1
|
Tian P, Ding Y, Zhang F, Zhang Y, Wei J, Chen J. Modification Strategies of Bismuth-Based Halide Perovskites for Solar to Fuel Conversion by Photocatalytic CO 2 Reduction. CHEMSUSCHEM 2025; 18:e202402106. [PMID: 39810269 DOI: 10.1002/cssc.202402106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/16/2025]
Abstract
In light of the increasingly pressing energy and environmental challenges, the use of photocatalysis to convert solar energy into chemical energy has emerged as a promising solution. Halide perovskites have recently attracted considerable interest as photocatalysts due to their outstanding properties. Early developments focused on Lead-based perovskites, but their use has been severely restricted due to the toxicity of Lead. Consequently, researchers have introduced non-toxic elements to replace Lead, with common substitutes being transition metals such as Tin (Sn), Bismuth (Bi), and Antimony (Sb). Among them, Bi-based perovskites have demonstrated superior photocatalytic performance. Nevertheless, the inherent instability of perovskites and the severe recombination of charge carriers have necessitated the development of various modification strategies to enhance their performance. This Review discusses the modification strategies for Bi-based halide perovskites and illustrates the impact of these strategies on the photocatalytic performance. Finally, future research directions and challenges of Bi-based perovskites for photocatalysis are proposed.
Collapse
Affiliation(s)
- Pei Tian
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Yan Ding
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Fei Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Yihao Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Jinjia Wei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Jie Chen
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| |
Collapse
|
2
|
Pan Z, Huang H, Wang Y, Wang T, Yu H, Ma Q, Dong X, Yang Y. Novel metal oxides partially derived perovskite-structured hydroxides for room temperature trace NO 2 gas sensors under UV irradiation. Talanta 2025; 286:127449. [PMID: 39724855 DOI: 10.1016/j.talanta.2024.127449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/24/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Perovskite-structured materials are used as gas-sensitive materials due to their wide bandgap and controllable morphology, but large initial resistance and low response limit their development. In this work, ZnSn(OH)6/ZnO composites derived from ZnO were synthesized by hydrothermal method. The gas-sensitive results show that all sensors show significantly improved response to NO2 under UV irradiation compared with without UV irradiation. Notably, under UV irradiation the operating temperatures of sensors are reduced from 110 °C to room temperature and have a low initial resistance. Compared with bare ZnO, the ZnSn(OH)6/ZnO-7 sensor shows a 4.4-fold improvement in response to 10 ppm NO2 under UV irradiation at room temperature and has response/recovery time (54.5/74 s). Meanwhile, the ZnSn(OH)6/ZnO-7 sensor has a practical detection limit of 50 ppb and a theoretical detection limit of 9.86 ppb, which enable efficient detection of trace NO2. The excellent gas-sensitive performance of the ZnSn(OH)6/ZnO sensors can be attributed to the highly efficient photogenerated carrier separation efficiency, the special morphology, high oxygen vacancy content and the construction of numerous heterostructures. Therefore, the ZnSn(OH)6/ZnO sensors provide insights into the realization of high-performance perovskite-structured NO2 sensors under UV irradiation at room temperature.
Collapse
Affiliation(s)
- Zhiguang Pan
- Key Laboratory of Applied Chemistry and Nanotechnology at University of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China
| | - Hao Huang
- Key Laboratory of Applied Chemistry and Nanotechnology at University of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China
| | - Yanwei Wang
- Key Laboratory of Applied Chemistry and Nanotechnology at University of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China
| | - Tianqi Wang
- Key Laboratory of Applied Chemistry and Nanotechnology at University of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China
| | - Hui Yu
- Key Laboratory of Applied Chemistry and Nanotechnology at University of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China
| | - Qianli Ma
- Key Laboratory of Applied Chemistry and Nanotechnology at University of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China
| | - Xiangting Dong
- Key Laboratory of Applied Chemistry and Nanotechnology at University of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China
| | - Ying Yang
- Key Laboratory of Applied Chemistry and Nanotechnology at University of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China.
| |
Collapse
|
3
|
Tong H, Li FF, Du M, Song H, Han B, Jia G, Xu XQ, Zou X, Ji L, Kai JJ, Hu Z, Hsu HY. Interface Engineering, Charge Carrier Dynamics, and Solar-Driven Applications of Halide Perovskite/2D Material Heterostructured Photocatalysts. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23431-23465. [PMID: 40211476 PMCID: PMC12022953 DOI: 10.1021/acsami.4c20972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 04/25/2025]
Abstract
Halide perovskites (HPs), renowned for their intriguing optoelectronic properties, such as robust light absorption coefficient, long charge transfer distance, and tunable band structure, have emerged as a focal point in the field of photocatalysis. However, the photocatalytic performance of HPs is still inhibited by rapid charge recombination, insufficient band potential energy, and limited number of surface active sites. To overcome these limitations, the integration of two-dimensional (2D) materials, characterized by shortened charge transfer pathways and expansive surface areas, into HP/2D heterostructures presents a promising avenue to achieve exceptional interfacial properties, including extensive light absorption, efficient charge separation and transfer, energetic redox capacity, and adjustable surface characteristics. Herein, a comprehensive review delving into fundamentals, interfacial engineering, and charge carrier dynamics of HP/2D material heterostructures is presented. Numerous HP/2D material photocatalysts fabricated through diverse strategies and interfacial architectures are systematically described and categorized. More importantly, the enhanced charge carrier dynamics and surface properties of the HP/2D material heterostructures are thoroughly investigated and discussed. Finally, an analysis of the challenges faced in the development of HP/2D photocatalysts, alongside insightful recommendations for potential strategies to overcome these barriers, is provided.
