1
|
Yang Q, Yang X, Guo K, Pan G, Du Q, Ming L, Wang W. Live bacteria detection with high specificity by utilizing Eu 3+@MIL-53 (Al) and bacteriophages-based fluorescence biosensor. Talanta 2025; 293:128060. [PMID: 40179678 DOI: 10.1016/j.talanta.2025.128060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Pseudomonas aeruginosa (PA) infection poses a significant threat to human health and the economy, with the issue of drug resistance becoming increasingly severe. How to quickly, accurately, and inexpensively detect PA and differentiate live bacteria from dead ones is crucial for clinical follow-up treatment. To this end, we have developed a biosensor based on fluorescent metal-organic frameworks (MOFs) (Eu3+@MIL-53(Al)) and specific-phages for PA detection, where the Eu3+@MIL-53(Al) prepared by one-pot method exhibits excellent fluorescence properties. By covalently binding specific phages isolated from hospital wastewater to the EuMOF surface, we constructed a fluorescent biosensor capable of detecting PA within 15 min, with a sensitivity threshold of 2 CFU/mL. Notably, this biosensor demonstrates high specificity, accurately quantifying live PA in complex bacterial mixtures and distinguishing live from dead bacteria. Its practical application has been validated in clinical blood and stool samples. As a novel platform for clinical microbial monitoring, the Eu3+@MIL-53(Al)-phage biosensor not only holds substantial economic potential but also carries significant public health implications.
Collapse
Affiliation(s)
- Qiaoli Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Xiao Yang
- Department of Pharmacy, The First Affiliated Hospital of Xinxiang Medical University, Xinyang, 453100, PR China
| | - Ke Guo
- Department of Pharmacy, The First Affiliated Hospital of Xinxiang Medical University, Xinyang, 453100, PR China
| | - Guangrui Pan
- Department of Breast Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Qiuzheng Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Wanhai Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
2
|
Shi X, Li H, Yao S, Zhao H, Wang X, Jing Y, Zhao C, Wang J. Progress in the application of functionalized covalent organic framework for bioanalysis. Biosens Bioelectron 2025; 278:117370. [PMID: 40086117 DOI: 10.1016/j.bios.2025.117370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
As a new type of crystalline porous polymer materials, covalent organic frameworks (COFs) with their unique features such as large surface area, tunable pore sizes, strong π-π stacking effect and size exclusion effects, have attracted wide attention in the analytical field. Due to the lack of catalytically active metal centers in bare COFs, functionalized COFs that are hybridized or modified with nanomaterials improve reactive activation and show better analytical performance for a variety of detection scenarios with complex analytes. Herein, we focused on the functionalized COFs used in bioanalysis ranging from nucleic acids, peptides, and proteins, to microorganisms, and discussed the functionalization strategy and unique structures and properties applied in the different stages of biosensing and advantages compared to other hybrid materials. Finally, challenges and future research directions of functionalized COFs in bioanalysis are discussed.
Collapse
Affiliation(s)
- Xuening Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Hang Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Shuo Yao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Huamin Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Xinrui Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Yixin Jing
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Chao Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Juan Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
3
|
Sun H, Li J, Zhao C, Ren C, Tian T, Lei C, Sun X. A Highly Sensitive Giant Magnetoresistive (GMR) Biosensor Based on the Magnetic Flux Concentrator Effect. MICROMACHINES 2025; 16:559. [PMID: 40428685 PMCID: PMC12113906 DOI: 10.3390/mi16050559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025]
Abstract
Magnetic biosensors have wide applications in biological target detection due to their advantages such as low background noise, convenient detection, and low requirements for sample pretreatment. However, existing magnetic biosensors still have the drawback of low sensitivity compared to optical and electrochemical biosensors. This paper presents the novel design of a high-sensitivity magnetic biosensor by utilizing the magnetic field line convergence effect, which was applied to bacterial detection. The results indicate that it can achieve a detection limitation of 10 CFU/mL, demonstrating that it can be implemented in high-sensitivity biological target detection.
