1
|
Lu Y, He F, Zhu X, Tang J, Lu Y, Wang J, Yu J, Chen L, Cheng X, Liu T, Tang L. On-site tracking of trace Aflatoxin B1 in food waste composting via a portable colorimetric sensing platform with nanozymes. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138333. [PMID: 40262314 DOI: 10.1016/j.jhazmat.2025.138333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/18/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
Rapid, on-site accurate tracking of harmful mycotoxin in food waste composting is essential to provide instant content information for efficient supervision. However, on-site analytical tools especially colorimetric sensors currently suffer from low sensitivity/selectivity and poor environment robustness, posing hurdles for their applications. In this work, we have proposed a portable paper-based colorimetric sensor to detect the representative mycotoxin (aflatoxin B1, AFB1) in the composting process, where the superior catalytic velocity (6-fold higher than the natural enzyme) and well-regulated catalytic activity of nanozyme by the aptamers ensure the high sensitivity (a wide linear range: 0.1-1000 ng/mL; an ultra-low limit of detection: 0.082 ng/mL) and good selectivity of the colorimetric sensing, respectively. The smartphone-based platform exhibits high accuracy with the relative standard deviation within 3.67 % compared commercial enzyme-linked immunosorbent assay. Finally, on-site tracking of the AFB1 content in food waste during the composting process with or without the oxidant (potassium persulfate) has been carried out using the developed colorimetric sensor. It is concluded that reducing the AFB1 generation in the food waste is more meaningful than the compost treatment. This study offers a promising method for in situ analysis of trace AFB1 in food waste compost to ensure environmental and human health safety.
Collapse
Affiliation(s)
- Yating Lu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Fuqing He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xu Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Jing Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Yue Lu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Jiangfang Yu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xingyang Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Tianhao Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
2
|
Hsu CY, Mansouri S, Rizaev J, Sanghvi G, Olegovich Bokov D, Kaur J, Sharma I, Rajput P, Mustafa YF, Hussein L. Synergistic effect between bacteriophages and nanozymes for hybrid dual recognition of pathogenic bacteria from water, food, and agricultural samples: promising new tools for sensitive and specific biosensing. NANOSCALE 2025; 17:8401-8414. [PMID: 40091675 DOI: 10.1039/d5nr00146c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Worldwide, pathogenic bacteria are among the most significant causes of infections. Indeed, delays in diagnosis and detection of these bacteria result in high morbidity and mortality rates and detection platforms must be developed to overcome these challenges. Biosensors, as high-potential analytical tools, can play an important role in the detection of pathogenic bacteria. The application of nanozymes as nanomaterial-based artificial enzymes in the structure of biosensors can overcome the limitations of common biological elements. Furthermore, the integration of bacteriophages, as novel bioreceptors, with nanozymes enabled a clear distinction between viable and dead bacteria. The application of bacteriophage-nanozyme as hybrid probes in biosensors can boost pathogenic bacteria detection. In this review, the effects of different nanozymes, including metal-based, metal oxide-based, and metal-organic framework (MOF)-based nanozymes, after integration with bacteriophages are discussed. Perspectives and challenges of a combination of these novel bioreceptors and nanomaterial-based artificial enzymes are presented for detecting various pathogenic bacteria.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona 85004, USA
| | - Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Jasur Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan.
| | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University, Rajkot-360003, Gujarat, India
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| | - Jaswinder Kaur
- Department of Medical Lab Sciences, Chandigarh Group of Colleges-Jhanjeri, Mohali-140307, Punjab, India
| | - Indu Sharma
- NIMS School of Allied Sciences and Technology, NIMS University Rajasthan, Jaipur, 303121, India
| | - Pranchal Rajput
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| | - Layth Hussein
- Department of Computers Techniques Engineering, College of Technical Engineering, The Islamic University, Najaf, Iraq
- Department of Computers Techniques Engineering, College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Computers Techniques Engineering, College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Yang M, Wang R, Xie Y, Zhu L, Huang J, Xu W. Applications of DNA functionalized gold nanozymes in biosensing. Biosens Bioelectron 2025; 271:116987. [PMID: 39637741 DOI: 10.1016/j.bios.2024.116987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
In recent years, nanozymes have emerged as highly potential substitutes, surpassing the performance of natural enzymes. Among them, gold nanoparticles (AuNPs) and their metal hybrids have become a hot topic in nanozyme research due to their facile synthesis, easy surface modification, high stability, and excellent enzymatic activity. The integration of DNA with AuNPs, by precisely controlling the assembly, arrangement, and functionalization of nanoparticles, greatly facilitates the development of highly sensitive and selective biosensors. This review comprehensively elaborates on three core strategies for the combination of DNA with AuNPs, and deeply analyzes two widely applied enzyme activities in the field of sensing technology and the catalytic principles behind them. On this basis, we systematically summarize various methods for regulating the activity of gold nanozymes by DNA. Following that, we comprehensively review the latest research trends of DNA-Au nanozymes in the field of biosensing, with a particular focus on several crucial application areas such as food safety, environmental monitoring, and disease diagnosis. In the conclusion of the article, we not only discuss the main challenges faced in current research but also look forward to potential future research directions.
Collapse
Affiliation(s)
- Min Yang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Ran Wang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yushi Xie
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China; Key Laboratory of Geriatrics (Hepatobiliary Diseases), China General Technology Group, Beijing, 100073, China
| | - Jiaqiang Huang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China; Beijing Laboratory for Food Quality and Safety, Key Laboratory of Safety Assessment of Genetically, Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Geriatrics (Hepatobiliary Diseases), China General Technology Group, Beijing, 100073, China.
| |
Collapse
|
4
|
Chen K, Du Z, Zhang Y, Bai R, Zhu L, Xu W. Exploring Nucleic Acid Nanozymes: A New Frontier in Biosensor Development. BIOSENSORS 2025; 15:142. [PMID: 40136939 PMCID: PMC11940440 DOI: 10.3390/bios15030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025]
Abstract
With the growing interest in nucleic acids and nanozymes, nucleic acid nanozymes (NANs) have emerged as a promising alternative to traditional enzyme catalysts, combining the advantages of nucleic acids and nanomaterials, and are widely applied in the field of biosensing. This review provides a comprehensive overview of recent studies on NAN-based biosensors. It classifies NANs based on six distinct enzymatic activities: peroxidase-like, oxidase-like, catalase-like, superoxide dismutase-like, laccase-like, and glucose oxidase-like. This review emphasizes how the catalytic activity of nanozymes is significantly influenced by the properties of nucleic acids and explores the regulatory mechanisms governing the catalytic activity of NANs. Additionally, it systematically reviews important research progress on NANs in colorimetric, fluorescent, electrochemical, SERS, and chemiluminescent sensors, offering insights into the development of the NAN field and biosensor applications.
Collapse
Affiliation(s)
| | | | | | | | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (K.C.); (Z.D.); (Y.Z.); (R.B.)
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (K.C.); (Z.D.); (Y.Z.); (R.B.)
| |
Collapse
|
5
|
Cheng C, Han F, Zhou H, Wang H, Zhao J, Zhao G, Zhang Y, Zhang N, Wang Y, Luan M, Wei Q. Construction of electrochemical immunosensors based on Au@MXene and Au@CuS nanocomposites for sensitive detection of carcinoembryonic antigen. Talanta 2025; 283:127147. [PMID: 39489066 DOI: 10.1016/j.talanta.2024.127147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Cancer is currently one of the major causes of human mortality and has received widespread attention. In this paper, Au@CuS composite nanomaterial as a sandwich immunosensor tag for carcinoembryonic antigen (CEA) detection strategy was studied. Herein, Au@CuS composite nanomaterials were obtained by Au nanoparticles modified with CuS, which were combined with secondary antibody (Ab2) to construct an immunosensor that interacted with H2O2 to produce a current response. The anti-CEA primary antibody (Ab1) was fixed on the glassy carbon electrode (GCE) modified by Au@MXene. The completed electrochemical immunosensor was constructed with rapid detection and high sensitivity for CEA. Under optimal conditions, the linearity ranged from 0.01 pg/mL to 0.5 ng/mL, and the detection limit was 3.8 fg/mL. This tactic possesses good reproducibility, constancy and selectivity. At the same time, this strategy has latent practical value for the test of other tumor markers.