Collapse
Affiliation(s)
- Haihang Tong
- School
of Energy and Environment, Department of Materials Science and Engineering,
Centre for Functional Photonics (CFP), City
University of Hong Kong, Kowloon
Tong, Hong Kong 999077, China
- Shenzhen
Research Institute of City University of Hong Kong, Shenzhen 518057, P. R. China
| | - Fang-Fang Li
- School
of Materials Science and Engineering, Huazhong
University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Minshu Du
- School
of Materials Science and Engineering, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Haisheng Song
- Wuhan
National Laboratory for Optoelectronics (WNLO) and School of Optical
and Electronic Information, Huazhong University
of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Bin Han
- Materials
Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Guohua Jia
- Curtin Institute
of Functional Molecules and Interfaces, School of Molecular and Life
Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Xue-Qing Xu
- Key
Laboratory
of Renewable Energy, Guangdong Provincial Key Laboratory of New and
Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P.R. China
| | - Xingli Zou
- State Key
Laboratory of Advanced Special Steel & Shanghai Key Laboratory
of Advanced Ferrometallurgy & School of Materials Science and
Engineering, Shanghai University, Shanghai 200444, China
| | - Li Ji
- State Key
Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Ji-Jung Kai
- Department
of Mechanical Engineering, City University
of Hong Kong, Kowloon
Tong, Hong Kong 999077, China
| | - Zheng Hu
- Key Laboratory
of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for
Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hsien-Yi Hsu
- School
of Energy and Environment, Department of Materials Science and Engineering,
Centre for Functional Photonics (CFP), City
University of Hong Kong, Kowloon
Tong, Hong Kong 999077, China
- Shenzhen
Research Institute of City University of Hong Kong, Shenzhen 518057, P. R. China
| |
Collapse
|
4
|
Pan Z, Huang H, Wang T, Yu H, Yang W, Dong X, Yang Y. The MoS 2/ZnO p-n heterostructure arrays for ultrasensitive ppb-level self-supporting NO 2 gas sensors under UV irradiation. Talanta 2025; 294:128194. [PMID: 40280077 DOI: 10.1016/j.talanta.2025.128194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/09/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Light irradiation has emerged as a promising strategy to promote low operating temperatures of metal oxides semiconductors gas sensors. Traditional sensors have high operating temperatures, low electron-hole separation, and low gas response. Therefore, MoS2/ZnO heterostructure arrays were synthesized based on ITO conductive glass by hydrothermal and calcination methods as self-supporting sensors. Self-supporting sensors overcome limitations of traditional sensor fabrication. The successful preparation of self-supporting sensors is confirmed by a series of tests. The response of the gas sensor is determined as Rg/Ra or Ra/Rg (Ra and Rg indicate the resistance of the sensor in air and test gases). Regarding the gas-sensing performance, MoS2/ZnO-20 self-supporting sensor under UV irradiation exhibits ultrahigh response of 1088.43 to 10 ppm NO2 at 80 °C, which is 47 times higher than pure ZnO (23.21). Furthermore, operating temperature under UV irradiation is reduced by up to 60 °C. Additionally, MoS2/ZnO-20 self-supporting sensor demonstrates rapid response/recovery time (100/3 s), high selectivity, and ultralow theoretical detection limit (10.37 ppb). The p-n charge separation mechanism is employed to elucidate sensing mechanism of MoS2/ZnO self-supporting sensor for NO2 under UV irradiation. The efficient photogenerated carrier separation efficiency, large surface area, and the presence of multiple heterostructures are responsible for the high gas-sensing performance of MoS2/ZnO self-supporting sensor. Therefore, this study offers insights into the fabrication of ultrasensitive self-supporting sensors for low-temperature detection of NO2 under light irradiation.
Collapse
Affiliation(s)
- Zhiguang Pan
- Key Laboratory of Applied Chemistry and Nanotechnology at University of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China
| | - Hao Huang
- Key Laboratory of Applied Chemistry and Nanotechnology at University of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China
| | - Tianqi Wang
- Key Laboratory of Applied Chemistry and Nanotechnology at University of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China
| | - Hui Yu
- Key Laboratory of Applied Chemistry and Nanotechnology at University of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China
| | - Wenyuan Yang
- Key Laboratory of Applied Chemistry and Nanotechnology at University of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China
| | - Xiangting Dong
- Key Laboratory of Applied Chemistry and Nanotechnology at University of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China
| | - Ying Yang
- Key Laboratory of Applied Chemistry and Nanotechnology at University of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China.
| |
Collapse
|
5
|
Kaur J, Peter SC. Two-Dimensional Perovskites for Photocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2025; 64:e202418708. [PMID: 39921310 DOI: 10.1002/anie.202418708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
The photocatalytic conversion of Carbon dioxide (CO2) into valuable chemicals is one of the most promising approaches to addressing the CO2 emission problem. However, several issues still need to be resolved to increase the efficiency of photocatalytic reactions. Perovskites possess superior light absorption capacity, tunable band gaps, high defect tolerance, and diverse dimensionality. Among them, two-dimensional (2D) perovskites are more stable under photocatalytic conditions and have exciting excitonic characteristics compared to three-dimensional (3D) perovskites. 2D perovskites have unique physical and chemical properties, such as high stability, polaron formation, quantum well structures, and high exciton binding energies, which remain underexplored for photocatalytic CO2 reduction (pCO2RR). Tuning these properties is easier in 2D perovskites than in 3D perovskites by varying the layer thickness and spacer cations. Therefore, 2D perovskite photocatalysts are emerging as promising materials for reducing CO2 into valuable products. This review discusses the classification and synthesis methods of 2D perovskites, the unique properties that make them favorable for photocatalysis, and recent advances in applying 2D perovskites for pCO2RR by monitoring the operational methodology. It also emphasizes the potential for future developments in photocatalysis using 2D perovskites.
