1
|
Lin Y, Wu A, Zhang Y, Duan H, Zhu P, Mao Y. Recent progress of nanomaterials-based composite hydrogel sensors for human-machine interactions. DISCOVER NANO 2025; 20:60. [PMID: 40156703 PMCID: PMC11954787 DOI: 10.1186/s11671-025-04240-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
Hydrogel-based flexible sensors have demonstrated significant advantages in the fields of flexible electronics and human-machine interactions (HMIs), including outstanding flexibility, high sensitivity, excellent conductivity, and exceptional biocompatibility, making them ideal materials for next-generation smart HMI sensors. However, traditional hydrogel sensors still face numerous challenges in terms of reliability, multifunctionality, and environmental adaptability, which limit their performance in complex application scenarios. Nanomaterial-based composite hydrogels significantly improve the mechanical properties, conductivity, and multifunctionality of hydrogels by incorporating conductive nanomaterials, thereby driving the rapid development of wearable sensors for HMIs. This review systematically summarizes the latest research progress on hydrogels based on carbon nanomaterials, metal nanomaterials, and two-dimensional MXene nanomaterials, and provides a comprehensive analysis of their sensing mechanisms in HMI, including triboelectric nanogenerator mechanism, stress-resistance response mechanism, and electrophysiological acquisition mechanism. The review further explores the applications of composite hydrogel-based sensors in personal electronic device control, virtual reality/augmented reality (VR/AR) game interaction, and robotic control. Finally, the current technical status and future development directions of nanomaterial composite hydrogel sensors are summarized. We hope that this review will provide valuable insights and inspiration for the future design of nanocomposite hydrogel-based flexible sensors in HMI applications.
Collapse
Affiliation(s)
- Yuyang Lin
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
| | - Aobin Wu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
| | - Yitao Zhang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
| | - Haiyang Duan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
| | - Pengcheng Zhu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanchao Mao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Amara U, Xu L, Hussain I, Yang K, Hu H, Ho D. MXene Hydrogels for Soft Multifunctional Sensing: A Synthesis-Centric Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405047. [PMID: 39501918 DOI: 10.1002/smll.202405047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/28/2024] [Indexed: 01/11/2025]
Abstract
Intelligent wearable sensors based on MXenes hydrogels are rapidly advancing the frontier of personalized healthcare management. MXenes, a new class of transition metal carbon/nitride synthesized only a decade ago, have proved to be a promising candidate for soft sensors, advanced human-machine interfaces, and biomimicking systems due to their controllable and high electrical conductivity, as well as their unique mechanical properties as derived from their atomistically thin layered structure. In addition, MXenes' biocompatibility, hydrophilicity, and antifouling properties render them particularly suitable to synergize with hydrogels into a composite for mechanoelectrical functions. Nonetheless, while the use of MXene as a multifunctional surface or an electrical current collector such as an energy device electrode is prevalent, its incorporation into a gel system for the purpose of sensing is vastly less understood and formalized. This review provides a systematic exposition to the synthesis, property, and application of MXene hydrogels for intelligent wearable sensors. Specific challenges and opportunities on the synthesis of MXene hydrogels and their adoption in practical applications are explicitly analyzed and discussed to facilitate cross gemination across disciplines to advance the potential of MXene multifunctional sensing hydrogels.
