1
|
Jia J, Liu M, Yang H, Li X, Liu S, Li K, Zhang J, Zhao X. Manganese Dioxide-Based pH-Responsive Multifunctional Nanoparticles Deliver Methotrexate for Targeted Rheumatoid Arthritis Treatment. Biomater Res 2025; 29:0187. [PMID: 40371263 PMCID: PMC12076153 DOI: 10.34133/bmr.0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/20/2025] [Accepted: 03/20/2025] [Indexed: 05/16/2025] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by hypoxia and reactive oxygen species (ROS) overexpression, which cause inflammatory cascade and cartilage erosion. As representative inflammatory cells, macrophages produce many inflammatory factors, and intracellular ROS is abnormally elevated. Therefore, improving hypoxia and scavenging ROS are essential to inhibit the inflammatory response of synovial macrophages and cartilage destruction. Due to the complex microenvironment of RA and the single action of most anti-inflammatory and antioxidant drugs, as well as the difficulty in reversing the microenvironment with current formulations developed for ROS clearance, it is necessary to develop multifunctional nanoparticles (NPs) to achieve better therapeutic effects. In this work, we constructed a delivery system called PCM@MnO2 NPs, which could reduce inflammatory factors and improve the RA environment through multifunctional synergistic effects such as eliminating ROS and generating oxygen. Specifically, chondroitin sulfate was used to form NPs with methotrexate (MTX) through electrostatic interactions and hydrogen bonding and further loaded with MnO2 to form CM@MnO2 NPs. Furthermore, modification of polydopamine on the surface of CM@MnO2 NPs improved the stability of the formulation and extended the cycle time. Under the acidic (pH 6.5) microenvironment of RA, polydopamine shells were dissociated. Chondroitin sulfate could target inflammatory macrophages via the CD44 receptor and subsequently release MTX and MnO2 under low-intracellular-pH (pH 5.2) conditions. MnO2 could decompose and consume ROS and further produce oxygen in the process of decomposing H2O2, alleviating the hypoxic microenvironment of RA. In addition, MTX could also inhibit the secretion of cytokines. Overall, by regulating the RA microenvironment through the various synergistic effects mentioned above, it could promote macrophage polarization and alleviate RA progression. The experimental results in vitro and in vivo indicated that pH-responsive PCM@MnO2 NPs could accumulate in inflammatory joints by the extravasation through leaky vasculature and subsequent inflammatory cell-mediated sequestration (ELVIS) effect, enhance the precise delivery of MTX by targeting RA macrophages, and effectively alleviate the progression of disease and reduce the symptoms of collagen-induced arthritis mouse models. In general, using multifunctional synergistic therapy for RA is an effective potential strategy.
Collapse
Affiliation(s)
| | | | - Han Yang
- College of Pharmacy,
Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - XiaoFang Li
- College of Pharmacy,
Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Siyi Liu
- College of Pharmacy,
Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Kexin Li
- College of Pharmacy,
Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jiulong Zhang
- College of Pharmacy,
Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiuli Zhao
- Address correspondence to: (X.Z.); (J.Z.)