Collapse
Affiliation(s)
- Jagmeet Kaur
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Sebastian C Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| |
Collapse
|
6
|
Xie KL, Liao YQ, Hu JJ, Lu KQ, Wen HR. Rationally Designed S-Scheme CeO 2/g-C 3N 4 Heterojunction for Promoting Visible Light Driven CO 2 Photoreduction into Syngas. CHEMSUSCHEM 2024; 17:e202400969. [PMID: 38874368 DOI: 10.1002/cssc.202400969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Exploring low-cost visible light photocatalysts for CO2 reduction to produce proportionally adjustable syngas is of great significance for meeting the needs of green chemical industry. A S-Scheme CeO2/g-C3N4 (CeO2/CN) heterojunction was constructed by using a simple two-step calcination method. During the photocatalytic CO2 reduction process, the CeO2/CN heterojunction can present a superior photocatalytic performance, and the obtained CO/H2 ratios in syngas can be regulated from 1 : 0.16 to 1 : 3.02. In addition, the CO and H2 production rate of the optimal CeO2/CN composite can reach 1169.56 and 429.12 μmol g-1 h-1, respectively. This superior photocatalytic performance is attributed to the unique S-Scheme photogenerated charge transfer mechanism between CeO2 and CN, which facilitates rapid charge separation and migration, while retaining the excellent redox capacity of both semiconductors. Particularly, the variable valence Ce3+/Ce4+ can act as electron mediator between CeO2 and CN, which can promote electron transfer and improve the catalytic performance. This work is expected to provide a new useful reference for the rational construction of high efficiency S-Scheme heterojunction photocatalyst, and improve the efficiency of photocatalytic reduction of CO2, promoting the photocatalytic reduction of CO2 into useful fuels.
Collapse
Affiliation(s)
- Kang-Le Xie
- School of Chemistry and Chemical Engineering/Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi Province, P. R. China
| | - Ya-Qing Liao
- School of Chemistry and Chemical Engineering/Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi Province, P. R. China
| | - Jun-Jie Hu
- School of Chemistry and Chemical Engineering/Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi Province, P. R. China
| | - Kang-Qiang Lu
- School of Chemistry and Chemical Engineering/Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi Province, P. R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering/Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi Province, P. R. China
| |
Collapse
|
7
|
Jin M, Yang X, Wang X, Zhang Z. UV-visible-infrared light driven photothermal synergistic catalytic reduction of CO 2 over Cs 3Bi 2Br 9/MoS 2 S-scheme photocatalyst. J Colloid Interface Sci 2024; 680:235-245. [PMID: 39566411 DOI: 10.1016/j.jcis.2024.11.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Photothermocatalytic CO2 reduction has been considered as a green and sustainable strategy for solar-to-fuel conversion, since it can utilize the solar energy to simultaneously provide heat input and produce photogenerated charge carriers. To this end, exploring photothermal catalysts with broad-band absorption, high photo-heat conversion and charge separation efficiency is highly desirable. In this work, an innovative Cs3Bi2Br9/MoS2 (CBB/MoS2) composite has been elaborately constructed to investigate the photothermocatalytic performance towards CO2 reduction. In this composite, MoS2 plays dual roles: with photoinduced self-heating effect, it can act as an extra heater to accelerate the catalytic reaction, and meanwhile serves as a cocatalyst to promote charge separation by forming S-scheme heterojunction with CBB. As expected, the developed CBB/MoS2 composite delivered outstanding photothermocatalytic activity for CO2 reduction without any extra heat input, with the CO production rate reaching 172.79 μmol g-1h-1. As confirmed by experimental tests and theoretical calculations, the superior photothermocatalytic CO2 reduction performance of CBB/MoS2 was attributed to the synergetic effect of high photo-thermo transformation efficiency and highly improved charge separation. The present work offers a potential strategy for developing highly-efficient photothermal catalysts used in artificial photosynthesis.
Collapse
Affiliation(s)
- Min Jin
- College of Materials, Shanghai Dianji University, Shanghai 201306, China
| | - Xiaotang Yang
- College of Materials, Shanghai Dianji University, Shanghai 201306, China
| | - Xuesheng Wang
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Zhijie Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
8
|
Guo SN, Wang D, Wang JX. ZIF-8@CsPbBr 3 Nanocrystals Formed by Conversion of Pb to CsPbBr 3 in Bimetallic MOFs for Enhanced Photocatalytic CO 2 Reduction. SMALL METHODS 2024; 8:e2301508. [PMID: 38375977 DOI: 10.1002/smtd.202301508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/05/2024] [Indexed: 02/21/2024]
Abstract
Perovskite nanocrystals are embedded into metal-organic frameworks (MOFs) to create composites with high light absorption coefficients, tunable electronic properties, high specific surface area, and metal atom tunability for enhanced photocatalytic carban dioxide (CO2) reduction. However, existing perovskite-MOF structures with a large particle size are achieved based on Pb source adsorption into the pores of MOFs, which can significantly break down the porous structure, thereby resulting in a decreased specific surface area and impacting CO2 adsorption. Herein, a novel perovskite-MOF structure based on the synthesis of bimetallic Pb-containing MOFs and post-processing to convert Pb to CsPbBr3 nanocrystals (NCs) is proposed. It is discovered that the additional Pb is not introduced by adsorption, but instead engages in coordination and generates Pb-N. The produced ZIF-8@CsPbBr3 NCs are ≈40 nm and have an ultra-high specific surface area of 1325.08 m2g-1, and excellent photovoltaic characteristics, which are beneficial for photocatalytic CO2 reduction. The electronic conversion rate of composites is 450 mol g-1h-1, which is more than three times that of pure perovskites. Additionally, the superior reduction capacity is sustained after undergoing four cycles. Density Functional Thoery (DFT) simulations are used to explore the 3D charge density at the ZIF-8@CsPbBr3 NCs interface to better understand the electrical structure.