Collapse
Affiliation(s)
- Hao Sun
- Microelectronics Research & Development Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; (H.S.); (J.L.); (C.Z.); (C.R.); (T.T.)
| | - Jiao Li
- Microelectronics Research & Development Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; (H.S.); (J.L.); (C.Z.); (C.R.); (T.T.)
| | - Changhui Zhao
- Microelectronics Research & Development Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; (H.S.); (J.L.); (C.Z.); (C.R.); (T.T.)
| | - Chunming Ren
- Microelectronics Research & Development Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; (H.S.); (J.L.); (C.Z.); (C.R.); (T.T.)
| | - Tian Tian
- Microelectronics Research & Development Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; (H.S.); (J.L.); (C.Z.); (C.R.); (T.T.)
| | - Chong Lei
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Department of Micro-Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China;
| | - Xuecheng Sun
- Microelectronics Research & Development Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; (H.S.); (J.L.); (C.Z.); (C.R.); (T.T.)
- Shanghai Key Laboratory of Automotive Intelligent Network Interaction Chip and System, The School of Microelectronics, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Sivakumar R, Lim N, Park SK, Lee NY. Curcumin - a natural colorant-based pH indicator for molecular diagnostics. Analyst 2025; 150:1632-1641. [PMID: 40095609 DOI: 10.1039/d4an01570c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Loop-mediated isothermal amplification (LAMP) provides highly selective and sensitive DNA amplification and generates hydrogen ions as a byproduct under weakly buffered conditions, causing the solutions' pH to decrease from the initial basic to an acidic environment. This distinctive feature allows the color of the amplified DNA solution to change readily when suitable pH indicators are employed. In this study, curcumin, a biodegradable, non-toxic, and natural colorant, was used as a pH indicator to visually identify LAMP-amplified Staphylococcus aureus (S. aureus) and Streptococcus pneumoniae (S. pneumoniae). Curcumin (10 mM) displayed a unique color difference between negative (red) and positive (yellow) samples, and the detection process was completed within 30 s, demonstrating the effectiveness of using curcumin for on-site diagnostics. Under optimum conditions, curcumin enabled S. aureus and S. pneumoniae detection as low as 10 fg μL-1 and 1 pg μL-1, respectively, due to its unique halochromic properties. Owing to its adaptability, ease of use, and rapid visual detection, the introduced colorimetric pH-based LAMP method can be employed as a practical alternative to conventional colorimetry for infectious pathogen identification in both laboratory and field settings.
Collapse
Affiliation(s)
- Rajamanickam Sivakumar
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| | - Nahyung Lim
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| | - Seung Kyun Park
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| |
Collapse
|
5
|
Xiao J, Ren Y, Liu M, Liu Y, Chen L, Gao J, Li J, Gao X. Ultrasensitive detection of Vibrio parahaemolyticus based on boric acid-functionalized Eu (III)-based metal-organic framework. Anal Chim Acta 2025; 1344:343682. [PMID: 39984204 DOI: 10.1016/j.aca.2025.343682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/01/2025] [Accepted: 01/15/2025] [Indexed: 02/23/2025]
Abstract
This study intends to create a ratiometric fluorescence probe utilizing aptamers for the detection of Vibrio parahaemolyticus (V. parahaemolyticus) in aquatic products. In this design, aptamer-functionalized magnetic nanoparticles specifically capture V. parahaemolyticus, while boric acid on Eu (III)-Based Metal-Organic Framework (Eu-MOF) interacts with glycolipids present on bacterial cells, thereby achieving dual recognition of V. parahaemolyticus. This fluorescent probe quantitatively detects V. parahaemolyticus by measuring the intensity of ratio fluorescence. The sensor demonstrates a detection range from 77 to 7.7 × 107 CFU/mL, possessing a detection threshold down to 1 CFU/mL. Moreover, the developed method based on Eu-MOF had been successfully applied to real samples. To achieve rapid on-site detection of V. parahaemolyticus, the study designed a portable smartphone sensor that confirms its capability for rapidly detecting pathogens and contributes significantly to establishing a system for regulating safety in detecting food and environment.