| |
Collapse
|
2
|
Xue G, Jiang H, Song Z, Zhao Y, Gao W, Lv B, Cao J. Dual Targeting Biomimetic Carrier-Free Nanosystems for Photo-Chemotherapy of Rheumatoid Arthritis via Macrophage Apoptosis and Re-Polarization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406877. [PMID: 39840927 PMCID: PMC11904978 DOI: 10.1002/advs.202406877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/07/2025] [Indexed: 01/23/2025]
Abstract
Rheumatoid arthritis (RA) is a common chronic systemic autoimmune disease that often results in irreversible joint erosion and disability. Methotrexate (MTX) is the first-line drug against RA, but the significant side effects of long-term administration limit its use. Therefore, new therapeutic strategies are needed for treating RA. Here, dual-targeting biomimetic carrier-free nanomaterials (BSA-MTX-CyI nanosystem, BMC) is developed for synergistic photo-chemotherapy of RA. Bovine serum albumin (BSA), which has high affinity with SPARC (secreted protein acidic and rich in cysteine) in the RA joint microenvironment, is selected as the hydrophilic end and coupled with MTX and the phototherapeutic agent CyI to self-assemble into BMC. In vitro and in vivo experiments revealed that BMC accumulated significantly at the joint site in collagen antibody-induced arthritis mice and could be specifically recognized and taken up by folate receptors in proinflammatory M1 macrophages. Upon near-infrared laser irradiation, CyI exerted photodynamic and photothermal effects, whereas MTX not only inhibited cell proliferation but also increased cell sensitivity to reactive oxygen species, enhancing the apoptotic effect induced by CyI and achieving synergistic photo-chemotherapy. Moreover, BMC could induce macrophages to reprogram into anti-inflammatory M2 macrophages. This study provides innovative approaches for RA treatment via macrophage apoptosis and re-polarization.
Collapse
Affiliation(s)
- Guanghe Xue
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266071China
| | - Huimei Jiang
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266071China
| | - Zhenhua Song
- Department of PharmacologySchool of PharmacyQingdao UniversityQingdao266071China
| | - Yifan Zhao
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266071China
| | - Wen Gao
- Department of Radiation OncologyThe Affiliated Hospital of Qingdao UniversityQingdao266000China
| | - Bai Lv
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266071China
| | - Jie Cao
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266071China
| |
Collapse
|
3
|
Ma C, Jiang Y, Xiang Y, Li C, Xie X, Zhang Y, You Y, Xie L, Gong J, Sun Y, Tong S, Song Q, Chen J, Xiao W. Metabolic Reprogramming of Macrophages by Biomimetic Melatonin-Loaded Liposomes Effectively Attenuates Acute Gouty Arthritis in a Mouse Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410107. [PMID: 39717013 PMCID: PMC11831490 DOI: 10.1002/advs.202410107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/25/2024] [Indexed: 12/25/2024]
Abstract
Gouty arthritis is characterized by an acute inflammatory response triggered by monosodium urate (MSU) crystals deposited in the joints and periarticular tissues. Current treatments bring little effects owing to serious side effects, necessitating the exploration of new and safer therapeutic options. Macrophages play a critical role in the initiation, progression, and resolution of acute gout, with the cellular profiles closely linked to their activation and polarization. This suggests that metabolic regulation can be of significance in managing gouty inflammation. In this study, it is demonstrated that melatonin, a natural hormone, modulates the metabolic remodeling of inflammatory macrophages by shifting their metabolism from glycolysis to oxidative phosphorylation, further altering functions of the pathogenic macrophage. To improve melatonin delivery to the inflamed sites, macrophage membrane-coated melatonin-loaded liposomes (MLT-MLP) are developed. Benefiting from the inflammation-homing characteristic of macrophage membrane, such engineered liposomes effectively target the inflamed site and demonstrate potent anti-inflammatory effects, achieving an enhanced amelioration of acute gouty arthritis. In conclusion, this study proposes a novel strategy aimed at metabolic reprogramming of macrophages to attenuate the pathological injuries in acute gout, providing a potential therapeutic strategy of gout-associated diseases, especially gouty arthritis.