Collapse
Affiliation(s)
- Sai-Nan Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High, Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High, Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High, Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
9
|
Ma H, Huang C, Tan T, Li W, Xu W, Shen Y, Li Y, Fang R, Dong F. S-Scheme heterojunction of Cs 2SnBr 6/C 3N 4 with interfacial electron exchange toward efficient photocatalytic NO abatement. J Colloid Interface Sci 2024; 671:486-495. [PMID: 38815384 DOI: 10.1016/j.jcis.2024.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Photocatalytic technology is of great significance in environmental purification due to its eco-friendly and cost-effective operations. However, low charge-transfer efficiency restricts the photocatalytic activity of the catalyst. Herein, we report Cs2SnBr6/C3N4 composite catalysts that exhibit a robust interfacial electron exchange thereby enhancing photocatalytic nitric oxide (NO) oxidation. A comprehensive study has demonstrated the S-scheme electron transfer mechanism. Benefiting from the interfacial internal electric field, the C-Br bond serves as a direct electron transfer channel, resulting in enhanced charge separation. Furthermore, the S-scheme heterojunction effectively traps high redox potential electrons and holes, leading to the production of abundant reactive oxygen radicals that enhance photocatalytic NO abatement. The NO removal rate of the Cs2SnBr6/C3N4 heterogeneous system can reach 86.8 %, which is approximately 3-fold and 18-fold that of pristine C3N4 and Cs2SnBr6, respectively. The comprehensive understanding of the electron transfer between heterojunction atomic interfaces will provide a novel perspective on efficient environmental photocatalysis.
Collapse
Affiliation(s)
- Hao Ma
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Chunyan Huang
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Tianqi Tan
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Wenting Li
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Wei Xu
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yuhan Li
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Ruimei Fang
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Fan Dong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; State Centre for International Cooperation on Designer Low Carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
10
|
Qian J, Ling Y, Huang S, Zhang Z, Xu J. A step-scheme-based Cs 3Bi 2Br 9 perovskite quantum dots@mesoporous Nb 2O 5 photocatalyst with boosted charge separation and CO 2 reduction. J Colloid Interface Sci 2024; 669:283-294. [PMID: 38718582 DOI: 10.1016/j.jcis.2024.04.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/27/2024]
Abstract
Solar-energy-powered CO2 reduction into valuable chemical fuels represents a highly promising strategy to address the currently energy and environmental issues. Owing to the nontoxicity and robust reduction capability, lead-free Cs3Bi2Br9 perovskite quantum dots (PQDs) are regarded as an attractive material for CO2 photoreduction. Nevertheless, the potential of their applications in this field has been restricted by the severe charge recombination, resulting in unsatisfactory photocatalytic performance. Herein, a step-scheme-based Cs3Bi2Br9@Nb2O5 (CBB@Nb2O5) nanocomposite was fabricated by embedding the CBB PQDs into mesoporous Nb2O5. Experimental studies, along with theoretical calculations, revealed that the charge migration route in the CBB@Nb2O5 nanocomposite conformed to the step-scheme (S-scheme) mode, enabling effective charge separation and strong redox ability preservation. Profiting from the promoted charge separation, as well as the improved CO2 adsorption contributed by mesoporous Nb2O5, the CBB@Nb2O5 nanocomposite unveiled superior CO2 photoreduction performance, with CO evolution rate reaching 143.63 μmol g-1h-1. The present study provides a potential strategy to manufacture highly-efficient perovskite-based photocatalysts for achieving carbon neutrality.
Collapse
Affiliation(s)
- Junyi Qian
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, PR China
| | - Yunjing Ling
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, PR China
| | - Sai Huang
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, PR China
| | - Zhijie Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, PR China.
| | - Jiayue Xu
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, PR China.
| |
Collapse
|
11
|
Jia G, Zhang Y, Yu JC, Guo Z. Asymmetric Atomic Dual-Sites for Photocatalytic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403153. [PMID: 39039977 DOI: 10.1002/adma.202403153] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/25/2024] [Indexed: 07/24/2024]
Abstract
Atomically dispersed active sites in a photocatalyst offer unique advantages such as locally tuned electronic structures, quantum size effects, and maximum utilization of atomic species. Among these, asymmetric atomic dual-sites are of particular interest because their asymmetric charge distribution generates a local built-in electric potential to enhance charge separation and transfer. Moreover, the dual sites provide flexibility for tuning complex multielectron and multireaction pathways, such as CO2 reduction reactions. The coordination of dual sites opens new possibilities for engineering the structure-activity-selectivity relationship. This comprehensive overview discusses efficient and sustainable photocatalysis processes in photocatalytic CO2 reduction, focusing on strategic active-site design and future challenges. It serves as a timely reference for the design and development of photocatalytic conversion processes, specifically exploring the utilization of asymmetric atomic dual-sites for complex photocatalytic conversion pathways, here exemplified by the conversion of CO2 into valuable chemicals.