Collapse
Affiliation(s)
- Jingyi Xiao
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province. Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities. Jinzhou, Liaoning, 121013, China
| | - Yi Ren
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province. Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities. Jinzhou, Liaoning, 121013, China
| | - Menglong Liu
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province. Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities. Jinzhou, Liaoning, 121013, China
| | - Yiyao Liu
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province. Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities. Jinzhou, Liaoning, 121013, China
| | - Litao Chen
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province. Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities. Jinzhou, Liaoning, 121013, China
| | - Jiayan Gao
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province. Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities. Jinzhou, Liaoning, 121013, China
| | - Jinyang Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province. Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities. Jinzhou, Liaoning, 121013, China
| | - Xue Gao
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province. Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities. Jinzhou, Liaoning, 121013, China.
| |
Collapse
|
6
|
Li X, Zheng X, Yuan Y, Deng J, Su L, Xu K. A review of research progress on COF-based biosensors in pathogen detection. Anal Chim Acta 2025; 1342:343605. [PMID: 39919853 DOI: 10.1016/j.aca.2024.343605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 02/09/2025]
Abstract
Despite the availability of various detection tools, the rapid identification and accurate detection of pathogens remain a major challenge in public health management. Covalent organic frameworks (COFs), which are crystalline conjugated organic polymers with considerable application potential, offer unique advantages in several fields owing to their highly ordered structure, large specific surface area, stable chemical properties, and tunable pore microenvironment. In recent years, with the rapid development of biosensing technology, COF application in the field of pathogen detection has attracted extensive attention. Herein, the properties, applications, and synthesis methods of COFs are briefly described, and the application types and basic principles of COFs in building an efficient and sensitive pathogen detection platform are emphatically discussed. Overall, we analyze the current challenges associated with COF-based biosensors in pathogen detection and look forward to their broad application prospects in biomedicine and public health in future.
Collapse
Affiliation(s)
- Xiang Li
- School of Public Health, Hunan Normal University, Changsha, 410013, Hunan, PR China; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, Hunan, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Changsha, 410013, Hunan, PR China.
| | - Xi Zheng
- School of Public Health, Hunan Normal University, Changsha, 410013, Hunan, PR China; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, Hunan, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Changsha, 410013, Hunan, PR China.
| | - Yanhui Yuan
- School of Public Health, Hunan Normal University, Changsha, 410013, Hunan, PR China; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, Hunan, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Changsha, 410013, Hunan, PR China.
| | - Jiahui Deng
- School of Public Health, Hunan Normal University, Changsha, 410013, Hunan, PR China; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, Hunan, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Changsha, 410013, Hunan, PR China.
| | - Liang Su
- Changsha Center for Disease Control and Prevention, Changsha, 410004, Hunan, PR China.
| | - Kun Xu
- School of Public Health, Hunan Normal University, Changsha, 410013, Hunan, PR China; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, Hunan, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Changsha, 410013, Hunan, PR China.
| |
Collapse
|
7
|
Fatah SA, Omer KM. Aptamer-Modified MOFs (Aptamer@MOF) for Efficient Detection of Bacterial Pathogens: A Review. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11578-11594. [PMID: 39951394 DOI: 10.1021/acsami.4c21944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Detecting pathogenic bacteria is crucial for controlling infectious diseases, safeguarding public health, and ensuring food and water safety. The integration of metal-organic frameworks (MOFs) with aptamers offers a promising approach to enhance bacterial detection. Aptamers provide high specificity for target recognition, while MOFs contribute tunable porous structures and stability, forming robust biosensors. This synergy improves sensitivity, selectivity, and versatility, enabling real-time and quantitative detection. Applications span food safety, environmental monitoring, and point-of-care diagnostics. This review highlights the significance of aptamer@MOF biosensors, discussing various detection techniques and aptamer immobilization methods. It also addresses challenges like enhancing sensitivity, improving selectivity, minimizing interference, ensuring stability, and advancing scalability for real-world applications. Additionally, limitations such as the need for miniaturization, multimode detection, and multiplex analysis are highlighted. Future directions focus on optimizing the design and expanding applications to overcome these limitations. The versatility and potential of aptamer@MOF biosensors underscore their promise as high-performance platforms for bacterial detection in diverse fields.
