1
|
Hasani M, Yuan W, Sevari S, Ferreira LDAQ, Chang C, Diniz IMA, Ton-That H, Ansari S, Moshaverinia A. Dopamer: A bioactive polydopamine-containing glass-ionomer cement with mineralizing and antibacterial properties. Dent Mater 2025; 41:666-678. [PMID: 40221335 DOI: 10.1016/j.dental.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
OBJECTIVE To develop and characterize a novel bioactive polydopamine (PDA)-containing glass-ionomer cement (Dopamer) with enhanced mechanical, antibacterial, and mineralization properties for use as a restorative dental material. METHODS Dopamer was developed by coating fluoroaluminosilicate glass particles with polydopamine (PDA) via dopamine polymerization in alkaline solution. The PDA-coated glass particles were then mixed with a polyacrylic polymer. Mechanical properties were assessed through compressive strength, flexural strength, and Vickers microhardness testing using standardized specimens. Fuji XI and Herculite composite resin were used as the control groups. The adhesion to dentin was evaluated using shear bond strength test. Mineralization potential was investigated using Raman spectroscopy and scanning electron microscopy (SEM) to detect apatite formation on the surface and at the dentin-material interface. Cytocompatibility was evaluated using viability and proliferation assays on human dental pulp stem cells (DPSCs). Antibacterial activity against Streptococcus mutans was examined using both colony-forming unit (CFU) counts and live/dead bacterial staining assays on biofilms formed on the material surfaces. Additionally, odontogenic differentiation was examined using gene expression analysis. An in vivo mice molar pulp capping model was used to assess tertiary dentin formation and inflammatory response after placement of the material. All quantitative data were analyzed using one- or two-way ANOVA followed by Tukey's post hoc test, with significance set at p < 0.05. Kruskal-Wallis Test was utilized to evaluate pulp inflammation scores analysis. RESULTS Dopamer exhibited significantly enhanced (p < 0.001) mechanical properties, including improved compressive strength, flexural strength, and microhardness, compared to the conventional glass-ionomer cement (GIC). Shear bond strength to dentin also improved significantly (p < 0.05), demonstrating stronger adhesion. In vitro analyses confirmed in situ mineral formation and dentin mineralization capacity of Dopamer. Raman spectroscopy and SEM-EDS analyses revealed extensive mineral deposition at the interface between Dopamer and dentin, including calcium phosphate-rich layers suggestive of hydroxyapatite formation. Moreover, antibacterial testing demonstrated that Dopamer significantly (p < 0.001) inhibited Streptococcus mutans colonization compared to control (p < 0.001), reducing the risk of recurrent caries. Biocompatibility assays revealed high viability of DPSCs cultured on Dopamer, comparable to or better than the control groups. Dopamer also significantly upregulated odontogenic markers in vitro. In vivo studies showed formation of a continuous layer of tertiary dentin beneath the placed Dopamer, with minimal inflammatory response indicating excellent biocompatibility and regenerative potential. SIGNIFICANCE By combining enhanced mechanical strength, mineralization capacity, and antibacterial properties, Dopamer addresses critical limitations of existing glass-ionomer dental restorative materials, offering a bioactive, durable solution for restorative dentistry. This multifunctional material represents a promising advancement in dental restoration, supporting both clinical performance and long-term oral health.