Collapse
Affiliation(s)
- Chuchu Ma
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Yuyu Jiang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Yan Xiang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Chang Li
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Xiaoying Xie
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Yunkai Zhang
- Naval Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Yang You
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Laozhi Xie
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Jianing Gong
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Yinzhe Sun
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Shiqiang Tong
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Chen
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Wenze Xiao
- Department of Rheumatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| |
Collapse
|
4
|
Du Y, Zhang Y, Jiang Z, Xu L, Ru J, Wei S, Chen W, Dong R, Zhang S, Jia T. Triptolide alleviates acute gouty arthritis caused by monosodium urate crystals by modulating macrophage polarization and neutrophil activity. Immunol Lett 2024; 269:106907. [PMID: 39122094 DOI: 10.1016/j.imlet.2024.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/16/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
The present study focused on the efficacy and role of triptolide (TPL) in relieving symptoms of acute gouty arthritis (AGA) in vivo and in vitro. The effects of TPL in AGA were investigated in monosodium urate (MSU)-treated rat ankles, RAW264.7 macrophages, and neutrophils isolated from mouse peritoneal cavity. Observation of pathological changes in the ankle joint of rats. Enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction (RT-qPCR) were performed to detect the expression levels of inflammatory factors and chemokines. The levels of the indicators of macrophage M1/M2 polarization, and the mechanistic targets of Akt and rapamycin complex 2, were determined via western blotting and RT-qPCR. The expression levels of CD86 and CD206 were detected using immunohistochemistry. Neutrophil migration was observed via air pouch experiments in vivo and Transwell cell migration assay in vitro. Myeloperoxidase (MPO) and Neutrophil elastase (NE) release was analyzed by via immunohistochemistry and immunofluorescence. The expression levels of beclin-1, LC3B, Bax, Bcl-2, and cleaved caspase-3 in neutrophils were determined via western blotting and immunofluorescence. Neutrophil apoptosis was detected using the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Our results suggest that TPL inhibited inflammatory cell infiltration in rat ankle joints and inflammatory factor and chemokine secretion in rat serum, regulated macrophage polarization through the PI3K/AKT signaling pathway, suppressed inflammatory factor and chemokine expression in neutrophils, and inhibited neutrophil migration, neutrophil extracellular trap formation, transitional autophagy, and apoptosis. This suggests that TPL can prevent and treat MSU-induced AGA by regulating macrophage polarization through the PI3K/Akt pathway and modulating neutrophil activity.
Collapse
Affiliation(s)
- Yan Du
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Yurong Zhang
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Zhuxin Jiang
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Lianjie Xu
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Jing Ru
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Shanshan Wei
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Wenhui Chen
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China; Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, Yunnan 450500, , China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 450500, , China
| | - Renjie Dong
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Shan Zhang
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China; Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming, Yunnan 450500, , China; Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 450500, , China.
| | - Tao Jia
- Department of Orthopedics, First Clinical Medical College of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650021, , China.
| |
Collapse
|
5
|
Fan QQ, Zhai BT, Zhang D, Zhang XF, Cheng JX, Guo DY, Tian H. Study on the Underlying Mechanism of Yinhua Gout Granules in the Treatment of Gouty Arthritis by Integrating Transcriptomics and Network Pharmacology. Drug Des Devel Ther 2024; 18:3089-3112. [PMID: 39050804 PMCID: PMC11268870 DOI: 10.2147/dddt.s475442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose Yinhua Gout Granules (YGG) is a traditional Chinese medicine preparation with a variety of pharmacological effects, and its clinical efficacy in the treatment of gouty arthritis (GA) has been fully confirmed. However, the pharmacodynamic basis of YGG and its anti-inflammatory mechanism of action in GA are unknown. The objective of this study was to identify the active components and molecular mechanisms of YGG in the treatment of GA. Methods Ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) and network pharmacology were used to identify and predict the potential active ingredients and related signaling pathways. Then, we revealed the anti-GA effects of YGG based on pharmacodynamic experiments in GA rats. Finally, we integrated transcriptomics and network pharmacology to elucidate the potential mechanism of action and verified the putative mechanism by molecular docking, immunohistochemical (IHC) and Western blot. Results We have identified 10 major active components of YGG that may have anti-GA effects, such as ferulic acid, rutin, luteolin, etc. Using molecular docking, we found that 10 major compounds could bind well to TNF, PTGS2, IL-6, IL1β, NOS2 and PTGS1, and the binding energies were all less than -5 kcal/mol. Animal studies have shown that YGG can improve joint inflammation and inflammatory cell infiltration, reduce serum UA, BUN and Cr levels (p<0.01), and decrease IL-1β, IL-6, TNF-α, COX-2 and PGE2 levels in synovial tissue (p<0.01), which are associated with the pathogenesis of GA. IHC and Western blot results showed that YGG could regulate TLR4/MYD88/NF-κB pathway to inhibit the inflammatory response induced by GA. Conclusion This study found that YGG could not only improve the disease of GA by inhibiting the production of UA in the body, but also target the regulation of TLR4/MYD88/NF-κB signaling pathway through a variety of active components to achieve effective therapeutic effects on GA.
