1
|
Liang Y, Li H, Tang H, Zhang C, Men D, Mayer D. Bioinspired Electrolyte-Gated Organic Synaptic Transistors: From Fundamental Requirements to Applications. NANO-MICRO LETTERS 2025; 17:198. [PMID: 40122950 PMCID: PMC11930914 DOI: 10.1007/s40820-025-01708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025]
Abstract
Rapid development of artificial intelligence requires the implementation of hardware systems with bioinspired parallel information processing and presentation and energy efficiency. Electrolyte-gated organic transistors (EGOTs) offer significant advantages as neuromorphic devices due to their ultra-low operation voltages, minimal hardwired connectivity, and similar operation environment as electrophysiology. Meanwhile, ionic-electronic coupling and the relatively low elastic moduli of organic channel materials make EGOTs suitable for interfacing with biology. This review presents an overview of the device architectures based on organic electrochemical transistors and organic field-effect transistors. Furthermore, we review the requirements of low energy consumption and tunable synaptic plasticity of EGOTs in emulating biological synapses and how they are affected by the organic materials, electrolyte, architecture, and operation mechanism. In addition, we summarize the basic operation principle of biological sensory systems and the recent progress of EGOTs as a building block in artificial systems. Finally, the current challenges and future development of the organic neuromorphic devices are discussed.
Collapse
Affiliation(s)
- Yuanying Liang
- Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou, 510335, People's Republic of China.
| | - Hangyu Li
- Institute of Biological Information Processing, Bioelectronics IBI-3, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Hu Tang
- Guangzhou Liby Group Co., Ltd, Guangzhou, 510370, People's Republic of China
| | - Chunyang Zhang
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Dong Men
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics IBI-3, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
2
|
Scott J, Kludze A, Santamore M, Kousseff CJ, McCulloch I, Ghasempour Y, Rand BP. Broadband THz Modulation via Solid-State Organic Electrochemical Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415828. [PMID: 39916533 PMCID: PMC11923510 DOI: 10.1002/adma.202415828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/09/2025] [Indexed: 03/21/2025]
Abstract
The sub-Terahertz and Terahertz bands play a critical role in next-generation wireless communication and sensing technologies, thanks to the large amount of available bandwidth in this spectral regime. While long-wavelength (microwave to mm-Wave) and short-wavelength (near-infrared to ultraviolet) devices are well-established and studied, the sub-THz to THz regime remains relatively underexplored and underutilized. Traditional approaches used in the aforementioned spectral regions are more difficult to replicate in the THz band, leading to the need for the development of novel devices and structures that can manipulate THz radiation effectively. Herein a novel organic, solid-state electrochemical device is presented, capable of achieving modulation depths of over 90% from ≈500 nm of a conducting polymer that switches conductivity over a large dynamic range upon application of an electronically controllable external bias. The stability of such devices under long-term, repeated voltage switching, as well as continuous biasing at a single voltage, is also explored. Switching stabilities and long-term bias stabilities are achieved over two days for both use cases. Additionally, both depletion mode (always "ON") and accumulation mode (always "OFF") operation are demonstrated. These results suggest applications of organic electrochemical THz modulators in large area and flexible implementations.
Collapse
Affiliation(s)
- Jonathan Scott
- Department of Electrical & Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Atsutse Kludze
- Department of Electrical & Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Megan Santamore
- Department of Electrical & Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| | | | - Iain McCulloch
- Department of Electrical & Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
- Andlinger Center for Energy & The Environment, Princeton University, Princeton, NJ, 08544, USA
| | - Yasaman Ghasempour
- Department of Electrical & Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Barry P Rand
- Department of Electrical & Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
- Andlinger Center for Energy & The Environment, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
3
|
Liu X, Xiao Y, Yan C, Du P, Zhang F, Xin H. Structural Modifications for Tuning Performance and Operational Modes in n-Type Organic Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8072-8083. [PMID: 39851207 DOI: 10.1021/acsami.4c18514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Organic mixed ionic-electronic conductors (OMIECs) are crucial in defining the operational modes and performance of organic electrochemical transistors (OECTs). However, studies on the design and structure-performance correlations of small-molecule n-type OMIECs remain scarce. Herein, we designed and synthesized a series of naphthalene diimide (NDI)-based n-type small molecules by extending π-conjugation and increasing the number of electron-withdrawing groups, achieving performance optimization and even changes in operational modes through structural regulations. OECTs based on 4Br-NDI-3EG exhibit a low threshold voltage of -0.022 V, which is the lowest reported for n-type channel materials to date. NDI-DTYA-3EG, synthesized through π-expansion of 4Br-NDI-3EG, maintains a low threshold voltage of -0.041 V and achieves 2 orders of magnitude improvement in electron mobility (1.04 × 10-2 cm2 V-1 s-1) owing to its mixed edge-on and face-on orientation. Specifically, by further increasing the number of electron-withdrawing groups, NDI-DTYM-3EG attains a sufficiently low LUMO energy level (-4.51 eV), enabling a spontaneous reduction in 0.1 M NaCl solution without external bias, thereby achieving self-doping. Consequently, it exhibits n-depletion-mode characteristics with a transconductance value of 287 μS. Moreover, devices made with NDI-DTYM-3EG show exceptional stability, retaining 98% of the initial drain current after 150 min operation. These results provide insights into the understanding and design of n-type mixed ionic-electronic conductor materials.