Collapse
Affiliation(s)
- Mahdi Hasani
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, United States
| | - Weihao Yuan
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, United States
| | - Sevda Sevari
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, United States
| | - Luiza de Almeida Queiroz Ferreira
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, United States; Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Chungyu Chang
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, United States
| | - Ivana Márcia Alves Diniz
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, United States; Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Hung Ton-That
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, United States
| | - Sahar Ansari
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, United States
| | - Alireza Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
2
|
Wu L, Yao X, Luo Z, Li L, Huang H, Tang H. Bioinspired Nanoporous MOF-Modified Basalt Fiber Fabrics for Efficient and Multifunctional Oil-Water Separation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27092-27105. [PMID: 40275474 DOI: 10.1021/acsami.5c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Oily wastewater pollution is increasing globally. Conventional treatment methods often fail due to inefficiency and secondary contamination. Therefore, developing advanced membrane separation technologies is crucial. While membrane separation technology holds promise as a solution, its widespread applicability necessitates overcoming significant obstacles related to corrosion resistance, alkali resistance, and the prevention of membrane fouling. This study presents a novel and highly efficient approach for oil-water separation, employing bioinspired, nanoporous metal-organic framework-modified basalt fiber fabrics (BFF). The integration of UiO-66-NH2, renowned for its high porosity and tunable functionalities, with a chitosan-dopamine (CS-DA) layer on BFFs creates a multifunctional membrane with enhanced hydrophilicity and underwater superoleophobicity. This bioinspired design (refers to engineering solutions that mimic natural structures or mechanisms to improve performance and efficiency), drawing inspiration from the structure and function of natural materials, results in superior oil-water separation performance, demonstrating excellent flux and oil rejection rates. The UiO-66-NH2 effectively captures oil droplets due to its high porosity, while the CS-DA layer facilitates water permeability and promotes surface stability. Furthermore, the composite membrane exhibits exceptional stability and reusability, positioning it as a promising candidate for efficient and sustainable oil-water separation applications. This research showcases the potential of bioinspired design principles for developing innovative solutions to pressing environmental challenges.
Collapse
Affiliation(s)
- Liang Wu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P.R. China
| | - Xue Yao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P.R. China
| | - Ze Luo
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P.R. China
- School of Material Science and Engineering, Qingdao University, Qingdao 266071, P.R. China
| | - Lan Li
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, P.R. China
| | - Haibo Huang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P.R. China
- School of Material Science and Engineering, Qingdao University, Qingdao 266071, P.R. China
| | - Hua Tang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P.R. China
| |
Collapse
|
3
|
Tao X, Wang D, Yan M, Ma Y, Zhou Y, Fu Q. Recent Advances in the Construction and Applications of Monolithic and Open-tubular Capillary Electrochromatography (2022-2024). J Sep Sci 2025; 48:e70119. [PMID: 40108917 DOI: 10.1002/jssc.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
Capillary electrochromatography (CEC) has attracted significant attention and gained considerable recognition in the field of separation science owing to its excellent separation efficiency. While numerous reviews on CEC have been published in recent years, a comprehensive and systematic summary of the typical synthesis strategies for electrochromatographic stationary phases and their state-of-the-art applications in CEC remains lacking. This review highlights recent advances (over the past 3 years) and representative applications (including chiral separation, microextraction-coupled analysis, metabolomics, enzyme analysis, and food analysis) of monolithic and open-tubular stationary phases in CEC. The advantages and limitations of each methodology are critically analyzed to present a balanced evaluation. Additionally, this work outlines future prospects regarding the development trends in electrochromatographic stationary phase preparation methods and the evolving applications of CEC.
Collapse
Affiliation(s)
- Xueping Tao
- Department of Drug Analysis, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Dan Wang
- Department of Drug Analysis, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Meiting Yan
- Department of Drug Analysis, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yan Ma
- Department of Drug Analysis, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yang Zhou
- Department of Drug Analysis, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qifeng Fu
- Department of Drug Analysis, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Gao P, Zhang Q, Sun Y, Cheng H, Wu S, Zhang Y, Si W, Sun H, Sun N, Yang J, Cai K, Lu L, Liu J. Synergistic catecholamine and coordination chemistry for enhanced bioactivity and secondary grafting activity of zirconia dental implants. Colloids Surf B Biointerfaces 2025; 246:114361. [PMID: 39522290 DOI: 10.1016/j.colsurfb.2024.114361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The inherent bioinertness of zirconia (ZrO2) hinders its early bone integration, presenting a significant obstacle to its widespread use in dental implant technologies. Addressing this, we developed a surface coating leveraging the synergistic effects of catecholamine and coordination chemistry inspired by the mussel byssus cuticle. This coating, named PDPA@Sr, is enriched with strontium ions and amine groups, resulting from a simple immersion of polydopamine (PD)-coated ZrO2 in an alkaline strontium chloride and poly(allylamine) (PA) solution. Compared to conventional mussel-inspired PD coatings, PDPA@Sr demonstrates enhanced aesthetic properties and mechanical stability. The continuous release of strontium ions from the coating significantly enhances osteogenesis, while the abundant surface amine groups offer notable antibacterial effects. More importantly, these amine groups also enable a variety of chemical modifications, including electrostatic adsorption, carbodiimide chemistry, Michael addition, Schiff base formation, and click chemistry, thus providing a multifaceted platform for the advanced surface modification of ZrO2 implants.