Collapse
Affiliation(s)
- Qiang-qiang Fan
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Bing-tao Zhai
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Dan Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Xiao-fei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jiang-xue Cheng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Dong-yan Guo
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Huan Tian
- Xi’an Hospital of Traditional Chinese Medicine, Xi’an, 712046, People’s Republic of China
| |
Collapse
|
6
|
Tang Y, Du Y, Ye J, Deng L, Cui W. Intestine-Targeted Explosive Hydrogel Microsphere Promotes Uric Acid Excretion for Gout Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310492. [PMID: 37997010 DOI: 10.1002/adma.202310492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Uric acid metabolism disorder triggers metabolic diseases, especially gout. However, increasing uric acid excretion remains a challenge. Here, an accelerative uric acid excretion pathway via an oral intestine-explosive hydrogel microsphere merely containing uricase and dopamine is reported. After oral administration, uricase is exposed and immobilized on intestinal mucosa along with an in situ dopamine polymerization via a cascade reaction triggered by the intestinal specific environment. By this means, trace amount of uricase is required to in situ up-regulate uric acid transporter proteins of intestinal epithelial cells, causing accelerated intestinal uric acid excretion. From in vitro data, the uric acid in fecal samples from gout patients could be significantly reduced by up to 37% by the mimic mucosa-immobilized uricase on the isolated porcine tissues. Both hyperuricemia and acute gouty arthritis in vivo mouse models confirm the uric acid excretion efficacy of intestine-explosive hydrogel microspheres. Fecal uric acid excretion is increased around 30% and blood uric acid is reduced more than 70%. In addition, 16S ribosomal RNA sequencing showed that the microspheres optimized intestinal flora composition as well. In conclusion, a unique pathway via the intestine in situ regulation to realize an efficient uric acid intestinal excretion for gout therapy is developed.
Collapse
Affiliation(s)
- Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Junna Ye
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
7
|
Sun J, Liu X, Du J, An J, Li Y, Hu Y, Cheng S, Xiong Y, Yu Y, Tian H, Mei X, Wu C. Manganese-doped albumin-gelatin composite nanogel loaded with berberine applied to the treatment of gouty arthritis in rats via a SPARC-dependent mechanism. Int J Biol Macromol 2023; 253:126999. [PMID: 37730000 DOI: 10.1016/j.ijbiomac.2023.126999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
In this study, manganese-doped albumin-gelatin composite nanogels (MAGN) were prepared and used to load berberine (Ber) for the treatment of gouty arthritis (GA). The nanodrug delivery system (Ber-MAGN) can target inflammatory joints due to the intrinsic high affinity of albumin for SPARC, which is overexpressed at the inflammatory site of GA. Characterization of the pharmaceutical properties in vitro showed that Ber-MAGN had good dispersion, and the particle size was 121 ± 10.7 nm. The sustained release effect significantly improved the bioavailability of berberine. In vitro and in vivo experimental results showed that Ber-MAGN has better therapeutic effects in relieving oxidative stress and suppressing inflammation. Therefore, Ber-MAGN, as a potential pharmaceutical preparation for GA, provides a new reference for the clinical treatment plan of GA.