Collapse
Affiliation(s)
- Xinru Liu
- School of Microelectronics, Shanghai University, Shanghai 201800, China
| | - Yu Xiao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Binzhou, Shandong 256606, China
| | - Chaoyi Yan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengcheng Du
- School of Microelectronics, Shanghai University, Shanghai 201800, China
| | - Fengjiao Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Binzhou, Shandong 256606, China
| | - Hanshen Xin
- School of Microelectronics, Shanghai University, Shanghai 201800, China
| |
Collapse
|
4
|
Zhu Z, Pang Y, Li Y, Gu Y, Wang X, Yu A, Liu B, Liu S, Huang W, Zhao Q. The Rising of Flexible Organic Electrochemical Transistors in Sensors and Intelligent Circuits. ACS NANO 2025; 19:4084-4120. [PMID: 39829276 DOI: 10.1021/acsnano.4c12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Flexible electronic devices in biomedicine, environmental monitoring, and brain-like computing have garnered significant attention. Among these, organic electrochemical transistors (OECTs) have been spotlighted in flexible sensors and neuromorphic circuits for their low power consumption, high signal amplification, excellent biocompatibility, chemical stability, stretchability, and flexibility. However, OECTs will also face some challenges on the way to commercialized applications, including the need for improved long-term stability, enhanced performance of N-type materials, integration with existing technologies, and cost-effective manufacturing processes. This review presents the device physics of OECTs in detail, including the evaluation of their various properties and the introduction of different configurations of the aforementioned OECTs. Subsequently, the components of this device and their roles are explained in depth, and the main ways to design and fabricate flexible OECTs are summarized. Following this, we summarize and analyze the principles and applications of OECTs for electrophysiological signal sensing, chemical sensing, biosensing, and sensor arrays. In addition, the concepts of OECT-based digital and neuromorphic circuits and their applications are presented. Finally, the paper summarizes the opportunities and challenges of OECT-based flexible electronics.
Collapse
Affiliation(s)
- Zihan Zhu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Yuncong Pang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Yang Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Yuzhe Gu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Xiaotian Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Aoxi Yu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Baoguang Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| |
Collapse
|
5
|
Chen QG, Liao WT, Li RY, Sanjuán I, Hsiao NC, Ng CT, Chang TT, Guerrero A, Chueh CC, Lee WY. Organic Solid-State Electrolyte Synaptic Transistors with Photoinduced Thiol-Ene Cross-linked Polymer Electrolytes for Deep Neural Networks. ACS MATERIALS LETTERS 2025; 7:682-691. [PMID: 39917082 PMCID: PMC11795873 DOI: 10.1021/acsmaterialslett.4c02511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 02/09/2025]
Abstract
In this work, we describe a solid-state polymer electrolyte (SPE)-based electrolyte-gated organic field-effect transistors (EGOFETs) consisting of a thiol-ene-assisted photo-cross-linked nitrile butadiene rubber (NBR) network embedded with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte. The photocurable SPE film can be patterned with different dimensions by photolithography and exhibits excellent electronic properties and crucial synaptic behavior. The photocurable NBR/LiTFSI EGOFET exhibits a high transconductance of 11.9 mS and a high on/off ratio of 105 at a scan rate of 40 mV/s. Due to the strongly polarized nature of the photo-cross-linked NBR network and Li-ion diffusion, the NBR/LiTFSI device exhibits a significant current hysteresis, enabling synaptic-like learning and memory behavior. The NBR/LiTFSI device demonstrates a DNN of 91.9% handwritten digit recognition accuracy. This work demonstrates the potential of the solid-state NBR/LiTFSI EGOFET in creating highly efficient and low-energy neuromorphic devices.