Collapse
Affiliation(s)
- Shilan Arif Fatah
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street, 46002 Sulaymaniyah, Kurdistan Region, Iraq
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street, 46002 Sulaymaniyah, Kurdistan Region, Iraq
| |
Collapse
|
8
|
Zhang D, Zhang X, Liang M, Li X, Xiao H, Cao D, Zhao X. Ratiometric fluorescence sensor for Escherichia coli detection using fluorescein isothiocyanate-labeled metal-organic frameworks. Mikrochim Acta 2025; 192:188. [PMID: 40000471 DOI: 10.1007/s00604-025-07053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
A ratiometric fluorescence sensor for detecting Escherichia coli (E. coli) was fabricated based on the fluorescein isothiocyanate (FITC)-labeled zirconium (Zr)-tetraphenylporphyrin tetrasulfonic acid (TPPS) hydrate metal-organic frameworks (ZTMs@FITC). The ZTMs have strong red fluorescence emission at 683 nm, which can be quenched by Cu2+. E. coli can capture and convert external Cu2+ into Cu+ through its distinctive metabolic activities. To minimize environmental and instrumental influences and enhance detection precision, green FITC with an emission peak at 515 nm was utilized as the fluorescence labeling agent to fabricate the ratiometric fluorescence probe (ZTMs@FITC). The prepared ZTMs@FITC probe showed excellent performance in the detection of E. coli. As the concentration of E. coli increased, the fluorescence intensity at 683 nm (ZTMs, F683) increased considerably, while the fluorescence intensity at 515 nm (FITC, F515) decreased. By monitoring the increase in the ratio of F683 to F515, this sensor achieved rapid and sensitive detection of E. coli within the concentration range from 1.0 × 101 to 5.0 × 105 CFU/mL. The limit of detection was 6 CFU/mL. When observed under a 365 nm ultraviolet lamp, the fluorescence color of the solution changed from yellow to red. Additionally, the dual-signal ratiometric fluorescence method exhibited high selectivity for E. coli and was successfully utilized to detect E. coli in juice samples, demonstrating its practical application potential in food analysis.
Collapse
Affiliation(s)
- Duoduo Zhang
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
- Jiangsu Province Postdoctoral Innovation Practice Base, Changzhou Joel Plastic Co., Ltd, Changzhou, 213373, China.
| | - Xinyu Zhang
- School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Mingshuang Liang
- School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Xiuxiu Li
- School of Investigation, China People's Police University, Langfang, 065000, China
| | - Heping Xiao
- Jiangsu Province Postdoctoral Innovation Practice Base, Changzhou Joel Plastic Co., Ltd, Changzhou, 213373, China
| | - Dawei Cao
- Jiangsu Province Postdoctoral Innovation Practice Base, Changzhou Joel Plastic Co., Ltd, Changzhou, 213373, China
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
9
|
Chen J, Li S, Deng B, Wang H, Sun W, Li L, Bai Z, Liu J. Boronic acid-functionalized Fe 3O 4 nanoparticles for activity-preserved enrichment of low-abundance bacteria from real samples. RSC Adv 2025; 15:5507-5522. [PMID: 39967883 PMCID: PMC11834453 DOI: 10.1039/d4ra08826c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
Pathogenic bacterial infections represent a significant and ongoing threat to public health. The development of a sensitive, convenient, and accurate method for diagnosing pathogenic bacteria is a formidable challenge due to their low abundance in complex biological samples, especially in the early stages of diseases. In this study, a kind of phenylboronic acid-functionalized Fe3O4 nanoparticles (NPs), known as Fe3O4@poly(PEGDA-co-MAAPBA) NPs, was developed for effectively enriching low levels of pathogenic bacteria from complex samples and then diagnosing them through microbiological cultures. In this design, the resultant Fe3O4@poly(PEGDA-co-MAAPBA) NPs could recognize pathogenic bacteria because of the reversible reactions between the phenylboronic acid groups on the NPs and the cis-diol structures outside of the bacterial cells. By exploiting the magnetic properties of Fe3O4 NPs, bacteria were able to anchored onto the resulting NPs (NPs@bacteria) for easy enrichment. Utilizing microbiological culture techniques, successful cultivation of NPs@bacteria was achieved, demonstrating that bacterial activity remained unaffected during the enrichment process. The proposed method exhibited a limit of detection as low as 0.4 colony-forming units per milliliter. The Fe3O4@poly(PEGDA-co-MAAPBA) NPs were applied successfully for testing Staphylococcus aureus in urine samples which were typically considered to be free of bacterial contamination, indicating excellent selectivity and enrichment capability of the prepared NPs in complex samples. It suggests that the Fe3O4@poly(PEGDA-co-MAAPBA) NPs have the potential to become a powerful tool for early diagnosis of pathogenic bacteria in the clinic.