Collapse
Affiliation(s)
- Chunfang Cheng
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Fangqin Han
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Hengyu Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Huixin Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jingyu Zhao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Guanhui Zhao
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, 250200, China.
| | - Yong Zhang
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, School of Energy and Environment Science, Yunnan Normal University, Kunming, 650500, China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yaoguang Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Mingming Luan
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
6
|
Arshad A, Ding L, Akram R, Zhu W, Long L, Wang K. Construction of a novel Au@Os mediated TMB-H 2O 2 platform with dual-signal output for rapid and accurate detection of ziram in food. Food Chem 2025; 462:140988. [PMID: 39216370 DOI: 10.1016/j.foodchem.2024.140988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The 3,3',5,5'-tetramethylbenzidine-H2O2 (TMB-H2O2) platform has gained widespread use for rapid detection of various analytes in foods. However, the existing TMB-H2O2 platforms suffer from limited accuracy, as their signal output is confined to the visible region, which is prone to interference from various food colorants in real samples. To address this challenge, a novel Au@Os-mediated TMB-H2O2 platform is developed for both rapid and accurate detection of analytes in foods. The prepared Au@Os NPs exhibit remarkable peroxidase-like activity, making the platform display dual absorption peaks in visible and near-infrared (NIR) regions, respectively. This Au@Os-mediated TMB-H2O2 platform exhibited three linear ranges across different concentrations of ziram from 1-100, 150-600, and 800-2000 nM with limit of detection (LOD) 7.9 nM and limit of quantification (LOQ) 24.15 nM respectively. Further, the Au@Os-mediated TMB-H2O2 platform was also used for rapid and accurate detection of ziram in real food samples like apple, tomato, and black tea.
Collapse
Affiliation(s)
- Anila Arshad
- School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lijun Ding
- School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Raheel Akram
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Weiren Zhu
- School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Kun Wang
- School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, PR China; School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China; Laboratory of Optic-Electric sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
7
|
Xiao J, Yang X, Zhang X, Niu X, Guo Y, Zhu N, Zeng K, Zhang Z. Investigation for Regulation of a DNA-Programmed Bimetallic Nanozyme and Its Biosensing Applications. Anal Chem 2024; 96:19796-19802. [PMID: 39614873 DOI: 10.1021/acs.analchem.4c05241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The DNA-mediated growth strategy of bimetallic nanozymes is considered as an effective approach to regulate their peroxidase activity via tuning the morphology and nanostructure. Albeit important, its biosensing application in rational methods' design and performance improvement is limited due to the deficiency of a systematic understanding of the interactions between DNA and nanomaterials used. Herein, four homo-oligonucleotides as capping ligands were employed to functionalize the bimetallic nanozymes, where Pt nanoparticles (PtNPs) were in situ synthesized onto DNA-bound Au nanorods (AuNRs), and the effects of DNA with different lengths on the state of bimetallic nanozymes were investigated in detail. It was found that the aggregation of AuNRs obviously depended on the variety and number of DNA oligonucleotides with the absorbance ratio at 810 and 525 nm (A810/A525), ranking as follows: AuNRs/A10/PtNPs > AuNRs/G10/PtNPs > AuNRs/C10/PtNPs ≫ AuNRs/T10/PtNPs, which is consistent with the value of Km for TMB, indicating that the dispersal/aggregation of the AuNRs is closely related to the deposition and growth of PtNPs, thereby significantly influencing their peroxidase activity. According to our discoveries, a novel colorimetric array platform was fabricated using the above four types of DNA-encoded Pt-Au bimetallic nanozymes as sensing elements for sensitively discriminating the five biological thiols (l-cys, GSH, Hcy, DTT, and Cys-Gly) and identifying the normal cells/tumor cells, respectively. Our work provides a new insight into DNA-programmed bimetallic nanozyme regulation and broadens its sensing applications.