Collapse
Affiliation(s)
- Qun-Gao Chen
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Wei-Ting Liao
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Rou-Yi Li
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Ignacio Sanjuán
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, 12006 Castelló, Spain
| | - Ning-Cian Hsiao
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Chan-Tat Ng
- Department
of Psychology, National Chengchi University, Taipei 11605, Taiwan
| | - Ting-Ting Chang
- Department
of Psychology, National Chengchi University, Taipei 11605, Taiwan
- Research
Center for Mind, Brain & Learning, National
Chengchi University, Taipei 11605, Taiwan
| | - Antonio Guerrero
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, 12006 Castelló, Spain
| | - Chu-Chen Chueh
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Wen-Ya Lee
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan
- Research
Center for Mind, Brain & Learning, National
Chengchi University, Taipei 11605, Taiwan
| |
Collapse
|
6
|
Zhong Y, Lopez-Larrea N, Alvarez-Tirado M, Casado N, Koklu A, Marks A, Moser M, McCulloch I, Mecerreyes D, Inal S. Eutectogels as a Semisolid Electrolyte for Organic Electrochemical Transistors. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1841-1854. [PMID: 38435047 PMCID: PMC10902863 DOI: 10.1021/acs.chemmater.3c02385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 03/05/2024]
Abstract
Organic electrochemical transistors (OECTs) are signal transducers offering high amplification, which makes them particularly advantageous for detecting weak biological signals. While OECTs typically operate with aqueous electrolytes, those employing solid-like gels as the dielectric layer can be excellent candidates for constructing wearable electrophysiology probes. Despite their potential, the impact of the gel electrolyte type and composition on the operation of the OECT and the associated device design considerations for optimal performance with a chosen electrolyte have remained ambiguous. In this work, we investigate the influence of three types of gel electrolytes-hydrogels, eutectogels, and iongels, each with varying compositions on the performance of OECTs. Our findings highlight the superiority of the eutectogel electrolyte, which comprises poly(glycerol 1,3-diglycerolate diacrylate) as the polymer matrix and choline chloride in combination with 1,3-propanediol deep eutectic solvent as the ionic component. This eutectogel electrolyte outperforms hydrogel and iongel counterparts of equivalent dimensions, yielding the most favorable transient and steady-state performance for both p-type depletion and p-type/n-type enhancement mode transistors gated with silver/silver chloride (Ag/AgCl). Furthermore, the eutectogel-integrated enhancement mode OECTs exhibit exceptional operational stability, reflected in the absence of signal-to-noise ratio (SNR) variation in the simulated electrocardiogram (ECG) recordings conducted continuously over a period of 5 h, as well as daily measurements spanning 30 days. Eutectogel-based OECTs also exhibit higher ECG signal amplitudes and SNR than their counterparts, utilizing the commercially available hydrogel, which is the most common electrolyte for cutaneous electrodes. These findings underscore the potential of eutectogels as a semisolid electrolyte for OECTs, particularly in applications demanding robust and prolonged physiological signal monitoring.
Collapse
Affiliation(s)
- Yizhou Zhong
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Naroa Lopez-Larrea
- POLYMAT,
University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San
Sebastian, Guipuzcoa 20018, Spain
| | - Marta Alvarez-Tirado
- POLYMAT,
University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San
Sebastian, Guipuzcoa 20018, Spain
| | - Nerea Casado
- POLYMAT,
University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San
Sebastian, Guipuzcoa 20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Anil Koklu
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Adam Marks
- Department
of Chemistry, University of Oxford, Oxford OX1 3TF, U.K.
| | - Maximilian Moser
- Department
of Chemistry, University of Oxford, Oxford OX1 3TF, U.K.
| | - Iain McCulloch
- Department
of Chemistry, University of Oxford, Oxford OX1 3TF, U.K.
| | - David Mecerreyes
- POLYMAT,
University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San
Sebastian, Guipuzcoa 20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Sahika Inal
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|