Collapse
Affiliation(s)
- Jingwen Chen
- School of Pharmacy, China Pharmaceutical University No. 24 Tongjiaxiang Road Nanjing 210009 China
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs 50 Zhongling Street Nanjing 210014 China
| | - Shaobo Li
- School of Pharmacy, China Pharmaceutical University No. 24 Tongjiaxiang Road Nanjing 210009 China
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs 50 Zhongling Street Nanjing 210014 China
| | - Bin Deng
- School of Pharmacy, China Pharmaceutical University No. 24 Tongjiaxiang Road Nanjing 210009 China
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs 50 Zhongling Street Nanjing 210014 China
| | - Hongyuan Wang
- School of Pharmacy, China Pharmaceutical University No. 24 Tongjiaxiang Road Nanjing 210009 China
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs 50 Zhongling Street Nanjing 210014 China
| | - Wenkui Sun
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University No. 300 Guangzhou Road Nanjing 210029 China
| | - Li Li
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs 50 Zhongling Street Nanjing 210014 China
| | - Zongchun Bai
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs 50 Zhongling Street Nanjing 210014 China
| | - Jing Liu
- School of Pharmacy, China Pharmaceutical University No. 24 Tongjiaxiang Road Nanjing 210009 China
| |
Collapse
|
10
|
Zhang Y, Xing H, Li R, Andersson J, Bozdogan A, Strassl R, Draphoen B, Lindén M, Henkel M, Knippschild U, Hasler R, Kleber C, Knoll W, Kissmann A, Rosenau F. Specific gFET-Based Aptasensors for Monitoring of Microbiome Quality: Quantification of the Enteric Health-Relevant Bacterium Roseburia Intestinalis. Adv Healthc Mater 2025; 14:e2403827. [PMID: 39663689 PMCID: PMC11804837 DOI: 10.1002/adhm.202403827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/29/2024] [Indexed: 12/13/2024]
Abstract
Roseburia intestinalis, enriched in the gut, is closely associated with obesity, intestinal inflammation, and other diseases. A novel detection method for R. intestinalis to replace the commonly used 16S rRNA sequencing technique is aim to developed, thus enabling real-time and low-cost monitoring of gut microbiota. The optimal solution is to utilize rGO-FET (reduced graphene oxide field-effect transistor) functionalized with aptamers. Due to the high sensitivity of graphene sensors to electronic changes in the system, it is anticipated to achieve detection sensitivity that traditional fluorescence detection techniques cannot attain. The previous work reported a nucleic acid aptamer library, Ri 7_2, capable of quantitatively tracking R. intestinalis in complex systems. However, due to the complexity of the aptamer library itself, large-scale industrial synthesis is challenging, significantly limiting its further commercial application potential. Therefore, in this study, through Next-Generation Sequencing analysis, four representative single aptamers from the aptamer library is strategically selected, named A-Rose 1, A-Rose 2, A-Rose 3, and A-Rose 4, and confirmed their excellent performance similar to the aptamer library Ri 7_2. Furthermore, aptamer-modified rGO-FET demonstrated universality in detecting R. intestinalis in a series of biochemical analyses, providing a novel and powerful diagnostic tool for the clinical diagnosis of R. intestinalis.