Collapse
Affiliation(s)
- Umay Amara
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Lingtian Xu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Kai Yang
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| | - Haibo Hu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Derek Ho
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| |
Collapse
|
3
|
Zang B, Liang B, Chen J, Gao X, Yao D, Mohan DG, Lu C, Pang X. Polyacrylamide/sodium alginate double network hydrogel with easily repairable superhydrophobic surface for strain sensor resistant to fluid interference. Int J Biol Macromol 2024; 281:136251. [PMID: 39482135 DOI: 10.1016/j.ijbiomac.2024.136251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
Constructing an easily repairable hydrophobic layer on the hydrogel surface that confers resistance to liquid interference remains a great challenge for hydrogel strain sensors. In this paper, superhydrophobic hydrogel sensors were prepared by driving hydrophobic organically modified silica (o-SiO2) nanoparticles to the surface of polyacrylamide/sodium alginate (PAM/SA) double network hydrogels by a weak ultrasonic field in o-SiO2/cyclohexane dispersion. The hydroxyl groups present on the surface of o-SiO2 are able to form hydrogen bonds with hydrogels, which in turn form a strong surface hydrophobic layer on its surface. The sensor exhibits superhydrophobic properties for different types of liquids, such as acids, salt solutions, etc., even in the stretched state. The broken o-SiO2 layers can be repaired by immersing in the o-SiO2/cyclohexane dispersion. The SA significantly improved the mechanical properties as well as the strain response sensitivity of the hydrogels. The hydrogel sensor is characterized by low hysteresis to strain, wide detection range (0-894 %), low detection limit (1 %), high sensitivity (GF = 4.8), and good cyclic stability. The superhydrophobic surface allows the sensor to exhibit excellent anti-liquid interference. Salt solution droplets, prolonged contact with salt solution, and even short-term water immersion will not affect the sensor's response to strain. Moreover, repairing the broken hydrophobic layer enables the sensor to restore its resistance to liquid interference. The prepared hydrogel can be used for human motion monitoring in complex scenarios, including exercise sweating, rain, and short-time exposure to water.
Collapse
Affiliation(s)
- Baichao Zang
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Bo Liang
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Jing Chen
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiping Gao
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Dahu Yao
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - D G Mohan
- School of Engineering Faculty of Technology, University of Sunderland, Sunderland SR6 0DD, UK
| | - Chang Lu
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Xinchang Pang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
4
|
Zhou S, Zhang Z, Zhong W, Meng A, Su Y. Polyvinyl alcohol/PEDOT:PSS with Fe 3+/amylopectin enabled highly tough, anti-freezing and healable hydrogels for multifunctional wearable sensors. Talanta 2024; 279:126592. [PMID: 39053360 DOI: 10.1016/j.talanta.2024.126592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
In recent years, hydrogel-based flexible sensors have garnered increasing attention in research. Ionic hydrogels, enriched with large amounts of ionic liquids, exhibit electrical conductivity, excellent electrochemical stability, anti-freezing, and antimicrobial properties. However, most ionic hydrogels suffer from poor mechanical properties, limiting their adaptability to more complex application scenarios. Integrating conductive polymers into hydrogels leads to desirable features such as increased specific surface area, soft and biocompatible interfaces, and high electrolyte permeability. In this study, we successfully prepared Fe3+/Ap@PVA/PEDOT double-network hydrogel. Utilizing polyvinyl alcohol (PVA) as the primary matrix, we introduced PEDOT:PSS and FeCl3 to confer conductivity to the hydrogel. The incorporation of amylopectin (Ap) further enhanced mechanical performance. The resulted hydrogel sensor exhibits outstanding mechanical properties, allowing for stretching up to 347 % and withstanding a tensile force of 505 kPa. In addition, it exhibits excellent antifreeze properties (can work at -30 °C), healability, water retention, and high sensitivity to stretching (GF = 4.72 at a 200 % strain ratio), compression (GF = 2.97 at a 12 % compressive ratio), and temperature (TCR = 2.46). These remarkable properties of the hydrogel make it possible in applications such as human motion monitoring, handwriting recognition, and temperature sensing.
Collapse
Affiliation(s)
- Shuang Zhou
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, PR China
| | - Zheng Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, PR China
| | - Wei Zhong
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, PR China
| | - Aiyun Meng
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, PR China.
| | - Yaorong Su
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, PR China.