Collapse
Affiliation(s)
- Guangri Jia
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yingchuan Zhang
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, P. R. China
| | - Zhengxiao Guo
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
12
|
Zhang Z, Qian J, Wang X, Chu Y, Xu J. A Three-in-One Integrated Cs 3Bi 2Br 9@Co 3O 4 Heterostructure with Photoinduced Self-Heating Effect for Synergistically Enhancing the Photothermal CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401601. [PMID: 38554021 DOI: 10.1002/smll.202401601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Indexed: 04/01/2024]
Abstract
Photothermal catalysis, which applies solar energy to produce photogenerated e-/h+ pairs as well as provide heat input, is recognized as a promising technology for high conversion efficiency of CO2 to value-added solar fuels. In this work, a "shooting three birds with one stone" approach is demonstrated to significantly enhance the photothermal CO2 reduction over the Cs3Bi2Br9@Co3O4 (CBB@Co3O4) heterostructure. Initially, Co3O4 with photoinduced self-heating effect serves as a photothermal material to elevate the temperature of the photocatalyst, which kinetically accelerates the catalytic reaction. Meanwhile, a p-n heterojunction is constructed between the p-type Co3O4 and n-type Cs3Bi2Br9 semiconductors, which has an intrinsic built-in electric field (BEF) to facilitate the separation of photogenerated e-/h+ pairs. Furthermore, the mesoporous Co3O4 matrix can afford abundant active sites for promoting adsorption/activation of CO2 molecules. Benefiting from these synergistic effects, the as-developed CBB@Co3O4 heterostructure achieves an impressive CO2-to-CO conversion rate of 168.56 µmol g-1 h-1 with no extra heat input. This work provides an insightful guidance for the construction of effective photothermal catalysts for CO2 reduction with high solar-to-fuel conversion efficiency.
Collapse
Affiliation(s)
- Zhijie Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Junyi Qian
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Xuesheng Wang
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Yaoqing Chu
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Jiayue Xu
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| |
Collapse
|
13
|
Zhong Y, Ma S, Chen D, Feng Y, Zhang W, Sun S, Lv G, Zhang W, Zhang JZ, Ding H. Ultrathin BiOCl-OV/CoAl-LDH S-scheme heterojunction for efficient photocatalytic peroxymonosulfate activation to boost Co (IV)=O generation. WATER RESEARCH 2024; 258:121774. [PMID: 38772316 DOI: 10.1016/j.watres.2024.121774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024]
Abstract
Sustainable and rapid production of high-valent cobalt-oxo (Co(IV)=O) species for efficiently removing organic pollutants is challenging in permoxymonosulfate (PMS) based advanced-oxidation-processes (AOPs) due to the limitation of the high 3d-orbital electronic occupancy of Co and slow conversion from Co(III) to Co(II). Herein, S-scheme BiOCl-OV/CoAl-LDH heterojunction were constructed by ultrathin BiOCl with the oxygen-vacancy (OV) self-assembled with ultrathin CoAl-LDH. OV promoted the formation of charge transfer channel (Bi-O-Co bonds) at the interface of the heterojunction and reduced electron occupation of the Co 3d-orbital to facilitate the generation of Co(IV)=O in the BiOCl-OV/CoAl-LDH/PMS/Visible-light system. S-scheme heterojunction accelerated the photogenerated electrons to allow rapid conversion of Co(III) to Co(II), promoting the fast two-electron transfer from Co(II) to Co(IV)=O. Consequently, the developed BiOCl-OV/CoAl-LDH/PMS/Visible-light system showed excellent degradation efficiency for most of organic pollutions, and exhibited very high removal capability for the actual industrial wastewater. This study provides a new insight into the evolution of Co(IV)=O and the coordinative mechanism for photocatalysis and PMS activation.
Collapse
Affiliation(s)
- Yi Zhong
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China; Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Shiqing Ma
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Daimei Chen
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China.
| | - Yanmei Feng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Wenyang Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Sijia Sun
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Guocheng Lv
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Weibin Zhang
- College of Physics and Electronics Information, Yunnan Key Laboratory of Opto-Electronic Information Technology, Yunnan Normal University, Kunming 650500, China.
| | - Jin Zhong Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Hao Ding
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China.