Collapse
Affiliation(s)
- Yiting Zhang
- Institute of Pharmaceutical BiotechnologyUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Hu Xing
- Institute of Pharmaceutical BiotechnologyUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Runliu Li
- Institute of Pharmaceutical BiotechnologyUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Jakob Andersson
- AIT Austrian Institute of Technology GmbHGiefinggasse 4Vienna1210Austria
| | - Anil Bozdogan
- Division of Clinical VirologyMedical University of Vienna – Spitalgasse 23Vienna1090Austria
| | - Robert Strassl
- Division of Clinical VirologyMedical University of Vienna – Spitalgasse 23Vienna1090Austria
| | - Bastian Draphoen
- Institute of Inorganic Chemistry IIUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Mika Lindén
- Institute of Inorganic Chemistry IIUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Marius Henkel
- Cellular AgricultureTUM School of Life SciencesTechnical University of MunichGregor‐Mendel‐Str. 485354FreisingGermany
| | - Uwe Knippschild
- Department of General and Visceral SurgerySurgery CenterUlm UniversityAlbert‐Einstein‐Allee 2389081UlmGermany
| | - Roger Hasler
- Danube Private UniversitySteiner Landstraße 124Krems an der Donau3500Austria
| | - Christoph Kleber
- Danube Private UniversitySteiner Landstraße 124Krems an der Donau3500Austria
| | - Wolfgang Knoll
- Danube Private UniversitySteiner Landstraße 124Krems an der Donau3500Austria
| | - Ann‐Kathrin Kissmann
- Institute of Pharmaceutical BiotechnologyUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Frank Rosenau
- Institute of Pharmaceutical BiotechnologyUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| |
Collapse
|
11
|
Wu W, Yan Y, Xie M, Liu Y, Deng L, Wang H. A critical review on metal organic frameworks (MOFs)-based sensors for foodborne pathogenic bacteria detection. Talanta 2025; 281:126918. [PMID: 39305763 DOI: 10.1016/j.talanta.2024.126918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
The pervasive threat of foodborne pathogenic bacteria necessitates advancements in rapid and reliable detection methods. Traditional approaches suffer from significant limitations including prolonged processing times, limited sensitivity and specificity. This review comprehensively examines the integration of metal organic frameworks (MOFs) with sensor technologies for the enhanced detection of foodborne pathogens. MOFs, with their unique properties such as high porosity, tunable pore sizes, and ease of functionalization, offer new avenues for sensor enhancement. This paper provides a comprehensive analysis of recent developments in MOFs-based sensors, particularly focusing on electrochemical, fluorescence, colorimetric, and surface-enhanced Raman spectroscopy sensors. We have provided a detailed introduction for the operational principles of these sensors, highlighting the role of MOFs play in enhancing their performance. Comparative analyses demonstrate MOFs' superior capabilities in enhancing signal response, reducing response time, and expanding detection limits. This review culminates in presenting MOFs as transformative materials in the detection of foodborne pathogens, paving the way for their broader application in ensuring food safety.
Collapse
Affiliation(s)
- Wenbo Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yueling Yan
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Maomei Xie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yidan Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Liyi Deng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for TCM, Tianjin, 301617, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of TCM, Tianjin, 301617, China.
| |
Collapse
|
12
|
Yuan J, Wang L, Duan H, Ye S, Ding Y, Li Y, Lin J. A press-actuated slidable microfluidic colorimetric biosensor for Salmonella detection utilizing nickel mesh sheet and MIL-88@Pd/Pt nanoparticles. Food Chem 2024; 467:142343. [PMID: 39647388 DOI: 10.1016/j.foodchem.2024.142343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
A press-actuated slidable microfluidic colorimetric biosensor was designed for rapid, sensitive and multi-channel detection of Salmonella. The nickel mesh sheet (NMS) modified with capture antibodies was employed for capturing target bacteria, and metal organic frameworks decorated with palladium (Pd) and platinum (Pt) nanoparticles (MIL-88@Pd/Pt NPs) modified with detection antibodies were used for amplifying colorimetric signals. The capture efficiency of the immune NMS reached 83 %, and the detection limit of this colorimetric biosensor was 35 CFU/mL in 20 min. The average recoveries for Salmonella in spiked chicken meats ranged from 92.2 % to 102.5 % with a variation from 3.7 % to 7.2 %. The press-actuated slidable microfluidic chip was elaboratively developed with multiple functions, including mixing, separation, washing, catalysis and detection.