Collapse
Affiliation(s)
- Peng Gao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Qihong Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Yingyue Sun
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Huan Cheng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Shuyi Wu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Yinyan Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Wen Si
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Haobo Sun
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Ningyao Sun
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Jing Yang
- Sichuan Film and Television University, Chengdu 611331, China
| | - Kaiyong Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Lei Lu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
5
|
Tao X, Su M, Chen P, Yan M, Wang D, Xia L, Rao L, Xia Z, Fu Q. Zirconium(IV) coordination-mediated rapid and versatile post-modification of polydopamine coating as stationary phase for open-tubular capillary electrochromatography. J Chromatogr A 2024; 1736:465415. [PMID: 39378618 DOI: 10.1016/j.chroma.2024.465415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
In recent years, mussel-inspired polydopamine (PDA)-based materials have attracted significant attention in the field of open-tubular capillary electrochromatography (OT-CEC) owing to their diverse and appealing properties. However, previously established functionalized PDA coating-based CEC stationary phases predominantly relied on the latent reactivity of PDA with amine/thiol-containing molecules, limiting the types of applicable modifiers and requiring time-consuming reaction processes. Herein, we presented a versatile and efficient method for the facile and rapid fabrication of diverse functionalized PDA coatings as OT-CEC stationary phases through a Zr(IV) coordination-mediated post-modification strategy. Different kinds of modifiers, including octadecylamine (ODA), lauric acid (LA), and perfluorooctanoic acid (PFOA), were rapidly and robustly grafted onto the PDA coating, verified through multiple characterization techniques. The influences of preparation parameters on the grafting efficiency of the functionalized PDA coating were systematically investigated. Utilizing the Zr(IV)-mediated ODA-, LA- and PFOA-functionalized PDA-based OT-CEC columns, we achieved high-efficiency baseline separation of a series of neutral analytes with excellent repeatability, good stability, and long lifetime. Given the strong universality of the Zr(IV) coordination-mediated post-modification approach, our study provides an effective pathway for advancing the development of a wider range of functional PDA-based chromatographic stationary phases.
Collapse
Affiliation(s)
- Xueping Tao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Mengting Su
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Panpan Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Meiting Yan
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Dan Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Lan Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Li Rao
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China.
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
6
|
Liu X, Li D, Tabassum M, Huang C, Yi K, Fang T, Jia X. Sequentially photocatalytic degradation of mussel-inspired polydopamine: From nanoscale disassembly to effective mineralization. J Colloid Interface Sci 2024; 672:329-337. [PMID: 38850860 DOI: 10.1016/j.jcis.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Mussel-inspired polydopamine (PDA) coating has been utilized extensively as versatile deposition strategies that can functionalize surfaces of virtually all substrates. However, the strong adhesion, stability and intermolecular interaction of PDA make it inefficient in certain applications. Herein, a green and efficient photocatalytic method was reported to remove adhesion and degrade PDA by using TiO2-H2O2 as photocatalyst. The photodegradation process of the PDA spheres was first undergone nanoscale disassembly to form soluble PDA oligomers or well-dispersed nanoparticles. Most of the disassembled PDA can be photodegraded and finally mineralized to CO2 and H2O. Various PDA coated templates and PDA hollow structures can be photodegraded by this strategy. Such process provides a practical strategy for constructing the patterned and gradient surfaces by the "top-down" method under the control of light scope and intensity. This sequential degradation strategy is beneficial to achieve the decomposition of highly crosslinked polymers.