| |
Collapse
|
14
|
Chen Q, Ning S, Yang J, Wang L, Yin X, Wang X, Wei Y, Zeng D. In Situ Interfacial Engineering of CeO 2/Bi 2WO 6 Heterojunction with Improved Photodegradation of Tetracycline and Organic Dyes: Mechanism Insight and Toxicity Assessment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307304. [PMID: 38054780 DOI: 10.1002/smll.202307304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/15/2023] [Indexed: 12/07/2023]
Abstract
The construction of heterojunction photocatalysts is an auspicious approach for enhancing the photocatalytic performance of wastewater treatment. Here, a novel CeO2/Bi2WO6 heterojunction is synthesized using an in situ liquid-phase method. The optimal 15% CeO2/Bi2WO6 (CBW-15) is found to have the highest photocatalytic activity, achieving a degradation efficiency of 99.21% for tetracycline (TC), 98.43% for Rhodamine B (RhB), and 94.03% for methylene blue (MB). The TC removal rate remained at 95.38% even after five cycles. Through active species capture experiments, •O2 -, h+, and •OH are the main active substances for TC, RhB, and MB, respectively. The possible degradation pathways for TC are analyzed using liquid chromatography-mass spectrometry (LC-MS). The photoinduced charge transfer and possible degradation mechanisms are proposed through experimentation and density functional theory (DFT) calculations. Toxicity assessment experiments show a significant reduction in toxicity during the TC degradation process. This study uncovers the mechanism of photocatalytic degradation in CeO2/Bi2WO6 and provides new insights into toxicity assessment.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Shunyan Ning
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, P. R. China
| | - Jingren Yang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, P. R. China
| | - Longfei Wang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Xiangbiao Yin
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, P. R. China
| | - Xinpeng Wang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Yuezhou Wei
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, P. R. China
| | - Deqian Zeng
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, P. R. China
| |
Collapse
|
15
|
Zhu B, Sun J, Zhao Y, Zhang L, Yu J. Construction of 2D S-Scheme Heterojunction Photocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310600. [PMID: 37988721 DOI: 10.1002/adma.202310600] [Citation(s) in RCA: 79] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/08/2023] [Indexed: 11/23/2023]
Abstract
Semiconductor photocatalytic technology holds immense promise for converting sustainable solar energy into chemically storable energy, with significant applications in the realms of energy and the environment. However, the inherent issue of rapid recombination of photogenerated electrons and holes hinders the performance of single photocatalysts. To overcome this challenge, the construction of 2D S-scheme heterojunction photocatalysts emerges as an effective strategy. The deliberate design of dimensionality ensures a substantial interfacial area; while, the S-scheme charge transfer mechanism facilitates efficient charge separation and maximizes redox capabilities. This review commences with a fresh perspective on the charge transfer mechanism in S-scheme heterojunctions, followed by a comprehensive exploration of preparation methods and characterization techniques. Subsequently, the recent advancements in 2D S-scheme heterojunction photocatalysts are summarized. Notably, the mechanism behind activity enhancement is elucidated. Finally, the prospects for the development of 2D S-scheme photocatalysts are presented.
Collapse
Affiliation(s)
- Bicheng Zhu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Jian Sun
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Yanyan Zhao
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Liuyang Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| |
Collapse
|
16
|
Li S, Yu H, Wang Y, Wang S, Zhang L, Zhu P, Gao C, Yu J. Exploring a Ni-N 4 Active Site-Based Conjugated Microporous Polymer Z-Scheme Heterojunction Through Covalent Bonding for Visible Light-Driven Photocatalytic CO 2 Conversion in Pure Water. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305900. [PMID: 37786266 DOI: 10.1002/smll.202305900] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Indexed: 10/04/2023]
Abstract
Designing photocatalysts with efficient charge transport and abundant active sites for photocatalytic CO2 reduction in pure water is considered a potential approach. Herein, a nickel-phthalocyanine containing Ni-N4 active sites-based conjugated microporous polymer (NiPc-CMP), offering highly dispersed metal active sites, satisfactory CO2 adsorption capability, and excellent light harvesting properties, is engineered as a photocatalyst. By virtue of the covalently bonded bridge, an atomic-scale interface between the NiPc-CMP/Bi2 WO6 Z-scheme heterojunction with strong chemical interactions is obtained. The interface creates directional charge transport highways and retains a high redox potential, thereby enhancing the photoexcited charge carrier separation and photocatalytic efficiency. Consequently, the optimal NiPc-CMP/Bi2 WO6 (NCB-3) achieves efficient photocatalytic CO2 reduction performance in pure water under visible-light irradiation without any sacrificial agent or photosensitizer, affording a CO generation rate of 325.9 µmol g-1 with CO selectivity of 93% in 8 h, outperforming those of Bi2 WO6 and NiPc-CMP, individually. Experimental and theoretical calculations reveal the promotion of interfacial photoinduced electron separation and the role of Ni-N4 active sites in photocatalytic reactions. This study presents a high-performance CMP-based Z-scheme heterojunction with an effective interfacial charge-transfer route and rich metal active sites for photocatalytic CO2 conversion.
Collapse
Affiliation(s)
- Shanshan Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Haihan Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yuwen Wang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Shuai Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Chaomin Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
17
|
Verma A, Dhanaraman E, Fu YP. Enabling N 2 to Ammonia Conversion in Bi 2 WO 6 -Based Materials: A New Avenue in Photocatalytic Applications. Chemistry 2023; 29:e202302559. [PMID: 37806958 DOI: 10.1002/chem.202302559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/10/2023]
Abstract
The field of photocatalysis has been evolving since 1972 since Honda and Fujishima's initial push for using light as an energy source to accomplish redox reactions. Since then, many photocatalysts have been studied, semiconductors or otherwise. A new photocatalytic application to convert N2 gas to ammonia (N2 fixation or nitrogen reduction reaction; NRR) has emerged. Many researchers have steered their research in this direction due to developments in the ease of ammonia detection through UV-Vis spectroscopy. This concept will specifically discuss Bi2 WO6 -based materials, techniques to enhance their photocatalytic activity (CO2 reduction, H2 production, pollutant removal, etc.), and their current application in photocatalytic NRR. Initially, a brief introduction of Bi2 WO6 along with its VB and CB potentials will be compared to various redox potentials. A final topic of interest would be a brief description of photocatalytic nitrogen fixation with additional consideration to Bi2 WO6 -based materials in N2 fixation. A major problem with photocatalytic NRR is the false ammonia quantification in Bi-based materials, which will be discussed in detail and also ways to minimize them.
