1
|
Wang F, Zhang L, Deng H, Wee ATS. High-Performance Photoresponse and Nonvolatile Photomemory Effect in a Partially Gated MoS 2/α-In 2Se 3 Heterojunction Photodetector. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40359338 DOI: 10.1021/acsami.5c02897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
2D ferroelectric materials exhibit exceptional properties such as atomically thin layers, strong ferroelectric polarization, high carrier mobility, and suitable band gaps, making them highly promising for electronics, optoelectronics, ferroelectronics, and nonvolatile memory applications. In this study, we present a partially gated MoS2/α-In2Se3 heterojunction photodetector that allows the manipulation of ferroelectric polarization in α-In2Se3 by both gate and drain voltages. The device shows excellent photoresponse performance and a nonvolatile photomemory effect. It achieves a maximum photoresponsivity of ∼698 A/W at 405 nm, ∼1210 A/W at 473 nm, ∼1076 A/W at 515 nm, and ∼1306 A/W at 638 nm. By enhancing the ferroelectric polarization of α-In2Se3, the photoresponsivity, external quantum efficiency, and detectivity are greatly improved. The photomemory effect has an extremely long retention time exceeding 4000 s with an expected information retention rate of over 95% after 10 years. The device performance is a result of the combined effects of vertical-electric-field-controlled ferroelectric polarization, horizontal-electric-field-controlled ferroelectric polarization, and light-induced depolarization. The proposed partially gated MoS2/α-In2Se3 heterostructure provides a new perspective for designing 2D ferroelectric devices with significant potential for optoelectronics and nonvolatile memory applications.
Collapse
Affiliation(s)
- Fangjie Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China
| | - Lei Zhang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
| | - Hongshan Deng
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
| |
Collapse
|
2
|
Chen C, Zhou Y, Tong L, Pang Y, Xu J. Emerging 2D Ferroelectric Devices for In-Sensor and In-Memory Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2400332. [PMID: 38739927 PMCID: PMC11733831 DOI: 10.1002/adma.202400332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/19/2024] [Indexed: 05/16/2024]
Abstract
The quantity of sensor nodes within current computing systems is rapidly increasing in tandem with the sensing data. The presence of a bottleneck in data transmission between the sensors, computing, and memory units obstructs the system's efficiency and speed. To minimize the latency of data transmission between units, novel in-memory and in-sensor computing architectures are proposed as alternatives to the conventional von Neumann architecture, aiming for data-intensive sensing and computing applications. The integration of 2D materials and 2D ferroelectric materials has been expected to build these novel sensing and computing architectures due to the dangling-bond-free surface, ultra-fast polarization flipping, and ultra-low power consumption of the 2D ferroelectrics. Here, the recent progress of 2D ferroelectric devices for in-sensing and in-memory neuromorphic computing is reviewed. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics-integrated 2D devices and active ferroelectrics-integrated 2D devices, are reviewed followed by the integration of perception, memory, and computing application. Notably, 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing. As an emerging device configuration, 2D ferroelectric devices have the potential to expand into the sensor-memory and computing integration application field, leading to new possibilities for modern electronics.