Collapse
Affiliation(s)
- Junpeng Sun
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Xiaobang Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Jiaqun Du
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Jinyu An
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Yingqiao Li
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Yu Hu
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Shuai Cheng
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, China.
| | - Ying Xiong
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS), 14050 Caen, France.
| | - Yanan Yu
- Medical College of Jinzhou Medical University, Jinzhou Medical University, 121010, China
| | - He Tian
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, China.
| | - Xifan Mei
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121001, China.
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121001, China.
| |
Collapse
|
8
|
Mohapatra A, Mohanty A, Sathiyamoorthy P, Chahal S, Vijayan V, Rajendrakumar SK, Park IK. Targeted treatment of gouty arthritis by biomineralized metallic nanozyme-mediated oxidative stress-mitigating nanotherapy. J Mater Chem B 2023; 11:7684-7695. [PMID: 37464890 DOI: 10.1039/d3tb00669g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Gouty arthritis is characterized by chronic deposition of monosodium urate (MSU) crystals in the joints and other tissues, resulting in the production of excess reactive oxygen species (ROS) and proinflammatory cytokines that intensify synovial inflammation. This condition is mainly associated with inflammatory M1 macrophage activation and oxidative stress production. Hence, gout symptoms can often be resolved by eliminating M1 macrophage activation and scavenging oxidative stress in the inflamed areas. Herein, we developed M1-macrophage-targeting biomineralized metallic nanozymes (FALNZs) that deplete oxidative stress and reduce the M1 macrophage levels to mitigate gouty arthritis. Intra-articular injection of the FALNZs targets inflammatory macrophages and suppresses ROS levels in joints with MSU-crystal-induced arthritis. In addition, the FALNZs alleviate joint swelling, inflammatory cytokine production, and pathological features of the joints. Overall, the proposed therapeutic approach is biocompatible and is an effective ROS scavenger for the treatment of gouty pathogenesis.
Collapse
Affiliation(s)
- Adityanarayan Mohapatra
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, South Korea.
| | - Ayeskanta Mohanty
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, South Korea.
| | - Padmanaban Sathiyamoorthy
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, South Korea.
| | - Sahil Chahal
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, South Korea.
| | - Veena Vijayan
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, South Korea.
| | | | - In-Kyu Park
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, South Korea.
| |
Collapse
|
9
|
Chen R, Yang J, Wu M, Zhao D, Yuan Z, Zeng L, Hu J, Zhang X, Wang T, Xu J, Zhang J. M2 Macrophage Hybrid Membrane-Camouflaged Targeted Biomimetic Nanosomes to Reprogram Inflammatory Microenvironment for Enhanced Enzyme-Thermo-Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304123. [PMID: 37339776 DOI: 10.1002/adma.202304123] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/16/2023] [Indexed: 06/22/2023]
Abstract
Excessive inflammatory reactions caused by uric acid deposition are the key factor leading to gout. However, clinical medications cannot simultaneously remove uric acid and eliminate inflammation. An M2 macrophage-erythrocyte hybrid membrane-camouflaged biomimetic nanosized liposome (USM[H]L) is engineered to deliver targeted self-cascading bienzymes and immunomodulators to reprogram the inflammatory microenvironment in gouty rats. The cell-membrane-coating endow nanosomes with good immune escape and lysosomal escape to achieve long circulation time and intracellular retention times. After being uptaken by inflammatory cells, synergistic enzyme-thermo-immunotherapies are achieved: uricase and nanozyme degraded uric acid and hydrogen peroxide, respectively; bienzymes improved the catalytic abilities of each other; nanozyme produced photothermal effects; and methotrexate has immunomodulatory and anti-inflammatory effects. The uric acid levels markedly decrease, and ankle swelling and claw curling are effectively alleviated. The levels of inflammatory cytokines and ROS decrease, while the anti-inflammatory cytokine levels increase. Proinflammatory M1 macrophages are reprogrammed to the anti-inflammatory M2 phenotype. Notably, the IgG and IgM levels in USM[H]L-treated rats decrease substantially, while uricase-treated rats show high immunogenicity. Proteomic analysis show that there are 898 downregulated and 725 upregulated differentially expressed proteins in USM[H]L-treated rats. The protein-protein interaction network indicates that the signaling pathways include the spliceosome, ribosome, purine metabolism, etc.