| |
Collapse
|
5
|
Boateng D, Li X, Wu W, Yang A, Gul A, Kang Y, Yang L, Liu J, Zeng H, Zhang H, Han L. Air-Writing Recognition Enabled by a Flexible Dual-Network Hydrogel-Based Sensor and Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54555-54565. [PMID: 39319516 DOI: 10.1021/acsami.4c10168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Accurate air-writing recognition is pivotal for advancing state-of-the-art text recognizers, encryption tools, and biometric technologies. However, most existing air-writing recognition systems rely on image-based sensors to track hand and finger motion trajectories. Additionally, users' writing is often guided by delimiters and imaginary axes which restrict natural writing movements. Consequently, recognition accuracy falls short of optimal levels, hindering performance and usability for practical applications. Herein, we have developed an approach utilizing a one-dimensional convolutional neural network (1D-CNN) algorithm coupled with an ionic conductive flexible strain sensor based on a sodium chloride/sodium alginate/polyacrylamide (NaCl/SA/PAM) dual-network hydrogel for intelligent and accurate air-writing recognition. Taking advantage of the excellent characteristics of the hydrogel sensor, such as high stretchability, good tensile strength, high conductivity, strong adhesion, and high strain sensitivity, alongside the enhanced analytical ability of the 1D-CNN machine learning (ML) algorithm, we achieved a recognition accuracy of ∼96.3% for in-air handwritten characters of the English alphabets. Furthermore, comparative analysis against state-of-the-art methods, such as the widely used residual neural network (ResNet) algorithm, demonstrates the competitive performance of our integrated air-writing recognition system. The developed air-writing recognition system shows significant potential in advancing innovative systems for air-writing recognition and paving the way for exciting developments in human-machine interface (HMI) applications.
Collapse
Affiliation(s)
- Derrick Boateng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518188, China
- College of Applied Sciences, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Xukai Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518188, China
| | - Weiyao Wu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518188, China
| | - Anqi Yang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518188, China
| | - Anadil Gul
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518188, China
| | - Yan Kang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518188, China
- College of Applied Sciences, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Lin Yang
- Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2 V4, Canada
| | - Jifang Liu
- Cancer Center, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510700, People's Republic of China
| | - Hongbo Zeng
- Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2 V4, Canada
| | - Hao Zhang
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
| | - Linbo Han
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518188, China
| |
Collapse
|
6
|
Li M, Pu J, Cao Q, Zhao W, Gao Y, Meng T, Chen J, Guan C. Recent advances in hydrogel-based flexible strain sensors for harsh environment applications. Chem Sci 2024:d4sc05295a. [PMID: 39430943 PMCID: PMC11488682 DOI: 10.1039/d4sc05295a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Flexible strain sensors are broadly investigated in electronic skins and human-machine interaction due to their light weight, high sensitivity, and wide sensing range. Hydrogels with unique three-dimensional network structures are widely used in flexible strain sensors for their exceptional flexibility and adaptability to mechanical deformation. However, hydrogels often suffer from damage, hardening, and collapse under harsh conditions, such as extreme temperatures and humidity levels, which lead to sensor performance degradation or even failure. In addition, the failure mechanism in extreme environments remains unclear. In this review, the performance degradation and failure mechanism of hydrogel flexible strain sensors under various harsh conditions are examined. Subsequently, strategies towards the environmental tolerance of hydrogel flexible strain sensors are summarized. Finally, the current challenges of hydrogel flexible strain sensors in harsh environments are discussed, along with potential directions for future development and applications.
Collapse
Affiliation(s)
- Miaoyu Li
- Institute of Flexible Electronics and Intelligent Textile, Xi'an Polytechnic University Xi'an 710048 P. R. China
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 P. R. China
| | - Jie Pu
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Qinghe Cao
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Wenbo Zhao
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Yong Gao
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Ting Meng
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Jipeng Chen
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Cao Guan
- Institute of Flexible Electronics and Intelligent Textile, Xi'an Polytechnic University Xi'an 710048 P. R. China
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| |
Collapse
|
7
|
Li N, Qiu L, Li B, Feng L, Qu S, Ji X, Chen W. Highly conductive, rapid self-healing, and anti-freezing poly(3,4-ethylenedioxythiophene)/lignosulfonate-cationic guar gum ionogels for multifunctional sensors. Int J Biol Macromol 2024; 274:133159. [PMID: 38880459 DOI: 10.1016/j.ijbiomac.2024.133159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Soft ionic conductors exhibit immense potential for applications in soft ionotronics, including ionic skin, human-machine interface, and soft luminescent device. Nevertheless, the majority of ionogel-based soft ionic conductors are plagued by issues such as freezing, evaporation, liquid leakage, and inadequate self-healing capabilities, thereby constraining their usability in complex environments. In this study, we present a novel strategy for fabricating conductive ionogels through the proportionally mixing cationic guar gum (CGG), water, 1-butyl-3-methylimidazolium chloride (BmimCl)/glycerol eutectic-based ionic liquid, and poly(3,4-ethylenedioxythiophene)/lignosulfonate (PEDOT/LS). The resultant benefits from strong hydrogen bonding and electrostatic interactions among its constituents, endowing it with an ultrafast self-healing capability (merely 30 s) while sustaining high electrical conductivity (~16.5 mS cm-1). Moreover, it demonstrates exceptional water retention (62 % over 10 days), wide temperature tolerance (-20 to 60 °C), and injectability. A wearable sensor fabricated from this ionogel displayed remarkable sensitivity (gauge factor = 17.75) and a rapid response to variations in strain, pressure, and temperature, coupled with both long-term stability and wide working temperature range. These attributes underscore its potential for applications in healthcare devices and flexible electronics.