Collapse
Affiliation(s)
- Jiaxuan Xiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaofeng Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinshuo Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangheng Niu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yujia Guo
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nuanfei Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kun Zeng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Hou J, Wang J, Han J, Wang J, Chao D, Dong Q, Fan D, Dong S. An intelligent ratiometric fluorescent assay based on MOF nanozyme-mediated tandem catalysis that guided by contrary logic circuit for highly sensitive sarcosine detection and smartphone-based portable sensing application. Biosens Bioelectron 2024; 249:116035. [PMID: 38244294 DOI: 10.1016/j.bios.2024.116035] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
As the well-known test-indicator for early prostate cancer (PCa), sarcosine (SA) is closely related to the differential pathological process, which makes its accurate determination increasingly significant. Herein, we for the first time expanded the peroxidase (POD)-like property of facile-synthesized Zn-TCPP(Fe) MOF to fluorescent substrates and exploited it to ratiometric fluorescent (RF) sensing. By harnessing the effective catalytic oxidation of MOF nanozyme toward two fluorescent substrates (Scopoletin, SC; Amplex Red, AR) with contrary changes, and target-responsive (SA + SOx)/MOF/(SC + AR) tandem catalytic reaction, we constructed the first MOF nanozyme-based RF sensor for the quantitative determination of SA. Superior to previous works, the operation of this RF sensor is under the guidance of AND-(AND^NAND) contrary logic circuit. The dual-channel binary output changes (from 1/0 to 0/1) not only enable the intelligent logical recognition of SA, bringing strengthened reliability and accuracy, but also manifest the proof-of-concept discrimination of PCa individuals and healthy ones. Through recording the fluorescence alterations of SC (F465) and AR (F585), two segments of linear relationships between ratiometric values (F585/F465) and varied contents of SA are realized successfully. The LOD for SA could reach to as low as 39.98 nM, which outperforms all nanozyme-originated SA sensors reported till now. Moreover, this sensor also demonstrates high selectivity and satisfactory performance in human serum samples. Furthermore, the portable sensing of SA is realized under the assistance of smartphone-based RGB analysis, demonstrating the potential of point-of-care diagnostics of PCa in the future.
Collapse
Affiliation(s)
- Jingyu Hou
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Jun Wang
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Jiawen Han
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Juan Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Daiyong Chao
- Shandong Second Medical University, Weifang, 261053, China
| | - Qing Dong
- Shandong Second Medical University, Weifang, 261053, China
| | - Daoqing Fan
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
9
|
Zhao Y, Wang X, Pan S, Hong F, Lu P, Hu X, Jiang F, Wu L, Chen Y. Bimetallic nanozyme-bioenzyme hybrid material-mediated ultrasensitive and automatic immunoassay for the detection of aflatoxin B 1 in food. Biosens Bioelectron 2024; 248:115992. [PMID: 38184942 DOI: 10.1016/j.bios.2023.115992] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/12/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
Aflatoxin B1 (AFB1) is one of the most prevalent and dangerous biotoxin in crops and feedstuff, which poses a great threat to human health and also cause significant financial losses. Therefore, there is an urgent need to develop an effective method for AFB1 detection. In this work, we developed an automatic reaction equipment and nanozyme-enhanced immunosorbent assay (Auto-NEISA) for sensitive and accurate detection of AFB1 by combining the highly effective signal probes with a self-designed automated immunoreactive equipment. Wherein, polystyrene (PS) nanoparticles were used as signal carriers for loading a massive in situ-synthesized platinum and palladium bimetallic nanozyme, which could enrich horseradish peroxidase-labeled goat anti-mouse antibody (HRP-Ab2) on the nanozyme surface to form a bimetallic nanozyme-bioenzyme hybrid material for multiple signal amplification. The entire reaction could be automatically completed by the self-developed immunoreactive equipment. The Auto-NEISA method realized the sensitive detection of AFB1 with a wide linear detection range of 10-104 pg/mL, at a low limit of detection (LOD) of 5.52 pg/mL. The LOD was 65-fold lower than that of the enzyme-linked immunosorbent assay (ELISA). Additionally, Auto-NEISA was successfully applied to detect AFB1 in real food samples, demonstrating that it has considerable potential for detecting food contaminants with high accuracy and efficiency.