Collapse
Affiliation(s)
- Jing Yuan
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Lei Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Hong Duan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China
| | - Siyi Ye
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Ying Ding
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
13
|
Chen Y, Li R, Shen H, Li N, Gao W, Guo H, Feng B, Yu S. Highly sensitive and rapid detection of Vibrio parahaemolyticus using a dual-recognition platform based on functionalized quantum dots and aptamer. Mikrochim Acta 2024; 191:732. [PMID: 39511044 DOI: 10.1007/s00604-024-06821-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
As one of the most harmful pathogenic bacteria in shrimp aquaculture, Vibrio parahaemolyticus often causes massive mortality in shrimp. Accurate and rapid detection of V. parahaemolyticus in shrimp farming is essential for avoiding huge economic losses caused by related diseases. In this study, we designed a dual-recognition platform for efficient identification and quantification of V. parahaemolyticus. First, the target bacterium was captured with magnetic beads functionalized by aptamers (Apt-MBs), and then, the broad-spectrum fluorescent probe FcMBL@CdSe-ZnS was used to detect the bacterium based on the interactions between fragment crystallizable mannose-binding lectin (FcMBL) and pathogenic bacteria. The proposed dual-recognition strategy centered around aptamers and FcMBL@CdSe-ZnS was applied to definite quantification of V. parahaemolyticus over a wide range of 10-108 CFU/mL with a limit of detection of 4 CFU/mL within 55 min. The feasibility was demonstrated by using the platform to detect V. parahaemolyticus from shrimp intestine, aquaculture water, and seawater.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Ruiwen Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Hao Shen
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Nana Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Wenjing Gao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Haipeng Guo
- School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Bin Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| | - Shaoning Yu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
14
|
Shang W, Xin H, Hou X, Wu L, Wu L. Multifunctional SERS Substrate for Simultaneous Detection of Multiple Contaminants and Photothermal Removal of Pathogenic Bacteria. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51679-51689. [PMID: 39269944 DOI: 10.1021/acsami.4c10473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
In this work, a boric-acid-modified Fe3O4@Au@BA-MOF composite material as a multifunctional SERS substrate was ingeniously constructed for detecting both pathogens and antibiotics as well as photothermally inactivating the pathogens. Through improving the dispersity and stability of gold nanoparticles (Au NPs), leveraging the specificity of boric acid (BA) groups in recognizing cis-diol structures, and the ability of SERS technology to provide unique fingerprint spectra of targets, the sensitive and stable detection of pathogens and antibiotics was achieved. Compared with Au NPs and Fe3O4@Au, the SERS enhancement factor of Fe3O4@Au@BA-MOF was 4.31 × 106, which was about 400 times and 16 times higher than the former two, respectively. Among the existing work, the limit of detection for pathogens was lower or comparable, and it exhibited good stability, maintaining consistent performance for 23 days. Additionally, this substrate achieved efficient photothermal inactivation of pathogens under both near-infrared light and natural light excitation. Within 8 min of near-infrared light irradiation, the bactericidal rates for Staphylococcus aureus and Escherichia coli reach 100% and 99.3%, respectively.
Collapse
Affiliation(s)
- Wenjuan Shang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Hui Xin
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Li Wu
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Lan Wu
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
15
|
Frigoli M, Lowdon JW, Caldara M, Cleij TJ, Diliën H, Eersels K, van Grinsven B. Emerging Biomimetic Sensor Technologies for the Detection of Pathogenic Bacteria: A Commercial Viability Study. ACS OMEGA 2024; 9:23155-23171. [PMID: 38854523 PMCID: PMC11154936 DOI: 10.1021/acsomega.4c01478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024]
Abstract
Ensuring a rapid and accurate identification of harmful bacteria is crucial in various fields including environmental monitoring, food safety, and clinical diagnostics. Conventional detection methods often suffer from limitations such as long analysis time, complexity, and the need for qualified personnel. Therefore, a lot of research effort is devoted to developing technologies with the potential to revolutionize the detection of pathogenic bacteria by offering rapid, sensitive, and user-friendly platforms for point-of-care analysis. In this light, biosensors have gained significant commercial attention in recent years due to their simplicity, portability, and rapid analysis capabilities. The purpose of this review is to identify a trend by analyzing which biosensor technologies have become commercially successful in the field of bacteria detection. Moreover, we highlight the characteristics that a biosensor must possess to finally arrive in the market and therefore in the hands of the end-user, and we present critical examples of the market applications of various technologies. The aim is to investigate the reason why certain technologies have achieved commercial success and extrapolate these trends to the future economic viability of a new subfield in the world of biosensing: the development of biomimetic sensor platforms. Therefore, an overview of recent advances in the field of biomimetic bacteria detection will be presented, after which the challenges that need to be addressed in the coming years to improve market penetration will be critically evaluated. We will zoom into the current shortcomings of biomimetic sensors based on imprinting technology and aptamers and try to come up with a recommendation for further development based on the trends observed from previous commercial success stories in biosensing.