Collapse
Affiliation(s)
- Chunsheng Chen
- Department of Electronic Engineering and Materials Science and Technology Research CenterThe Chinese University of Hong KongHong Kong SARChina
| | - Yaoqiang Zhou
- Department of Electronic Engineering and Materials Science and Technology Research CenterThe Chinese University of Hong KongHong Kong SARChina
| | - Lei Tong
- Department of Electronic Engineering and Materials Science and Technology Research CenterThe Chinese University of Hong KongHong Kong SARChina
| | - Yue Pang
- Department of Electronic Engineering and Materials Science and Technology Research CenterThe Chinese University of Hong KongHong Kong SARChina
| | - Jianbin Xu
- Department of Electronic Engineering and Materials Science and Technology Research CenterThe Chinese University of Hong KongHong Kong SARChina
| |
Collapse
|
3
|
Kim JH, Kim SH, Yu HY. Enhanced Electrical Polarization in van der Waals α-In 2Se 3 Ferroelectric Semiconductor Field-Effect Transistors by Eliminating Surface Screening Charge. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405459. [PMID: 39358931 DOI: 10.1002/smll.202405459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/18/2024] [Indexed: 10/04/2024]
Abstract
A van der Waals (vdW) α-In2Se3 ferroelectric semiconductor channel-based field-effect transistor (FeS-FET) has emerged as a next-generation electronic device owing to its versatility in various fields, including neuromorphic computing, nonvolatile memory, and optoelectronics. However, screening charges cause by the imperfect surface morphology of vdW α-In2Se3 inhibiting electrical polarization remain an unresolved issue. In this study, for the first time, a method is elucidated to recover the inherent electric polarization in both in- and out-of-plane directions of the α-In2Se3 channel based on post-exfoliation annealing (PEA) and improve the electrical performance of vdW FeS-FETs. Following PEA, an ultra-thin In2Se3-3xO3x layer formed on the top surface of the α-In2Se3 channel is demonstrated to passivate surface defects and enhance the electrical performance of FeS-FETs. The on/off current ratio of the α-In2Se3 FeS-FET has increased from 5.99 to 1.84 × 106, and the magnitude of ferroelectric resistance switching has increased from 1.20 to 26.01. Moreover, the gate-modulated artificial synaptic operation of the α-In2Se3 FeS-FET is demonstrated and illustrate the significance of the engineered interface in the vdW FeS-FET for its application to multifunctional devices. The proposed α-In2Se3 FeS-FET is expected to provide a significant breakthrough for advanced memory devices and neuromorphic computing.
Collapse
Affiliation(s)
- Jong-Hyun Kim
- Department of Semiconductor Systems Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Seung-Hwan Kim
- Center for Spintronics, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, South Korea
| | - Hyun-Yong Yu
- Department of Semiconductor Systems Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
- School of Electrical Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| |
Collapse
|
4
|
Rodrigues-Fontenele G, Fontenele G, Valentim MR, Freitas LVC, Rodrigues-Junior G, Magalhães-Paniago R, Malachias A. Structural and Electronic Response of Multigap N-Doped In 2Se 3: A Prototypical Material for Broad Spectral Optical Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49902-49912. [PMID: 39241187 PMCID: PMC11420874 DOI: 10.1021/acsami.4c08610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
The production of controlled doping in two-dimensional semiconductor materials is a challenging issue when introducing these systems into current and future technology. In some compounds, the coexistence of distinct crystallographic phases for a fixed composition introduces an additional degree of complexity for synthesis, chemical stability, and potential applications. In this work, we demonstrate that a multiphase In2Se3 layered semiconductor system, synthesized with three distinct structures─rhombohedral α and β-In2Se3 and trigonal δ-In2Se3─exhibits chemical stability and well-behaved n-type doping. Scanning tunneling spectroscopy measurements reveal variations in the local electronic density of states among the In2Se3 structures, resulting in a compound system with electronic bandgaps that range from infrared to visible light. These characteristics make the layered In2Se3 system a promising candidate for multigap or broad spectral optical devices, such as detectors and solar cells. The ability to tune the electronic properties of In2Se3 through structural phase manipulation makes it ideal for integration into flexible electronics and the development of heterostructures with other materials.
