1
|
Hu P, Su L, Wang Y, Chen Y, Tian X, Qian Y. Targeting Liver Fibrosis with Nanoparticle Technology: The Dual-Drug Strategy for Hepatic Stellate Cell Activation Inhibition. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25071-25082. [PMID: 40238180 DOI: 10.1021/acsami.5c02796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Hepatic stellate cells (HSCs) are pivotal in the pathogenesis and progression of liver fibrosis. Their activation is characterized by increased expression of integrin receptor αvβ3 and elevated intracellular oxidative stress, leading to extracellular matrix deposition. To address these challenges, we developed a nanotechnology-driven drug delivery system for the targeted transport of curcumin (CUR) and dihydromyricetin (DHM), two potential antifibrotic drugs with anti-inflammatory and antioxidant properties, into activated HSCs. Our results demonstrated that intravenously administered cyclo-RGD peptide (cRGDfk)-modified drug-loaded nanoparticles (NPs) effectively targeted fibrotic liver tissues, particularly activated HSCs. These drug-loaded NPs inhibited HSC activation and migration, induced apoptosis in activated HSCs, and downregulated α-SMA expression. In a carbon tetrachloride (CCl4)-induced liver fibrosis model, the NPs exhibited significant antifibrotic effects and reduced the number of Ly6Chi monocyte-derived macrophages in the liver. These findings suggest that cRGDfk-modified NPs carrying CUR and DHM have potential clinical applications in liver fibrosis therapy.
Collapse
Affiliation(s)
- Panyi Hu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, Anhui, People's Republic of China
| | - Liping Su
- State Key Laboratory of Biotherapy, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, Sichuan Province, People's Republic of China
| | - Yongchao Wang
- State Key Laboratory of Biotherapy, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, Sichuan Province, People's Republic of China
| | - Yongqiang Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, Anhui, People's Republic of China
| | - Xiaohe Tian
- State Key Laboratory of Biotherapy, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, Sichuan Province, People's Republic of China
| | - Yeben Qian
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, Anhui, People's Republic of China
| |
Collapse
|
2
|
Xu Y, Fan Y, Zhao Z, Hu W, Qian Y, Hu Y. Circularized Supramolecular Spherical Nucleic Acids Alleviates Liver Fibrosis through Blocking Upstream Activation and Reversing Activation State of Hepatic Stellate Cells. ACS NANO 2025; 19:15444-15456. [PMID: 40228167 DOI: 10.1021/acsnano.4c15562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Inhibition of hepatic stellate cell (HSC) activation and reversal of its activation state represent two distinct yet complementary strategies in antifibrotic therapy. While synergy of those two strategies is anticipated to improve the therapeutic outcomes, synergism through nanomedicine remains elusive. Herein, we report a circular spherical nucleic acid (cSNA) with a supramolecular core comprising collagenase I and ML-290 and a surface attached with circular PDGF-BB aptamer instead of the stereotypical linear counterpart. Unlike conventional inert SNA, this cSNA core dissociates in response to elevated ROS levels in the fibrotic liver so that collagenase I is released to disrupt the collagen barrier to promote the penetration of ensuing nanoparticles. Of significant importance is that the PDGF-BB aptamer after circularization exhibits enhanced nuclease resistance and improved molecular recognition, thereby demonstrating superior capability in blocking HSC activation mediated by PDGF-BB/PDGFR-β signaling. Meanwhile, relaxin family peptide receptor 1 (RXFP1) agonist ML-290 initially transforms pro-fibrogenic macrophages into pro-resolution macrophages by activating RXFP1 signaling, facilitating the secretion of pro-resolution factors for the reversal of the activated state of HSCs. This work thus presents a proof-of-concept demonstration of a supramolecular SNA that undergoes structural and functional refinements, enabling concurrent upstream etiological blockade and downstream pathological restoration in liver fibrosis.
Collapse
Affiliation(s)
- Yao Xu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Yu Fan
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Zinan Zhao
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Wei Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Yuyan Qian
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| |
Collapse
|
3
|
Wang W, Gao X, Niu W, Yin J, He K. Targeting Metabolism: Innovative Therapies for MASLD Unveiled. Int J Mol Sci 2025; 26:4077. [PMID: 40362316 PMCID: PMC12071536 DOI: 10.3390/ijms26094077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/01/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The recent introduction of the term metabolic-dysfunction-associated steatotic liver disease (MASLD) has highlighted the critical role of metabolism in the disease's pathophysiology. This innovative nomenclature signifies a shift from the previous designation of non-alcoholic fatty liver disease (NAFLD), emphasizing the condition's progressive nature. Simultaneously, MASLD has become one of the most prevalent liver diseases worldwide, highlighting the urgent need for research to elucidate its etiology and develop effective treatment strategies. This review examines and delineates the revised definition of MASLD, exploring its epidemiology and the pathological changes occurring at various stages of the disease. Additionally, it identifies metabolically relevant targets within MASLD and provides a summary of the latest metabolically targeted drugs under development, including those in clinical and some preclinical stages. The review finishes with a look ahead to the future of targeted therapy for MASLD, with the goal of summarizing and providing fresh ideas and insights.