Collapse
Affiliation(s)
- Atul Verma
- Department of Materials Science and Engineering, National Dong Hwa University, Hualien, 97401, Taiwan
| | - Esakkinaveen Dhanaraman
- Department of Materials Science and Engineering, National Dong Hwa University, Hualien, 97401, Taiwan
| | - Yen-Pei Fu
- Department of Materials Science and Engineering, National Dong Hwa University, Hualien, 97401, Taiwan
| |
Collapse
|
18
|
He Z, Qian C, Chen D, Xu K, Hao W. Design of ultrathin CoAl-LDHs/ZnIn 2S 4 with strong interfacial bonding and rich oxygen vacancies for highly efficient hydrogen evolution activity. J Colloid Interface Sci 2023; 651:138-148. [PMID: 37542889 DOI: 10.1016/j.jcis.2023.07.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
Designing a semiconductor-based heterostructure photocatalyst is very important way to enhance the hydrogen production activity. Here, a novel 2D/2D CoAl-LDHs/ZnIn2S4 S-scheme heterostructure with an ultrathin structure was synthesized by electrostatic attraction between CoAl-LDHs and ZnIn2S4 nanosheets. The presence of oxygen vacancies in the monolayer CoAl-LDHs nanosheet promotes the formation of Co-SX bonds, which serve as charge transfer channels at the interface of the CoAl-LDHs/ZnIn2S4 heterostructure. The ultrathin CoAl-LDHs/ZnIn2S4 exhibits broadened light absorption in the near-infrared range due to the occurrence of Co-SX chemical bonds. The CoAl-LDHs/ZnIn2S4 with a mass ratio of 1:2 demonstrated the highest photocatalytic hydrogen evolution activity (1563.64 μmol g-1 h-1) under the simulated sunlight, which is 4.6 and 9.7 times than that of the ZnIn2S4 and CoAl-LDHs/ZnIn2S4(bulk), respectively. The enhanced photocatalytic activity of ultrathin 2D/2D CoAl-LDHs/ZnIn2S4 should attributed to the shorter carriers path that benefit from the ultrathin structure and the quicker photogenerated charge transfer and the S-scheme migration pathway accelerated by the charge channel of Co-SX bonds. These new ideas should be inspiring for the design and construction of heterostructures for higher photocatalytic hydrogen evolution activity.
Collapse
Affiliation(s)
- Zetian He
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Che Qian
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Daimei Chen
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Kang Xu
- College of Physics and Electronic Information, Dezhou University, Dezhou, China
| | - Weichang Hao
- School of Physics and BUAA-UOW Joint Research Centre, Beihang University, Beijing 100191, China
| |
Collapse
|
19
|
Song J, Wu F. Highly electron-deficient ultrathin Co nanosheets supported on mesoporous Cr 2O 3 for catalytic hydrogen evolution from ammonia borane. NANOSCALE 2023; 15:16741-16751. [PMID: 37814935 DOI: 10.1039/d3nr03867j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The hydrolysis of ammonia borane (NH3BH3) on metal-based heterogeneous catalysts under light irradiation has been considered as an efficient technique for hydrogen (H2) generation, in which the activity of the catalyst can be improved by increasing the electron density of the active metal. However, studies focused on reducing the electron density of the active metal are rare. Here, we report an electron density manipulation strategy to prepare highly electron-deficient ultrathin Co nanosheets via transferring nanosheets to support mesoporous Cr2O3 by simple one-step in situ reduction (denoted as Co/Cr2O3). X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES) spectra confirm the formation of electron-deficient Co nanosheets and the Co-O-Cr bond due to electron transfer from the nanosheets to mesoporous Cr2O3. Importantly, the Co-O-Cr bond can work as a bridge to accelerate the electron transfer under light irradiation and then improve the electron-deficiency degree of Co nanosheets. As a result, the optimal Co/Cr2O3 exhibits a high intrinsic catalytic performance with the turnover frequency (TOF) value of 106.8 min-1 and significantly reduces the activation energy (Ea) to 16.8 kJ mol-1 under visible light irradiation, which make it among the best ever recorded monometallic Co-based catalyst with enriched electrons. The density functional theory (DFT) calculation results suggest that the electron-deficient Co nanosheets are responsible for the greatly decreased H2O activation and dissociation energy barriers and then the acceleration of the evolution of H2. The work provides a new perspective for designing high efficiency catalysts for H2 production, which is beneficial for relative energy conversion and storage catalysis.
Collapse
Affiliation(s)
- Jin Song
- Department of Chemical and Environmental Engineering, Hetao College, Bayan Nur 015000, China.
| | - Fenglong Wu
- Department of Chemical and Environmental Engineering, Hetao College, Bayan Nur 015000, China.
| |
Collapse
|
20
|
Rana S, Kumar A, Sharma G, Dhiman P, García-Penas A, Stadler FJ. Recent advances in perovskite-based Z-scheme and S-scheme heterojunctions for photocatalytic CO 2 reduction. CHEMOSPHERE 2023; 339:139765. [PMID: 37562504 DOI: 10.1016/j.chemosphere.2023.139765] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The dramatic rise in carbon dioxide levels in the atmosphere caused by the continuous use of carbon fuels continues to have a significant impact on environmental degradation and the disappearance of energy reserves. Past few years have seen a significant increase in the interest in photocatalytic carbon dioxide reduction because of its ability to lower CO2 releases from the burning of fossil fuels while also producing fuels and important chemical products. Because of their excellent catalytic efficiency, great uniformity, lengthy charge diffusion layers and texture flexibility that enable accurate band gap and band line optimization, perovskite-based nanomaterials are perhaps the most advantageous among the numerous semiconductors proficient in accelerating CO2 conversion under visible light. Firstly, a brief insight into photocatalytic CO2 conversion mechanism and structural features of perovskites are discussed. Further the classification and selection of perovskites for Z and S-scheme heterojunctions and their role in photocatalytic CO2 reduction analysed. The efficient modification and engineering of heterojunctions via co-catalyst loading, morphology control and vacancy introduction have been comprehensively reviewed. Third, the state-of-the-art achievements of perovskite-based Z-scheme and S-scheme heterojunctions are systematically summarized and discussed. Finally, the challenges, bottlenecks and future perspectives are discussed to provide a pathway for applying perovskite-based heterojunctions for solar-to-chemical energy conversion.