Collapse
Affiliation(s)
- Nan Li
- College of Engineering, Qufu Normal University, Rizhao 276826, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; CAS Key Laboratory of Biobased Materials, System Integration Engineering Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Qihe Leahou Chemical Co., Ltd, Dezhou 251100, China
| | - Liyuan Qiu
- College of Engineering, Qufu Normal University, Rizhao 276826, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bin Li
- CAS Key Laboratory of Biobased Materials, System Integration Engineering Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | | | - Shuguang Qu
- Qihe Leahou Chemical Co., Ltd, Dezhou 251100, China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Wei Chen
- College of Engineering, Qufu Normal University, Rizhao 276826, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
8
|
Liu Z, Chen Y, Zhang S. Low-Temperature Rapid Polymerization of Intrinsic Conducting PAD/OC Hydrogels with a Self-Adhesive and Sensitive Sensor for Outdoor Damage Repair and Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36862-36877. [PMID: 38970565 DOI: 10.1021/acsami.4c03977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Intrinsic conducting hydrogels fabricated in situ at low temperatures with self-adhesive properties and excellent flexibility hold significant promise for energy applications and outdoor damage repair. However, challenges such as low polymerization rate and self adhesion, insufficient ionic conductivity, inflexibility, and poor stability under extreme cold conditions have hindered their utilization as high-performance sensors. In this study, we designed an intrinsic conducting hydrogel (PADOC) composed of acrylic acid, acryloyloxyethyltrimethylammonium chloride, N,N'-methylenebis(2-propenamide), self-fabricated oxidized curdlan (OC), and a water/glycerol binary solvent. The novel hydrogel exhibited rapid gelation (30 s) at 0 °C facilitated by the promotion of OC, without the need for external energy input. Our findings from FT-IR, NMR, XPS, XRD, EPR spectra, MS, and DSC analyses revealed that OC underwent selective oxidation via the evolved Fenton reaction at 30 °C, serving as bioaccelerators for PAD polymerization. Due to OC's reductive structure and increased solubility, the reaction activation energy of the PAD polymerization reaction significantly reduced from 103.2 to 54.4 kJ/mol. PADOC ionic hydrogels demonstrated an electrical conductivity of 1.00 S/m, 0.7% low hysteresis, 39.6 kPa self-adhesive strength, and 923% strain-at-break and kept even at -20 °C owing to dense hydrogen and ionic bonds between PAD and OC chains. Furthermore, PADOC ionic hydrogels exhibited antifatigue properties for 10 cycles (0-100%) due to electrostatic interactions and hydrogen bonding. Remarkably, using a self-designed device, the rapid polymerization of PADOC effectively repaired copper pipeline leakage under 86 kPa pressure and detected 1% strain variation as a strain sensor. This study opens a new avenue for the rapid gelation of self-adhesive and flexible intrinsic conducting hydrogels with robust sensor performance.