Collapse
Affiliation(s)
- Weixin Wang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| | - Xin Gao
- School of Public Health, Jilin University, Changchun 130021, China;
| | - Wentong Niu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| | - Jinping Yin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130041, China;
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| |
Collapse
|
4
|
Wu Y, Hu Y, Chen B, Liang L, Ma X, Tan N, Yao Y, Chen H. Hypoxia-responsive theranostic nanoplatform with intensified chemo-photothermal/photodynamic ternary therapy and fluorescence tracing in colorectal cancer ablation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 66:102816. [PMID: 40174739 DOI: 10.1016/j.nano.2025.102816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/27/2025] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
Photothermal therapy (PTT) is an emerging cancer therapeutic modality displaying the great potential to clinical patients. However, the conventional PTT is suffering from restrictions of heat resistance of tumor cells (e.g. the overexpression of heat shock proteins, HSPs) and adverse effects to normal cells. To break the shackles, herein, a hypoxia-responsive theranostic nanoplatform (GA/BN LIP) was designed for achieving synergistic chemotherapy, photothermal therapy (PTT), and photodynamic therapy (PDT) through overcoming heat-shock response, while enabling fluorescence tracing. The GA/BN LIP consisted of a hypoxia-responsive liposomal material (DSPE-AZO-PEG) as the shell, surface-functionalized with cRGD peptides targeted binding to integrin αVβ3 receptor expressed in tumors. The GA/BN LIP co-delivered gambogic acid (GA) as HSP90 inhibitor and hypoxia-responsive photosensitizer Bcy-NO2. After GA/BN LIP entering tumor cells by integrin αVβ3 receptor-mediated endocytosis, drugs were specifically released in response to hypoxic conditions due to lysis of liposomes. GA not only directly killed tumor cells to realize chemotherapy, but also sensitized tumor cells to PTT by downregulating HSP90 protein expression, meantime Bcy-NO2 targeted mitochondria for combined PTT and PDT. Intriguingly, the reduction of Bcy-NO2 by nitroreductase (NTR) resulted in the restoration of fluorescence, achieving real-time monitoring of the theranostic process in live cells. In conclusion, this theranostic system, designed to target the hypoxic tumor microenvironment, utilized a sensitization mechanism to enhance the synergistic effects of chemo/PTT/PDT therapy, resulting in improved antitumor efficacy in both in vitro and in vivo studies.
Collapse
Affiliation(s)
- Yue Wu
- Jiangning Hospital of Chinese Medicine, China Pharmaceutical University (Nanjing Jiangning Hospital of Chinese Medicine), Nanjing 211198, China
| | - Yuhang Hu
- Jiangning Hospital of Chinese Medicine, China Pharmaceutical University (Nanjing Jiangning Hospital of Chinese Medicine), Nanjing 211198, China
| | - Boya Chen
- Jiangning Hospital of Chinese Medicine, China Pharmaceutical University (Nanjing Jiangning Hospital of Chinese Medicine), Nanjing 211198, China
| | - Luyin Liang
- Jiangning Hospital of Chinese Medicine, China Pharmaceutical University (Nanjing Jiangning Hospital of Chinese Medicine), Nanjing 211198, China
| | - Xiaonan Ma
- Jiangning Hospital of Chinese Medicine, China Pharmaceutical University (Nanjing Jiangning Hospital of Chinese Medicine), Nanjing 211198, China.
| | - Ninghua Tan
- Jiangning Hospital of Chinese Medicine, China Pharmaceutical University (Nanjing Jiangning Hospital of Chinese Medicine), Nanjing 211198, China.
| | - Yongrong Yao
- Jiangning Hospital of Chinese Medicine, China Pharmaceutical University (Nanjing Jiangning Hospital of Chinese Medicine), Nanjing 211198, China.
| | - Huachao Chen
- Jiangning Hospital of Chinese Medicine, China Pharmaceutical University (Nanjing Jiangning Hospital of Chinese Medicine), Nanjing 211198, China.
