1
|
Rosson E, Lux F, David L, Godfrin Y, Tillement O, Thomas E. Focus on therapeutic peptides and their delivery. Int J Pharm 2025; 675:125555. [PMID: 40194730 DOI: 10.1016/j.ijpharm.2025.125555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
Peptides are bioactive intermediates between small organic molecules and large biological compounds like antibodies or proteins. These compounds play a unique and valuable role as therapeutic agents, owing to their unique biochemical properties and versatility in treating a wide range of diseases such as metabolic disorders, cancer therapy, antimicrobial and anti-inflammatory agents. The global peptide therapeutics market is projected to exceed USD 50 billion by 2024, reflecting the increasing demand and interest in this field. Therapeutic peptides offer an optimal balance of specificity, safety, and molecular size, providing greater precision in targeting specific receptors with fewer off-target effects and reduced toxicity compared to small-organic drugs. Peptides also exhibit enhanced tissue penetration and present simpler, cheaper manufacturing processes with lower immunogenicity. To date, around 100 peptides have attained clinical approval in major markets, with nearly half of these approvals occurring in the past 20 years. This trend highlights the growing importance and therapeutic potential of peptides in modern medicine, explaining the substantial market associated with these treatments. The review presents a detailed comparison of the major parenteral administration modes for therapeutic peptides, specifically subcutaneous and intravenous routes. We highlight how these methods impact the pharmacokinetic profiles of peptides and influence patient outcomes, providing critical insights into the advantages and limitations of each route. Finally, a significant aspect of this review is its focus on innovative drug delivery systems and formulations designed to address the challenges of peptide delivery, namely stability, bioavailability, and therapeutic efficacy.
Collapse
Affiliation(s)
- E Rosson
- Axoltis Pharma, 60 Avenue Rockfeller 69008 Lyon, France; Universite Claude Bernard Lyon 1, CNRS UMR5306, ILM, 2 rue Victor Grignard, 69100 Villeurbanne, France; Universite Claude Bernard Lyon 1, CNRS UMR5007, LAGEPP, 43 boulevard du 11 novembre 1918, Bâtiment CPE 69622 Villeurbanne Cedex, France
| | - F Lux
- Universite Claude Bernard Lyon 1, CNRS UMR5306, ILM, 2 rue Victor Grignard, 69100 Villeurbanne, France.
| | - L David
- Universite Claude Bernard Lyon 1, CNRS, INSA de Lyon, Universite Jean Monnet Saint-Etienne UMR 5223, IMP, 15 boulevard André Latarjet 69100 Villeurbanne, France
| | - Y Godfrin
- Axoltis Pharma, 60 Avenue Rockfeller 69008 Lyon, France
| | - O Tillement
- Universite Claude Bernard Lyon 1, CNRS UMR5306, ILM, 2 rue Victor Grignard, 69100 Villeurbanne, France
| | - E Thomas
- Universite Claude Bernard Lyon 1, CNRS UMR5007, LAGEPP, 43 boulevard du 11 novembre 1918, Bâtiment CPE 69622 Villeurbanne Cedex, France.
| |
Collapse
|
2
|
Wan R, Luo Z, Nie X, Feng X, He Y, Li F, Liu S, Chen W, Qi B, Qin H, Luo W, Zhang H, Jiang H, Sun J, Liu X, Wang Q, Shang X, Qiu J, Chen S. A Mesoporous Silica-Loaded Multi-Functional Hydrogel Enhanced Tendon Healing via Immunomodulatory and Pro-Regenerative Effects. Adv Healthc Mater 2024; 13:e2400968. [PMID: 38591103 DOI: 10.1002/adhm.202400968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Indexed: 04/10/2024]
Abstract
Tendon injuries are pervasive orthopedic injuries encountered by the general population. Nonetheless, recovery after severe injuries, such as Achilles tendon injury, is limited. Consequently, there is a pressing need to devise interventions, including biomaterials, that foster tendon healing. Regrettably, tissue engineering treatments have faced obstacles in crafting appropriate tissue scaffolds and efficacious nanomedical approaches. To surmount these hurdles, an innovative injectable hydrogel (CP@SiO2), comprising puerarin and chitosan through in situ self-assembly, is pioneered while concurrently delivering mesoporous silica nanoparticles for tendon healing. In this research, CP@SiO2 hydrogel is employed for the treatment of Achilles tendon injuries, conducting extensive in vivo and in vitro experiments to evaluate its efficacy. This reults demonstrates that CP@SiO2 hydrogel enhances the proliferation and differentiation of tendon-derived stem cells, and mitigates inflammation through the modulation of macrophage polarization. Furthermore, using histological and behavioral analyses, it is found that CP@SiO2 hydrogel can improve the histological and biomechanical properties of injured tendons. This findings indicate that this multifaceted injectable CP@SiO2 hydrogel constitutes a suitable bioactive material for tendon repair and presents a promising new strategy for the clinical management of tendon injuries.