Collapse
Affiliation(s)
- Zhenghe Liu
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yukun Chen
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Shuidong Zhang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Ni Y, Chen J, Chen K. Flexible vanillin-polyacrylate/chitosan/mesoporous nanosilica-MXene composite film with self-healing ability towards dual-mode sensors. Carbohydr Polym 2024; 335:122042. [PMID: 38616072 DOI: 10.1016/j.carbpol.2024.122042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 04/16/2024]
Abstract
Manufacturing flexible sensors with prominent mechanical properties, multifunctional sensing abilities, and remarkable self-healing capabilities remains a difficult task. In this study, a novel vanillin-modified polyacrylate (VPA), which is capable of forming green dynamic covalent crosslinking with chitosan (CS), was synthesized. The synthesized VPA was combined with mesoporous silica-modified MXene (AMS-MXene) and covalently cross-linked simultaneously with CS, resulting in the formation of a flexible composite conductive film designed for dual-mode sensors. Due to the multidimensional structure formed by the mesoporous silica and MXene layers, the resulting composite film is not only suitable for strain sensing but also excels in gas response sensing. Most importantly, the composite films demonstrate a remarkable self-healing capability through reversible dynamic covalent bonds, specifically Schiff base bonds, coupled with multiple hydrogen bonding interactions with AMS-MXene. This robust self-repair functionality remains effective even at a low temperature of 30 °C. Additionally, the synergistic antibacterial effect exerted by vanillin and CS in the film can endow the composite sensor with excellent antimicrobial properties. This multifunctional composite film holds tremendous potential for applications in green flexible wearable sensors. Furthermore, it can show diverse applications in a wide variety of fields, driving advances in wearable technology and human health monitoring.
Collapse
Affiliation(s)
- Yezhou Ni
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Jingyu Chen
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Kunlin Chen
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Zhao R, Fang Y, Zhao Z, Song S. Ultra-stretchable, adhesive, fatigue resistance, and anti-freezing conductive hydrogel based on gelatin/guar gum and liquid metal for dual-sensory flexible sensor and all-in-one supercapacitors. Int J Biol Macromol 2024; 271:132585. [PMID: 38810849 DOI: 10.1016/j.ijbiomac.2024.132585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Benefiting from the tissue-like mechanical properties, conductive hydrogels have emerged as a promising candidate for manufacturing wearable electronics. However, the high water content within hydrogels will inevitably freeze at subzero temperature, causing a degradation or loss of functionality, which severely prevent their practical application in wearable electronics. Herein, an anti-freezing hydrogel integrating high conductivity, superior stretchability, and robust adhesion was fabricated by dissolving choline chloride and gallium in gelatin/guar gum network using borax as the cross-linker. Based on the synergistic effect of dynamic borate ester bonds and hydrogen bonds, the hydrogel exhibited rapid self-healing property and excellent fatigue resistance. Profiting from these fascinating characteristics, the hydrogel was assembled as strain sensor to precisely detect various human activities with high strain sensitivity and fast response time. Meanwhile, the hydrogel was demonstrated high sensitivity and rapid response to temperature, which can be used as thermal sensor to monitor temperature. Moreover, the conductive hydrogel was encapsulated into supercapacitors with high areal capacitance and favorable cycle stability. Importantly, the flexible sensor and supercapacitors still maintain stable sensing performance and good electrochemical performance even at subzero temperature. Therefore, our work broaden hydrogels application in intelligent wearable devices and energy storage in extreme environments.
Collapse
Affiliation(s)
- Rongrong Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Yuanyuan Fang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Zengdian Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Shasha Song
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| |
Collapse
|
11
|
Luo X, Tan H, Wen W. Recent Advances in Wearable Healthcare Devices: From Material to Application. Bioengineering (Basel) 2024; 11:358. [PMID: 38671780 PMCID: PMC11048539 DOI: 10.3390/bioengineering11040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the proliferation of wearable healthcare devices has marked a revolutionary shift in the personal health monitoring and management paradigm. These devices, ranging from fitness trackers to advanced biosensors, have not only made healthcare more accessible, but have also transformed the way individuals engage with their health data. By continuously monitoring health signs, from physical-based to biochemical-based such as heart rate and blood glucose levels, wearable technology offers insights into human health, enabling a proactive rather than a reactive approach to healthcare. This shift towards personalized health monitoring empowers individuals with the knowledge and tools to make informed decisions about their lifestyle and medical care, potentially leading to the earlier detection of health issues and more tailored treatment plans. This review presents the fabrication methods of flexible wearable healthcare devices and their applications in medical care. The potential challenges and future prospectives are also discussed.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| | - Handong Tan