Collapse
Affiliation(s)
- Xinghuan Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Danya Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Mehwish Tabassum
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Chao Huang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Ke Yi
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Tianwen Fang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Xin Jia
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
7
|
You J, Li Y, Wang C, Lv H, Zhai S, Liu M, Liu X, Sezhen Q, Zhang L, Zhang Y, Zhou Y. Mild Thermotherapy-Assisted GelMA/HA/MPDA@Roxadustat 3D-Printed Scaffolds with Combined Angiogenesis-Osteogenesis Functions for Bone Regeneration. Adv Healthc Mater 2024; 13:e2400545. [PMID: 38706444 DOI: 10.1002/adhm.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Early reconstruction of the vascular network is a prerequisite to the effective treatment of substantial bone defects. Traditional 3D printed tissue engineering scaffolds designed to repair large bone defects do not effectively regenerate the vascular network, and rely only on the porous structure within the scaffold for nutrient transfer and metabolic waste removal. This leads to delayed bone restoration and hence functional recovery. Therefore, strategies for generation scaffolds with the capacity to efficiently regenerate vascularization should be developed. This study loads roxarestat (RD), which can stabilize HIF-1α expression in a normoxic environment, onto the mesopore polydopamine nanoparticles (MPDA@RD) to enhance the reconstruction of vascular network in large bone defects. Subsequently, MPDA@RD is mixed with GelMA/HA hydrogel bioink to fabricate a multifunctional hydrogel scaffold (GHM@RD) through 3D printing. In vitro results show that the GHM@RD scaffolds achieve good angiogenic-osteogenic coupling by activating the PI3K/AKT/HSP90 pathway in BMSCs and the PI3K/AKT/HIF-1α pathway in HUVECs under mild thermotherapy. In vivo experiments reveal that RD and mild hyperthermia synergistically induce early vascularization and bone regeneration of critical bone defects. In conclusion, the designed GHM@RD drug delivery scaffold with mild hyperthermia holds great therapeutic value for future treatment of large bone defects.
Collapse
Affiliation(s)
- Jiaqian You
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Yangyang Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Chong Wang
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Shaobo Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Manxuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Quni Sezhen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Lu Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Yidi Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| |
Collapse
|
8
|
Wu N, Meng S, Li Z, Fang J, Qi C, Kong T, Liu Z. Tailoring the Heterogeneous Structure of Macro-Fibers Assembled by Bacterial Cellulose Nanofibrils for Tissue Engineering Scaffolds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307603. [PMID: 38213024 DOI: 10.1002/smll.202307603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/09/2023] [Indexed: 01/13/2024]
Abstract
Bacterial cellulose/oxidized bacterial cellulose nanofibrils (BC/oxBCNFs) macro-fibers are developed as a novel scaffold for vascular tissue engineering. Utilizing a low-speed rotary coagulation spinning technique and precise solvent control, macro-fibers with a unique heterogeneous structure with dense surface and porous core are created. Enhanced by a polydopamine (PDA) coating, these macro-fibers offer robust mechanical integrity, high biocompatibility, and excellent cell adhesion. When cultured with endothelial cells (ECs) and smooth muscle cells (SMCs), the macro-fibers support healthy cell proliferation and exhibit a unique spiral SMC alignment, demonstrating their vascular suitability. This innovative strategy opens new avenues for advances in tissue engineering.