| |
Collapse
|
5
|
Gao F, Feng X, Li X. Recent advances in polymeric nanoparticles for the treatment of hepatic diseases. Front Pharmacol 2025; 16:1528752. [PMID: 39925843 PMCID: PMC11802823 DOI: 10.3389/fphar.2025.1528752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
The liver performs crucial roles in energy metabolism, detoxification, and immune regulation. Hepatic diseases, including hepatitis, liver fibrosis, and liver cancer, have posed a significant threat to global health, emphasizing the critical need for the development of novel and effective treatment approaches. Nanotechnology, an emerging technology, has been extensively researched in medicine. Among the many types of nanomaterials, polymeric nanoparticles (NPs) are widely used in drug delivery systems. Compared to traditional therapies, they offer significant advantages in the treatment of liver disease by improving outcomes and reducing side effects. This review introduced the development of liver disease and discussed the application of natural polymers and synthetic polymers in their management. Furthermore, this paper reviewed the application of polymeric nanoparticles -mainly chitosan (CS), hyaluronic acid (HA), polyethylene glycol (PEG) and poly (lactic-co-glycolic acid) (PLGA)-in liver disease treatment, focusing on their use in various delivery systems for pure bioactive compounds of natural origin, drugs, nucleic acids, peptides, and others. Finally, the challenges and future perspectives of the NPs were discussed to provide guidance for further research directions, with the aim of promoting the clinical application of nanotherapeutics in treating hepatic diseases.
Collapse
Affiliation(s)
| | | | - Xinyu Li
- Clinical Laboratory of China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
6
|
Cui J, Wang G, Yip LX, Dong M, Mu M, Tian L, Gao Y, Fan Q, Zhu Q, Zhao X, Xu X, Leong DT, Sun X. Enhanced Ferritin‐Manganese Interaction by Nanoplatinum Growth Enabling Liver Fibrosis 3D Magnetic Resonance Visualization and Synergistic Therapy with Real‐Time Monitoring. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202410748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 04/09/2025]
Abstract
AbstractEarly detection and timely intervention are essential to prevent liver fibrosis from progressing to cirrhosis or hepatocellular carcinoma. Herein, utilizing the enhanced ferritin‐manganese interaction by nanoplatinum growth, a novel ferritin‐platinum‐manganese magnetic resonance nanoplatform with RGD grafting and metformin loading (FNMMR) is developed. RGD can enhance the targeting ability of the nanoplatform toward integrin αVβ3 on activated hepatic stellate cells (aHSCs) in liver fibrosis. Systemic delivery of FNMMR shows clear degree‐dependent magnetic resonance contrast enhancement in liver fibrosis. 3D reconstruction techniques and histogram‐based features are achieved to qualitatively and quantitatively analyze the inhomogeneous liver fibrosis areas. FNMMR with catalase‐like activity can catalyze the generation of O2 to alleviate the liver fibrosis hypoxia and inhibit the expression of HIF‐1α, blocking the TGF‐β1/Smad signaling pathway. In addition, metformin shows synergy with HIF‐1α reduction in blocking the TGF‐β1/Smad pathway, effectively inhibiting the activation of HSCs and reducing collagen formation. Furthermore, FNMMR can achieve real‐time anti‐fibrotic therapy monitoring by magnetic resonance imaging. Importantly, no obvious side effects can be observed in both histological and hematology examinations. Therefore, this work presents a novel nanoplatform for accurate liver fibrosis diagnosis and synergistic anti‐fibrotic therapy with real‐time monitoring.