- Department of Individualized Interdisciplinary Program (Advanced Materials), The Hong Kong University of Science and Technology, Hong Kong 999077, China;
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| |
Collapse
|
12
|
Boland CS. Performance analysis of solution-processed nanosheet strain sensors-a systematic review of graphene and MXene wearable devices. NANOTECHNOLOGY 2024; 35:202001. [PMID: 38324912 DOI: 10.1088/1361-6528/ad272f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Nanotechnology has led to the realisation of many potentialInternet of Thingsdevices that can be transformative with regards to future healthcare development. However, there is an over saturation of wearable sensor review articles that essentially quote paper abstracts without critically assessing the works. Reported metrics in many cases cannot be taken at face value, with researchers overly fixated on large gauge factors. These facts hurt the usefulness of such articles and the very nature of the research area, unintentionally misleading those hoping to progress the field. Graphene and MXenes are arguably the most exciting organic and inorganic nanomaterials for polymer nanocomposite strain sensing applications respectively. Due to their combination of cost-efficient, scalable production and device performances, their potential commercial usage is very promising. Here, we explain the methods for colloidal nanosheets suspension creation and the mechanisms, metrics and models which govern the electromechanical properties of the polymer-based nanocomposites they form. Furthermore, the many fabrication procedures applied to make these nanosheet-based sensing devices are discussed. With the performances of 70 different nanocomposite systems from recent (post 2020) publications critically assessed. From the evaluation of these works using universal modelling, the prospects of the field are considered. Finally, we argue that the realisation of commercial nanocomposite devices may in fact have a negative effect on the global climate crisis if current research trends do not change.
Collapse
Affiliation(s)
- Conor S Boland
- School of Mathematical and Physical Sciences, University of Sussex, Brighton, BN1 9QH, United Kingdom
| |
Collapse
|
13
|
Yin H, Liu F, Abdiryim T, Chen J, Liu X. Sodium carboxymethyl cellulose and MXene reinforced multifunctional conductive hydrogels for multimodal sensors and flexible supercapacitors. Carbohydr Polym 2024; 327:121677. [PMID: 38171688 DOI: 10.1016/j.carbpol.2023.121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
With the growing demand for eco-friendly materials in wearable smart electronic devices, renewable, biocompatible, and low-cost hydrogels based on natural polymers have attracted much attention. Cellulose, as one of the renewable and degradable natural polymers, shows great potential in wearable smart electronic devices. Multifunctional conductive cellulose-based hydrogels are designed for flexible electronic devices by adding sodium carboxymethyl cellulose and MXene into polyacrylic acid networks. The multifunctional hydrogels possess excellent mechanical property (stress: 310 kPa; strain: 1127 %), toughness (206.67 KJ m-3), conductivity (1.09 ± 0.12 S m-1) and adhesion (82.19 ± 3.65 kPa). The multifunctional conductive hydrogels serve as strain sensors (Gauge Factor (GF) = 5.79, 0-700 % strain; GF = 14.0, 700-900 % strain; GF = 40.36, 900-1000 % strain; response time: 300 ms; recovery time: 200 ms) and temperature sensors (Temperature coefficient of resistance (TCR) = 2.5755 °C-1 at 35 °C- 60 °C). The sensor detects human activities with clear and steady signals. A distributed array of flexible sensors is created to measure the magnitude and distribution of pressure and a hydrogel-based flexible touch keyboard is also fabricated to recognize writing trajectories, pressures and speeds. Furthermore, a flexible hydrogel-based supercapacitor powers the LED and exhibits good cyclic stability over 15,000 charge-discharge cycles.
Collapse
Affiliation(s)
- Hongyan Yin
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Fangfei Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Tursun Abdiryim
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Jiaying Chen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Xiong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| |
Collapse
|
14
|
He S, Liu Z, Wu X, Liu J, Fang H, Shao W. Novel flexible hydrogels based on carboxymethyl guar gum and polyacrylic acid for ultra-highly sensitive and reliable strain and pressure sensors. Carbohydr Polym 2024; 324:121515. [PMID: 37985099 DOI: 10.1016/j.carbpol.2023.121515] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
To realize on stable and real-time monitoring of human activities, novel hydrogels using polyacrylic acid (PAA) and carboxymethyl guar gum (CMGG) were fabricated as wearable and flexible strain or pressure sensors in the presence of lignosulfonate (LS) and Al3+. Based on the co-existence of metal coordination bonds, hydrogen bonds and ionic interaction in this system, the obtained hydrogels exhibited desirable mechanical properties with good self-recovery ability. The hydrogels displayed good self-adhesion behavior and an ultra-high tensile sensitivity (gauge factor (GF) = 24.30), therefore, they could precisely detect human joints movements such as elbow, wrist, and finger bending as well as tiny movements and external stimuli such as swallowing, smile, frown, pulse, speaking, writing, and even the falling of different liquid drops. Additionally, the hydrogels showed excellent self-healing ability with the healing efficiency as high as 100 % after 30 h. Most importantly, the healed hydrogel could perform the same sensing performance as before. Based on these distinguished characteristics, this hydrogel represents great potentials in wearable and flexible sensors for long-term and stable health monitoring application.