Collapse
Affiliation(s)
- Sahil Rana
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University , 173229, Solan, India
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University , 173229, Solan, India; College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China.
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University , 173229, Solan, India; College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China
| | - Pooja Dhiman
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University , 173229, Solan, India
| | - Alberto García-Penas
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911, Legan'es, Spain
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China
| |
Collapse
|
21
|
Qi F, Pu Y, Wu D, Tang X, Huang Q. Recent Advances and Future Perspectives of Lead-Free Halide Perovskites for Photocatalytic CO 2 Reduction. CHEM REC 2023; 23:e202300078. [PMID: 37229755 DOI: 10.1002/tcr.202300078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/04/2023] [Indexed: 05/27/2023]
Abstract
It is still challenging to design and develop the state-of-the-art photocatalysts toward CO2 photoreduction. Enormous researchers have focused on the halide perovskites in the photocatalytic field for CO2 photoreduction, due to their excellent optical and physical properties. The toxicity of lead-based halide perovskites prevents their large-scale applications in photocatalytic fields. In consequence, lead-free halide perovskites (LFHPs) without the toxicity become the promising alternatives in the photocatalytic application for CO2 photoreduction. In recent years, the rapid advances of LFHPs have offer new chances for the photocatalytic CO2 reduction of LFHPs. In this review, we summarize not only the structures and properties of A2 BX6 , A2 B(I)B(III)X6 , and A3 B2 X9 -type LFHPs but also their recent progresses on the photocatalytic CO2 reduction. Furthermore, we also point out the opportunities and perspectives to research LFHPs photocatalysts for CO2 photoreduction in the future.
Collapse
Affiliation(s)
- Fei Qi
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Yayun Pu
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Daofu Wu
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Xiaosheng Tang
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Qiang Huang
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| |
Collapse
|
22
|
Wang QS, Yuan YC, Li CF, Zhang ZR, Xia C, Pan WG, Guo RT. Research Progress on Photocatalytic CO 2 Reduction Based on Perovskite Oxides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301892. [PMID: 37194985 DOI: 10.1002/smll.202301892] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/20/2023] [Indexed: 05/18/2023]
Abstract
Photocatalytic CO2 reduction to valuable fuels is a promising way to alleviate anthropogenic CO2 emissions and energy crises. Perovskite oxides have attracted widespread attention as photocatalysts for CO2 reduction by virtue of their high catalytic activity, compositional flexibility, bandgap adjustability, and good stability. In this review, the basic theory of photocatalysis and the mechanism of CO2 reduction over perovskite oxide are first introduced. Then, perovskite oxides' structures, properties, and preparations are presented. In detail, the research progress on perovskite oxides for photocatalytic CO2 reduction is discussed from five aspects: as a photocatalyst in its own right, metal cation doping at A and B sites of perovskite oxides, anion doping at O sites of perovskite oxides and oxygen vacancies, loading cocatalyst on perovskite oxides, and constructing heterojunction with other semiconductors. Finally, the development prospects of perovskite oxides for photocatalytic CO2 reduction are put forward. This article should serve as a useful guide for creating perovskite oxide-based photocatalysts that are more effective and reasonable.
Collapse
Affiliation(s)
- Qing-Shan Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200090, China
| | - Yi-Chao Yuan
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200090, China
| | - Chu-Fan Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
| | - Zhen-Rui Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
| | - Cheng Xia
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
23
|
Wu C, Tang Q, Zhang S, Lv K, Fuku X, Wang J. Surface Modification of TiO 2 by Hyper-Cross-Linked Polymers for Efficient Visible-Light-Driven Photocatalytic NO Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37307316 DOI: 10.1021/acsami.3c03156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solar-driven photocatalysis offers an environmentally friendly and sustainable approach for the removal of air pollutants such as nitric oxides without chemical addition. However, the low specific surface area and adsorption capacity of common photocatalysts restrict the surface reactions with NO at the ppb-level. In this study, imidazolium-based hyper-cross-linked polymer (IHP) was introduced to modify the surface of TiO2 to construct a porous TiO2/IHP composite photocatalyst. The as-prepared composite with hierarchical porous structure achieves a larger specific surface area as 309 m2/g than that of TiO2 (119 m2/g). Meanwhile, the wide light absorption range of the polymer has brought about the strong visible-light absorption of the TiO2/IHP composite. In consequence, the composite photocatalyst exhibits excellent performance toward NO oxidation at a low concentration of 600 ppb under visible-light irradiation, reaching a removal efficiency of 51.7%, while the generation of the toxic NO2 intermediate was suppressed to less than 1 ppb. The enhanced NO adsorption and the suppressed NO2 generation on the TiO2/IHP surface were confirmed by in situ monitoring technology. This work demonstrates that the construction of a porous structure is an effective approach for efficient NO adsorption and photocatalytic oxidation.
Collapse
Affiliation(s)
- Can Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qian Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sushu Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kangle Lv
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan 430074, P.R. China
| | - Xolile Fuku
- College of Science, Engineering and Technology, University of South Africa, Pretoria 1710, South Africa
| | - Jingyu Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|