Collapse
Affiliation(s)
- Ran Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Mingjun Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Dezhang Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Ziyi Yuan
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Linggao Zeng
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Juan Hu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Xinping Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Tingting Wang
- Biochemistry and Molecular Biology Laboratory, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Jingxin Xu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jingqing Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
10
|
Padmanaban S, Pully D, Samrot AV, Gosu V, Sadasivam N, Park IK, Radhakrishnan K, Kim DK. Rising Influence of Nanotechnology in Addressing Oxidative Stress-Related Liver Disorders. Antioxidants (Basel) 2023; 12:1405. [DOI: https:/doi.org/10.3390/antiox12071405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
Reactive oxygen species (ROS) play a significant role in the survival and decline of various biological systems. In liver-related metabolic disorders such as steatohepatitis, ROS can act as both a cause and a consequence. Alcoholic steatohepatitis (ASH) and non-alcoholic steatohepatitis (NASH) are two distinct types of steatohepatitis. Recently, there has been growing interest in using medications that target ROS formation and reduce ROS levels as a therapeutic approach for oxidative stress-related liver disorders. Mammalian systems have developed various antioxidant defenses to protect against excessive ROS generation. These defenses modulate ROS through a series of reactions, limiting their potential impact. However, as the condition worsens, exogenous antioxidants become necessary to control ROS levels. Nanotechnology has emerged as a promising avenue, utilizing nanocomplex systems as efficient nano-antioxidants. These systems demonstrate enhanced delivery of antioxidants to the target site, minimizing leakage and improving targeting accuracy. Therefore, it is essential to explore the evolving field of nanotechnology as an effective means to lower ROS levels and establish efficient therapeutic interventions for oxidative stress-related liver disorders.
Collapse
Affiliation(s)
- Sathiyamoorthy Padmanaban
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Durgasruthi Pully
- Biochemistry and Biotechnology, Faculty of Science, KU Leuven, 3000 Leuven, Belgium
| | - Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia
| | - Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Kamalakannan Radhakrishnan
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
11
|
Padmanaban S, Pully D, Samrot AV, Gosu V, Sadasivam N, Park IK, Radhakrishnan K, Kim DK. Rising Influence of Nanotechnology in Addressing Oxidative Stress-Related Liver Disorders. Antioxidants (Basel) 2023; 12:1405. [PMID: 37507944 PMCID: PMC10376173 DOI: 10.3390/antiox12071405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Reactive oxygen species (ROS) play a significant role in the survival and decline of various biological systems. In liver-related metabolic disorders such as steatohepatitis, ROS can act as both a cause and a consequence. Alcoholic steatohepatitis (ASH) and non-alcoholic steatohepatitis (NASH) are two distinct types of steatohepatitis. Recently, there has been growing interest in using medications that target ROS formation and reduce ROS levels as a therapeutic approach for oxidative stress-related liver disorders. Mammalian systems have developed various antioxidant defenses to protect against excessive ROS generation. These defenses modulate ROS through a series of reactions, limiting their potential impact. However, as the condition worsens, exogenous antioxidants become necessary to control ROS levels. Nanotechnology has emerged as a promising avenue, utilizing nanocomplex systems as efficient nano-antioxidants. These systems demonstrate enhanced delivery of antioxidants to the target site, minimizing leakage and improving targeting accuracy. Therefore, it is essential to explore the evolving field of nanotechnology as an effective means to lower ROS levels and establish efficient therapeutic interventions for oxidative stress-related liver disorders.
Collapse
Affiliation(s)
- Sathiyamoorthy Padmanaban
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Durgasruthi Pully
- Biochemistry and Biotechnology, Faculty of Science, KU Leuven, 3000 Leuven, Belgium
| | - Antony V Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia
| | - Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Kamalakannan Radhakrishnan
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|