Collapse
Affiliation(s)
- Margaux Frigoli
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Joseph W. Lowdon
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Manlio Caldara
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Thomas J. Cleij
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Hanne Diliën
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Kasper Eersels
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
16
|
Li Y, Tang X, Wang N, Zhao Z, Man S, Zhu L, Ma L. Argonaute-DNAzyme tandem biosensing for highly sensitive and simultaneous dual-gene detection of methicillin-resistant Staphylococcus aureus. Biosens Bioelectron 2024; 244:115758. [PMID: 37931440 DOI: 10.1016/j.bios.2023.115758] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a common zoonotic multidrug-resistant bacterium, puts a great threat to public health and food safety. Rapid and reliable detection of MRSA is crucial to guide effective patient treatment at early stages of infection and control the spread of MRSA infections. Herein, we developed a Simultaneous dual-gene and ulTra-sensitive detection for methicillin-resistant Staphylococcus aureus using Argonaute-DNAzyme tandem Detection (STAND). Simply, loop-mediated isothermal amplification (LAMP) was used for the amplification of the species-specific mecA and nuc gene, followed by STAND enabled by the site-specific cleavage of programable Argonaute. The Argonaute-DNAzyme tandem reaction rendered a conceptually novel signal amplification and transduction module that was more sensitive (1 or 2 order of magnitude higher) than the original Argonaute-based biosensing. With the strategy, the target nucleic acid signals gene were dexterously converted into fluorescent signals. STAND could detect the nuc gene and mecA gene simultaneously in a single reaction with 1 CFU/mL MRSA and a dynamic range from 1 to 108 CFU/mL. This method was confirmed by clinical samples and challenged by identifying contaminated foods and MRSA-infected animals. This work enriches the arsenal of Argonaute-mediated biosensing and presents a novel biosensing strategy to detect pathogenic bacteria with ultra-sensitivity, specificity and on-site capability.
Collapse
Affiliation(s)
- Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xiaoqin Tang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Nan Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Zhiying Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Lei Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
17
|
Teng M, Hao M, Ding C, Wang L, Shen H, Yu S, Chen L, Yang F. Rapid detection of Saccharomyces cerevisiae with boronic acid-decorated multivariate metal-organic frameworks and aptamers. Analyst 2023; 148:4213-4218. [PMID: 37539700 DOI: 10.1039/d3an00835e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Liquor brewing is a classic solid-substrate fermentation process with a unique brewing microbiome. As one of the most common fungi, Saccharomyces cerevisiae ferments saccharides and has been extensively applied in brewing production. Here, we present the facile fabrication of a selective, sensitive, and integrated fluorescent biosensor for S. cerevisiae detection. The proposed biosensor used aptamer-modified magnetic beads to specifically capture S. cerevisiae, and the enriched fungi were recognized and detected with boronic acid-decorated multivariate metal-organic frameworks. The biosensor allows rapid quantification of S. cerevisiae in the range of 10-106 CFU mL-1, showing excellent specificity and repeatability, and maintaining stable biosensing performance in long-term storage. The analytical ability of the proposed biosensor was successfully verified in distilled yeast and fermented grain samples spiked with S. cerevisiae.
Collapse
Affiliation(s)
- Mengjing Teng
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co. Ltd, Renhuai, Guizhou 564501, China
| | - Mengdi Hao
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Chuanfan Ding
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Li Wang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co. Ltd, Renhuai, Guizhou 564501, China
| | - Hao Shen
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Shaoning Yu
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Liangqiang Chen
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co. Ltd, Renhuai, Guizhou 564501, China
| | - Fan Yang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co. Ltd, Renhuai, Guizhou 564501, China
| |
Collapse
|