Collapse
Affiliation(s)
- Nihuan Wu
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Si Meng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Zhen Li
- Department of Gastroenterology, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 510006, China
| | - Jie Fang
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Cheng Qi
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, 518037, China
| | - Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
9
|
Long W, You M, Li J, Wang Y, Wang D, Tao X, Rao L, Xia Z, Fu Q. Sulfonic Functionalized Polydopamine Coatings with pH-Independent Surface Charge for Optimizing Capillary Electrophoretic Separations. Molecules 2024; 29:1600. [PMID: 38611879 PMCID: PMC11013714 DOI: 10.3390/molecules29071600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/30/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Enhancing the pH-independence and controlling the magnitude of electroosmotic flow (EOF) are critical for highly efficient and reproducible capillary electrophoresis (CE) separations. Herein, we present a novel capillary modification method utilizing sulfonated periodate-induced polydopamine (SPD) coating to achieve pH-independent and highly reproducible cathodic EOF in CE. The SPD-coated capillaries were obtained through post-sulfonation treatment of periodate-induced PDA (PDA-SP) coatings adhered on the capillary inner surface. The successful immobilization of the SPD coating and the substantial grafting of sulfonic acid groups were confirmed by a series of characterization techniques. The excellent capability of PDA-SP@capillary in masking silanol groups and maintaining a highly robust EOF mobility was verified. Additionally, the parameters of sulfonation affecting the EOF mobilities were thoroughly examined. The obtained optimum SPD-coated column offered the anticipated highly pH-independent and high-strength cathodic EOF, which is essential for enhancing the CE separation performance and improving analysis efficiency. Consequently, the developed SPD-coated capillaries enabled successful high-efficiency separation of aromatic acids and nucleosides and rapid cyclodextrin-based chiral analysis of racemic drugs. Moreover, the SPD-coated columns exhibited a long lifetime and demonstrated good intra-day, inter-day, and column-to-column repeatability.
Collapse
Affiliation(s)
- Wenwen Long
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Mingyue You
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jieli Li
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yan Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Dan Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xueping Tao
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Li Rao
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
10
|
Jia B, Zhang B, Li J, Qin J, Huang Y, Huang M, Ming Y, Jiang J, Chen R, Xiao Y, Du J. Emerging polymeric materials for treatment of oral diseases: design strategy towards a unique oral environment. Chem Soc Rev 2024; 53:3273-3301. [PMID: 38507263 DOI: 10.1039/d3cs01039b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Oral diseases are prevalent but challenging diseases owing to the highly movable and wet, microbial and inflammatory environment. Polymeric materials are regarded as one of the most promising biomaterials due to their good compatibility, facile preparation, and flexible design to obtain multifunctionality. Therefore, a variety of strategies have been employed to develop materials with improved therapeutic efficacy by overcoming physicobiological barriers in oral diseases. In this review, we summarize the design strategies of polymeric biomaterials for the treatment of oral diseases. First, we present the unique oral environment including highly movable and wet, microbial and inflammatory environment, which hinders the effective treatment of oral diseases. Second, a series of strategies for designing polymeric materials towards such a unique oral environment are highlighted. For example, multifunctional polymeric materials are armed with wet-adhesive, antimicrobial, and anti-inflammatory functions through advanced chemistry and nanotechnology to effectively treat oral diseases. These are achieved by designing wet-adhesive polymers modified with hydroxy, amine, quinone, and aldehyde groups to provide strong wet-adhesion through hydrogen and covalent bonding, and electrostatic and hydrophobic interactions, by developing antimicrobial polymers including cationic polymers, antimicrobial peptides, and antibiotic-conjugated polymers, and by synthesizing anti-inflammatory polymers with phenolic hydroxy and cysteine groups that function as immunomodulators and electron donors to reactive oxygen species to reduce inflammation. Third, various delivery systems with strong wet-adhesion and enhanced mucosa and biofilm penetration capabilities, such as nanoparticles, hydrogels, patches, and microneedles, are constructed for delivery of antibiotics, immunomodulators, and antioxidants to achieve therapeutic efficacy. Finally, we provide insights into challenges and future development of polymeric materials for oral diseases with promise for clinical translation.
