However, the conventional synthesis of COFs as microcrystalline powders limits their processing in water due to their limited dispersibility. Herein, we present a simple and environmentally friendly method to fabricate water-suspended COF inks by adjusting the surface potential of COF powders through adsorption of ionic species such as Na+ and Cl-. This technique effectively prevents the accumulation and aggregation of COF powder, resulting in an aqueous COF ink that can be easily cast into homogeneous hybrid COF films by Mayer-rod coating. In addition, the resulting photothermal actuator exhibited a fast response time within 3 s at a curvature of 2.35 cm-1 in the near-infrared light. This facile and practical approach to fabricating water-based COFs ink represents a promising strategy for the development of practical applications of COFs in photothermal actuators.
Collapse
Affiliation(s)
- Guinan Chen
- College of Materials Science and Engineering and College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liangjun Chen
- College of Materials Science and Engineering and College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nanjun Li
- College of Materials Science and Engineering and College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiahao Li
- College of Materials Science and Engineering and College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Minchu Huang
- College of Materials Science and Engineering and College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Cobetter Filtration Equipment Co., Ltd., Hangzhou 311265, China
| | - Chengtao Gong
- College of Materials Science and Engineering and College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yongwu Peng
- College of Materials Science and Engineering and College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|