Collapse
Affiliation(s)
| | - Gabriel Fontenele
- Physics Department, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30123-970, Brazil
| | - Mirela R Valentim
- Institute of Physics, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-859, Brazil
| | - Luisa V C Freitas
- Physics Department, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30123-970, Brazil
| | | | - Rogério Magalhães-Paniago
- Physics Department, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30123-970, Brazil
| | - Angelo Malachias
- Physics Department, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30123-970, Brazil
| |
Collapse
|
5
|
Bian R, He R, Pan E, Li Z, Cao G, Meng P, Chen J, Liu Q, Zhong Z, Li W, Liu F. Developing fatigue-resistant ferroelectrics using interlayer sliding switching. Science 2024; 385:57-62. [PMID: 38843352 DOI: 10.1126/science.ado1744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/24/2024] [Indexed: 07/06/2024]
Abstract
Ferroelectric materials have switchable electrical polarization that is appealing for high-density nonvolatile memories. However, inevitable fatigue hinders practical applications of these materials. Fatigue-free ferroelectric switching could dramatically improve the endurance of such devices. We report a fatigue-free ferroelectric system based on the sliding ferroelectricity of bilayer 3R molybdenum disulfide (3R-MoS2). The memory performance of this ferroelectric device does not show the wake-up effect at low cycles or a substantial fatigue effect after 106 switching cycles under different pulse widths. The total stress time of the device under an electric field is up to 105 s, which is long relative to other devices. Our theoretical calculations reveal that the fatigue-free feature of sliding ferroelectricity is due to the immobile charge defects in sliding ferroelectricity.
Collapse
Affiliation(s)
- Renji Bian
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Ri He
- Key Laboratory of Magnetic Materials Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Er Pan
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zefen Li
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guiming Cao
- School of Information Science and Technology, Xi Chang University, Xi Chang 615013, China
- Key Laboratory of Liangshan Agriculture Digital Transformation of Sichuan Provincial Education Department, Xi Chang University, Xi Chang 615013, China
| | - Peng Meng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiangang Chen
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qing Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhicheng Zhong
- Key Laboratory of Magnetic Materials Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Department of Physics, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Wenwu Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, China
- State Key Laboratory of Photovoltaic Science and Technology, Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Fucai Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
6
|
Liu YZ, Dai JQ, Yuan J, Zhao MW. The tunneling electroresistance effect in a van der Waals ferroelectric tunnel junction based on a graphene/In 2Se 3/MoS 2/graphene heterostructure. Phys Chem Chem Phys 2023. [PMID: 38047441 DOI: 10.1039/d3cp04408d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
In recent years, α-In2Se3 has attracted great attention in miniaturizing nonvolatile random memory devices because of its room temperature ferroelectricity and atomic thickness. In this work, we construct two-dimensional (2D) van der Waals (vdW) heterostructures α-In2Se3/MoS2 with different ferroelectric polarization and design a 2D graphene (Gr)/In2Se3/MoS2/Gr ferroelectric tunnel junction (FTJ) with the symmetric electrodes. Our calculations show that the band alignment of the heterostructures can be changed from type-I to type-II accompanied by the reversal of the ferroelectric polarization of In2Se3. Furthermore, the ferroelectricity persists in Gr/In2Se3/MoS2/Gr vdW FTJs, and the presence of dielectric layer MoS2 in the FTJs enables the effective modulation of the tunneling barrier by altering the ferroelectric polarization of α-In2Se3, which results in two distinct conducting states denoted as "ON" and "OFF" with a large tunneling electroresistance (TER) ratio exceeding 105%. These findings suggest the importance of ferroelectric vdW heterostructures in the design of FTJs and propose a promising route for applying the 2D ferroelectric/semiconductor heterostructures with out-of-plane polarization in high-density ferroelectric memory devices.
Collapse
Affiliation(s)
- Yu-Zhu Liu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China.
| | - Jian-Qing Dai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China.
| | - Jin Yuan
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China.
| | - Miao-Wei Zhao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China.