Collapse
Affiliation(s)
- Yongkun Zhao
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xufeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shixing Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Feng Hong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Peng Lu
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiaobo Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Feng Jiang
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, 430075, PR China
| | - Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, 570228, PR China
| | - Yiping Chen
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, Liaoning, PR China; Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, 430075, PR China.
| |
Collapse
|
10
|
Li D, Fan T, Mei X. A comprehensive exploration of the latest innovations for advancements in enhancing selectivity of nanozymes for theranostic nanoplatforms. NANOSCALE 2023; 15:15885-15905. [PMID: 37755133 DOI: 10.1039/d3nr03327a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Nanozymes have captured significant attention as a versatile and promising alternative to natural enzymes in catalytic applications, with wide-ranging implications for both diagnosis and therapy. However, the limited selectivity exhibited by many nanozymes presents challenges to their efficacy in diagnosis and raises concerns regarding their impact on the progression of disease treatments. In this article, we explore the latest innovations aimed at enhancing the selectivity of nanozymes, thereby expanding their applications in theranostic nanoplatforms. We place paramount importance on the critical development of highly selective nanozymes and present innovative strategies that have yielded remarkable outcomes in augmenting selectivities. The strategies encompass enhancements in analyte selectivity by incorporating recognition units, refining activity selectivity through the meticulous control of structural and elemental composition, integrating synergistic materials, fabricating selective nanomaterials, and comprehensively fine-tuning selectivity via approaches such as surface modification, cascade nanozyme systems, and manipulation of external stimuli. Additionally, we propose optimized approaches to propel the further advancement of these tailored nanozymes while considering the limitations associated with existing techniques. Our ultimate objective is to present a comprehensive solution that effectively addresses the limitations attributed to non-selective nanozymes, thus unlocking the full potential of these catalytic systems in the realm of theranostics.
Collapse
Affiliation(s)
- Dan Li
- College of Pharmacy, Jinzhou Medical University, 40 Songpo Rd, Jinzhou 121000, China.
| | - Tuocen Fan
- Jinzhou Medical University, 40 Songpo Rd, Jinzhou 121000, China.
| | - Xifan Mei
- Jinzhou Medical University, 40 Songpo Rd, Jinzhou 121000, China.
| |
Collapse
|
11
|
Shukla AK, Morya V, Datta B. Bacteria-derived topologies of Cu 2O nanozymes exert a variable antibacterial effect. RSC Adv 2023; 13:28767-28772. [PMID: 37790108 PMCID: PMC10543649 DOI: 10.1039/d3ra05411j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023] Open
Abstract
The ability of bacteria to facilitate fabrication of nanomaterials has been adapted towards bacterial sensing applications. In this work, we fabricate spherical, cubic and truncated octahedron topologies of Cu2O nanoparticles via E. coli-facilitated redox reaction in an electrochemical setup. The Cu2O nanoparticles exhibit cytochrome c oxidase-like activity with the spherical topology displaying higher catalytic rate compared to the other geometries. The topology-dependent catalytic behavior of Cu2O nanoparticles has not been reported previously. The Cu2O nanozymes also display E. coli killing activity in a topology-correlated manner. The E. coli mediated redox reaction in an electrochemical setup is being reported for the first time for synthesis of different topologies of Cu2O which also exert a variable antibacterial effect.
Collapse
Affiliation(s)
- Ashish Kumar Shukla
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar Gandhinagar 382055 India
| | - Vinod Morya
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar Gandhinagar 382055 India
| | - Bhaskar Datta
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar Gandhinagar 382055 India
- Department of Chemistry, Indian Institute of Technology Gandhinagar Gandhinagar 382055 India
| |
Collapse
|