Collapse
Affiliation(s)
- Shu He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zeng Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xing Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jia Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hongli Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Shao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
15
|
Li R, Ren J, Li M, Zhang M, Li Y, Yang W. Self-healing, self-adhesive, stretchable and flexible conductive hydrogels for high-performance strain sensors. SOFT MATTER 2023; 19:5723-5736. [PMID: 37458401 DOI: 10.1039/d3sm00581j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Conductive hydrogels have been widely studied for their potential application as wearable sensors due to their flexibility and biocompatibility. However, the simultaneous incorporation of excellent stretchability, toughness, conductivity, self-healing, and adhesion via a simple method remains a great challenge. Herein, a multifunctional hydrogel with self-adhesion, self-healing, conductivity, and mechanical properties was fabricated by ionic cross-linking of chitosan (CS), the acrylic acid (AA) polymer, and tea polyphenols (TPs) in the presence of graphitized carbon nanotubes (CNTs) in this work. The resultant hydrogel has unique self-healing properties (94.11% for strain self-healing and 90.60% for stress self-healing) and mechanical properties. The fracture stress was 0.075 MPa when the strain was 1184%, and the toughness reached 0.48 MJ m-3. The synergistic effect of free ions and CNTs endows the hydrogel with an excellent electrical conductivity (6.67 S m-1). Moreover, the hydrogel can adhere to various organic and inorganic materials. It exhibits repeatable self-adhesion to human skin and can be peeled off completely without any residual, irritation or allergic reactions. Additionally, the hydrogel also has good strain sensitivity and exhibits stable output signals in motion monitoring of the human body as a biosensor. Therefore, this work provides a new prospect for the design of multifunctional hydrogels for their potential applications in wearable biosensors.
Collapse
Affiliation(s)
- Ruirui Li
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, 730070, P. R. China.
| | - Jie Ren
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, 730070, P. R. China.
| | - Meng Li
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, 730070, P. R. China.
| | - Minmin Zhang
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, 730070, P. R. China.
| | - Yan Li
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, 730070, P. R. China.
| | - Wu Yang
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, 730070, P. R. China.
| |
Collapse
|
16
|
Guo L, Hu K, Wang H. Antimicrobial and Mechanical Properties of Ag@Ti 3C 2T x-Modified PVA Composite Hydrogels Enhanced with Quaternary Ammonium Chitosan. Polymers (Basel) 2023; 15:polym15102352. [PMID: 37242927 DOI: 10.3390/polym15102352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Polyvinyl alcohol (PVA) is a polymeric material with good biocompatibility, excellent hydrophilicity, and a large number of hydroxyl groups. However, due to its insufficient mechanical properties and poor inhibition of bacteria, it has a lack of applications in wound dressings, stent materials, and other fields. In this study, a simple method was used to prepare composite gel materials: Ag@MXene-HACC-PVA hydrogels with a double-network structure were prepared using an acetal reaction. Due to the double cross-linked interaction, the hydrogel has good mechanical properties and is resistant to swelling. The adhesion and bacterial inhibition were enhanced due to the addition of HACC. In addition, the strain sensing properties of this conductive hydrogel were stable, and the GF (specification factor) was 1.7617 at 40-90% strain. Therefore, the dual-network hydrogel with excellent sensing properties, adhesion properties, antibacterial properties, and cytocompatibility has potential applications in biomedical materials, especially as a tissue engineering repair material.
Collapse
Affiliation(s)
- Linxinzheng Guo
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Kun Hu
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
- Collage of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Haibo Wang
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| |
Collapse
|