Collapse
Affiliation(s)
- Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Beibei Zhang
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianhua Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jinlong Qin
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yisheng Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Mingshu Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Yue Ming
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Jingjing Jiang
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Ran Chen
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yufen Xiao
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
11
|
Zhan H, Lv Y, Shen R, Li C, Li M, Li Y. Bimetallic Gold/Silver and Bioactive Camptothecin Hybrid Nanoparticles for Eradication of Cancer Stem Cells in a Combination Manner. Mol Pharm 2024; 21:1450-1465. [PMID: 38335466 DOI: 10.1021/acs.molpharmaceut.3c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The defeat of cancer is still a challenge due to the existence of cancer stem cells (CSCs) because they resist conventional chemotherapy via multifactor regulated mechanisms. Consequently, one-dimensional action toward CSCs cannot work. Herein, we used rationally designed hybrid nanoparticles as a combined cancer therapy, hoping to form a multidimensional control network. In this paper, gold/silver alloy nanoparticle decorated camptothecin nanocrystals were formulated according to complementary anti-CSC mechanisms from gold, silver, and organic drug. This smart drug formulation could combine chemotherapy and thermotherapy, target different tumor sites, and demonstrate versatile toxicity profiles from each component. Major results indicated that this nanosystem demonstrated indiscriminately effective cytotoxic/proapoptotic/necrotic activity against bulk MCF-7 cells and their CSC subpopulation, in particular under laser ablation. Moreover, this nanosystem displayed enhanced antineoplastic activity against CSC spheroids, resulting in a significant reduction in their number and size, that is, their self-renewal capacity. All the results indicated that CSCs upon treatment of these new hybrid nanoparticles underwent reduced stemness and conversion from the original quiescent state and recovered their sensitivity toward chemotherapy. The relevant anticancer mechanism was ascribed to NIR-pH dual responsive drug release, synergistic/combined thermo-chemotherapy of organic drug and inorganic alloy nanoparticles, enhanced cellular uptake mediated by alloy nanoparticles, and Ag+-induced biomembrane damage. This thermo-chemotherapy platform provides a new combinatorial strategy for inorganic and organic agents in the complete elimination of CSCs.
Collapse
Affiliation(s)
- Honglei Zhan
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, Liaoning Province 116034, P. R. China
| | - Yulong Lv
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, Liaoning Province 116034, P. R. China
| | - Ruiyu Shen
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, Liaoning Province 116034, P. R. China
| | - Chaoyue Li
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, Liaoning Province 116034, P. R. China
| | - Miao Li
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, Liaoning Province 116034, P. R. China
| | - Yahong Li
- Research Institute of Photonics, Dalian Polytechnic University, Dalian, Liaoning Province 116034, P. R. China
| |
Collapse
|
12
|
Lan J, Li D, Zhong W, Luo W, Zhang H, Chen M. Bio-Inspired Iron-Loaded Polydopamine Functionalized Montmorillonite as an Environmentally Friendly Flame Retardant for Epoxy Resin. Molecules 2023; 28:5354. [PMID: 37513227 PMCID: PMC10383249 DOI: 10.3390/molecules28145354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
As an important thermosetting material, flame-retardant epoxy resin has various applications in the aerospace, chemical, and electronics industry, and other fields. However, the flame retardancy of epoxy resins is often improved at the expense of mechanical performance. The contradiction between flame retardancy and mechanical properties seriously impedes the practical applications of epoxy resin (EP). Herein, iron-loaded polydopamine functionalized montmorillonite (D-Mt-Fe3+), which was prepared by dopamine, iron chloride and montmorillonite in an aqueous solution, was introduced to prepare iron-loaded polydopamine functionalized montmorillonite/epoxy resin composites (D-Mt-Fe3+/EP). As expected, D-Mt-Fe3+/EP-10 with 10 phr of D-Mt-Fe3+ passed the UL-94 V-0 rating, achieved a limiting oxygen index (LOI) value of 31.0% and reduced the smoke production rate (SPR) and total smoke production (TSP), indicating that the introduction of D-Mt-Fe3+ could endow EP with satisfactory flame retardancy through the radical scavenging function of dopamine in the gas phase and the catalytic charring effect of iron ions, respectively. Encouragingly, the mechanical property was also enhanced with the flexural strength increased by 25.5%. This work provided an attractive strategy for improving both the mechanical properties and fire resistance of EP, which greatly broadened their applications in the chemical industry and electronics field, etc.
Collapse
Affiliation(s)
- Jiashui Lan
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- Research and Development Department, Waexim (Xiamen) New Materials Co., Ltd., Xiamen 361023, China
| | - Dingsi Li
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Wei Zhong
- Research and Development Department, Waexim (Xiamen) New Materials Co., Ltd., Xiamen 361023, China
| | - Wenhui Luo
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Huagui Zhang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Mingfeng Chen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|