Collapse
Affiliation(s)
- Jin Cui
- Department of Radiology Shandong Provincial Hospital affiliated to Shandong First Medical University China 250021 China
| | - Gongzheng Wang
- Department of Radiology Shandong Provincial Hospital affiliated to Shandong First Medical University China 250021 China
| | - Li Xian Yip
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Mengzhen Dong
- Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan 250117 China
| | - Mengyao Mu
- Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan 250117 China
| | - Liya Tian
- Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan 250117 China
| | - Yuan Gao
- Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan 250117 China
| | - Qing Fan
- Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan 250117 China
| | - Qiang Zhu
- Department of Radiology Shandong Provincial Hospital affiliated to Shandong First Medical University China 250021 China
| | - Xinya Zhao
- Department of Radiology Shandong Provincial Hospital affiliated to Shandong First Medical University China 250021 China
| | - Xueli Xu
- School of Science Shandong Jianzhu University Jinan 250101 China
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Xiao Sun
- Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan 250117 China
| |
Collapse
|
7
|
Yuan Y, Li J, Chen M, Zhao Y, Zhang B, Chen X, Zhao J, Liang H, Chen Q. Nano-encapsulation of drugs to target hepatic stellate cells: Toward precision treatments of liver fibrosis. J Control Release 2024; 376:318-336. [PMID: 39413846 DOI: 10.1016/j.jconrel.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Liver fibrosis is characterized by excessive extracellular matrix (ECM) deposition triggered by hepatic stellate cells (HSCs). As central players in fibrosis progression, HSCs are the most important therapeutic targets for antifibrotic therapy. However, owing to the limitations of systemic drug administration, there is still no suitable and effective clinical treatment. In recent years, nanosystems have demonstrated expansive therapeutic potential and evolved into a clinical modality. In liver fibrosis, nanosystems have undergone a paradigm shift from targeting the whole liver to locally targeted modifying processes. Nanomedicine delivered to HSCs has significant potential in managing liver fibrosis, where optimal management would benefit from targeted delivery, personalized therapy based on the specific site of interest, and minor side effects. In this review, we present a brief overview of the role of HSCs in the pathogenesis of liver fibrosis, summarize the different types of nanocarriers and their specific delivery applications in liver fibrosis, and highlight the biological barriers associated with the use of nanosystems to target HSCs and approaches available to solve this issue. We further discuss in-depth all the molecular target receptors overexpressed during HSC activation in liver fibrosis and their corresponding ligands that have been used for drug or gene delivery targeting HSCs.
Collapse
Affiliation(s)
- Yue Yuan
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jiaxuan Li
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Min Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Ying Zhao
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.
| | - Qian Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.
| |
Collapse
|
8
|
Giarratana AO, Prendergast CM, Salvatore MM, Capaccione KM. TGF-β signaling: critical nexus of fibrogenesis and cancer. J Transl Med 2024; 22:594. [PMID: 38926762 PMCID: PMC11201862 DOI: 10.1186/s12967-024-05411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The transforming growth factor-beta (TGF-β) signaling pathway is a vital regulator of cell proliferation, differentiation, apoptosis, and extracellular matrix production. It functions through canonical SMAD-mediated processes and noncanonical pathways involving MAPK cascades, PI3K/AKT, Rho-like GTPases, and NF-κB signaling. This intricate signaling system is finely tuned by interactions between canonical and noncanonical pathways and plays key roles in both physiologic and pathologic conditions including tissue homeostasis, fibrosis, and cancer progression. TGF-β signaling is known to have paradoxical actions. Under normal physiologic conditions, TGF-β signaling promotes cell quiescence and apoptosis, acting as a tumor suppressor. In contrast, in pathological states such as inflammation and cancer, it triggers processes that facilitate cancer progression and tissue remodeling, thus promoting tumor development and fibrosis. Here, we detail the role that TGF-β plays in cancer and fibrosis and highlight the potential for future theranostics targeting this pathway.
Collapse
Affiliation(s)
- Anna O Giarratana
- Northwell Health - Peconic Bay Medical Center, 1 Heroes Way, Riverhead, NY, 11901, USA.
| | | | - Mary M Salvatore
- Department of Radiology, Columbia University, New York, NY, 11032, USA
| | | |
Collapse
|
9
|
Lan Y, Qiu X, Xu Y. Expression, Purification and Characterization of Recombinant Disintegrin from Gloydius Brevicaudus Venom in Escherichia Coli. Protein J 2024; 43:603-612. [PMID: 38734856 DOI: 10.1007/s10930-024-10198-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 05/13/2024]
Abstract
Disintegrins, a family of snake venom protein, which are capable of modulating the activity of integrins that play a fundamental role in the regulation of many physiological and pathological processes. The main purpose of this study is to obtain the recombinant disintegrin (r-DI) and evaluate its biological activity. In this study, we explored a high-level expression prokaryotic system and purification strategy for r-DI. Then, r-DI was treated to assay effects on cell growth, migration, and invasion. The affinity for the interactions of r-DI with integrin was determined using Surface plasmon resonance (SPR) analyses. The r-DI can be expressed in Escherichia coli and purified by one-step chromatography. The r-DI can inhibit B16F10 cells proliferation, migration, and invasion. Also, we found that r-DI could interact with the integrin αIIbβ3 (GPIIb/IIIa). The r-DI can be expressed, purified, characterized through functional assays, and can also maintain strong biological activities. Thus, this study showed potential therapeutic effects of r-DI for further functional and structural studies.
Collapse
Affiliation(s)
- Yinxiang Lan
- Department of Pharmacy, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, FuJian Medical University, Fuzhou, Fujian, China
| | - Xiuliang Qiu
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yunlu Xu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China.
- Center of Translational Hematology of Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|