| |
Collapse
|
7
|
Mukherjee S, Dutta D, Ghosh A, Koren E. Graphene-In 2Se 3 van der Waals Heterojunction Neuristor for Optical In-Memory Bimodal Operation. ACS NANO 2023; 17:22287-22298. [PMID: 37930899 DOI: 10.1021/acsnano.3c03820] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Functional diversification at the single-device level has become essential for emerging optical neural network (ONN) development. Stable ferroelectricity harnessed with strong light sensitivity in α-In2Se3 holds great potential for developing ultrathin neuromorphic devices. Herein, we demonstrated an all-2D van der Waals heterostructure-based programmable synaptic field effect transistor (FET) utilizing a ferroelectric α-In2Se3 nanosheet and monolayer graphene. The devices exhibited reconfigurable, multilevel nonvolatile memory (NVM) states, which can be successively modulated by multiple dual-mode (optical and electrical) stimuli and thereby used to realize energy-efficient, heterosynaptic functionalities in a biorealistic fashion. Furthermore, under light illumination, the prototypical device can toggle between volatile (photodetector) and nonvolatile optical random-access memory (ORAM) logic operation, depending upon the ferroelectric-dipole induced band adjustment. Finally, plasticity modulation from short-term to prominent long-term characteristics over a wide dynamic range was demonstrated. The inherent operation mechanism owing to the switchable polarization-induced electronic band alignment and bidirectional barrier height modulation at the heterointerface was revealed by conjugated electronic transport and Kelvin-probe force microscopy (KPFM) measurements. Overall, robust (opto)electronic weight controllability for integrated in-sensor and in-memory logic processors and multibit ORAM systems was readily accomplished by the synergistic ferrophotonic heterostructure properties. Our presented results facilitate the technological implementation of versatile all-2D heterosynapses for next-generation perception, optoelectronic logic systems, and Internet-of-Things (IoT) entities.
Collapse
Affiliation(s)
- Subhrajit Mukherjee
- Nanoscale Electronic Materials and Devices Laboratory, Faculty of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Debopriya Dutta
- Nanoscale Electronic Materials and Devices Laboratory, Faculty of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Anurag Ghosh
- Nanoscale Electronic Materials and Devices Laboratory, Faculty of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Elad Koren
- Nanoscale Electronic Materials and Devices Laboratory, Faculty of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
8
|
Cai X, Chen G, Li R, Jia Y. Two-Dimensional Ferroelectric C 2N/In 2Se 3 Heterobilayer with Tunable Electronic Property and Photovoltaic Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14791-14799. [PMID: 37796482 DOI: 10.1021/acs.langmuir.3c02297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Two-dimensional ferroelectric monolayer materials with reversible spontaneous polarization provide more regulatory dimensions for their relevant van der Waals heterostructures. Using first-principles calculations, we construct the C2N/In2Se3 bilayer heterostructure and study its physical properties as well as the effects of E-field and strain. The results indicate that the intrinsic polarization of the component In2Se3 monoalyer can significantly adjust the electronic properties of the C2N/In2Se3 heterobilayer. When the polarization of the In2Se3 monolayer points to the interface (up-In2Se3), the C2N/In2Se3 bilayer behaves as the type-I indirect band gap heterostructure, while it transforms to the type-II direct band gap heterostructure after reversing the polarization of the In2Se3 monolayer (dp-In2Se3). Furthermore, the two C2N/In2Se3 heterostructures both have enhanced optical absorption in the visible region than the isolated In2Se3 and C2N monolayers. More importantly, the external electric field and strain can easily regulate the electronic properties of the C2N/In2Se3 heterostructures. The power conversion efficiency (PCE) of the type-II C2N/dp-In2Se3 heterostructure is 8.16%, and the electric field of 0.1 V/Å and the strain of -2% can transform the C2N/up-In2Se3 heterostructure into type-II one, conducive to the high PCE up to 24.03 and 24%, respectively. Our proposed C2N/In2Se3 heterostructure is promising in future luminescent and photovoltaic fields, and our findings also provide a strategy for functionalizing 2D monolayer materials by the intrinsic polarization property of ferroelectric materials.
Collapse
Affiliation(s)
- Xiaolin Cai
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Guoxing Chen
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Rui Li
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Material Science and Engineering, Henan University, Kaifeng 475004, China
- International Laboratory for Quantum Functional Materials of Henan, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|