Collapse
Affiliation(s)
- Renwen Wan
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiaoshuang Nie
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinting Feng
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yanwei He
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Fangqi Li
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shan Liu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wenbo Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Beijie Qi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No.2800 GongWei road, Shanghai, 200100, China
| | - Haocheng Qin
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, Shanghai, 200040, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hanli Zhang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hongyi Jiang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Wang
- Department of Orthopaedics, Kunshan Hospital of Traditional Chinese Medicine, No. 388 Zu Chong Zhi Road, Kunshan, Jiangsu, 215300, China
| | - Xiliang Shang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jiajun Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
3
|
Yu C, Qiu Y, Yao F, Wang C, Li J. Chemically Programmed Hydrogels for Spatiotemporal Modulation of the Cardiac Pathological Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404264. [PMID: 38830198 DOI: 10.1002/adma.202404264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/20/2024] [Indexed: 06/05/2024]
Abstract
After myocardial infarction (MI), sustained ischemic events induce pathological microenvironments characterized by ischemia-hypoxia, oxidative stress, inflammatory responses, matrix remodeling, and fibrous scarring. Conventional clinical therapies lack spatially targeted and temporally responsive modulation of the infarct microenvironment, leading to limited myocardial repair. Engineered hydrogels have a chemically programmed toolbox for minimally invasive localization of the pathological microenvironment and personalized responsive modulation over different pathological periods. Chemically programmed strategies for crosslinking interactions, interfacial binding, and topological microstructures in hydrogels enable minimally invasive implantation and in situ integration tailored to the myocardium. This enhances substance exchange and signal interactions within the infarcted microenvironment. Programmed responsive polymer networks, intelligent micro/nanoplatforms, and biological therapeutic cues contribute to the formation of microenvironment-modulated hydrogels with precise targeting, spatiotemporal control, and on-demand feedback. Therefore, this review summarizes the features of the MI microenvironment and chemically programmed schemes for hydrogels to conform, integrate, and modulate the cardiac pathological microenvironment. Chemically programmed strategies for oxygen-generating, antioxidant, anti-inflammatory, provascular, and electrointegrated hydrogels to stimulate iterative and translational cardiac tissue engineering are discussed.
Collapse
Affiliation(s)
- Chaojie Yu
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Yuwei Qiu
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Changyong Wang
- Tissue Engineering Research Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
4
|
Zhao LY, Wang XY, Wen ML, Pan NN, Yin XQ, An MW, Wang L, Liu Y, Song JB. Advances in injectable hydrogels for radiation-induced heart disease. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1031-1063. [PMID: 38340315 DOI: 10.1080/09205063.2024.2314364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
Radiological heart damage (RIHD) is damage caused by unavoidable irradiation of the heart during chest radiotherapy, with a long latency period and a progressively increasing proportion of delayed cardiac damage due to conventional doses of chest radiotherapy. There is a risk of inducing diseases such as acute/chronic pericarditis, myocarditis, delayed myocardial fibrosis and damage to the cardiac conduction system in humans, which can lead to myocardial infarction or even death in severe cases. This paper details the pathogenesis of RIHD and gives potential targets for treatment at the molecular and cellular level, avoiding the drawbacks of high invasiveness and immune rejection due to drug therapy, medical device implantation and heart transplantation. Injectable hydrogel therapy has emerged as a minimally invasive tissue engineering therapy to provide necessary mechanical support to the infarcted myocardium and to act as a carrier for various bioactive factors and cells to improve the cellular microenvironment in the infarcted area and induce myocardial tissue regeneration. Therefore, this paper combines bioactive factors and cellular therapeutic mechanisms with injectable hydrogels, presents recent advances in the treatment of cardiac injury after RIHD with different injectable gels, and summarizes the therapeutic potential of various types of injectable hydrogels as a potential solution.
Collapse
Affiliation(s)
- Lu-Yao Zhao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Xin-Yue Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Mei-Ling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Ning-Ning Pan
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Xing-Qi Yin
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Mei-Wen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian-Bo Song
- Shanghai NewMed Medical Corporation, Shanghai, China
| |
Collapse
|
5
|
Azadi S, Yazdanpanah MA, Afshari A, Alahdad N, Chegeni S, Angaji A, Rezayat SM, Tavakol S. Bioinspired synthetic peptide-based biomaterials regenerate bone through biomimicking of extracellular matrix. J Tissue Eng 2024; 15:20417314241303818. [PMID: 39670180 PMCID: PMC11635874 DOI: 10.1177/20417314241303818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
There have been remarkable advancements in regenerative medicine for bone regeneration, tackling the worldwide health concern of tissue loss. Tissue engineering uses the body's natural capabilities and applies biomaterials and bioactive molecules to replace damaged or lost tissues and restore their functionality. While synthetic ceramics have overcome some challenges associated with allografts and xenografts, they still need essential growth factors and biomolecules. Combining ceramics and bioactive molecules, such as peptides derived from biological motifs of vital proteins, is the most effective approach to achieve optimal bone regeneration. These bioactive peptides induce various cellular processes and modify scaffold properties by mimicking the function of natural osteogenic, angiogenic and antibacterial biomolecules. The present review aims to consolidate the latest and most pertinent information on the advancements in bioactive peptides, including angiogenic, osteogenic, antimicrobial, and self-assembling peptide nanofibers for bone tissue regeneration, elucidating their biological effects and potential clinical implications.
Collapse
Affiliation(s)
- Sareh Azadi
- Department of Medical Biotechnology, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Yazdanpanah
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Ali Afshari
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Niloofar Alahdad
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Solmaz Chegeni
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abdolhamid Angaji
- Department of Medical Biotechnology, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Medical Nanotechnology, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Research and Development, Tavakol Biomimetic Technologies Company, Tehran, Iran
| |
Collapse
|
6
|
Ranjan P, Colin K, Dutta RK, Verma SK. Challenges and future scope of exosomes in the treatment of cardiovascular diseases. J Physiol 2023; 601:4873-4893. [PMID: 36398654 PMCID: PMC10192497 DOI: 10.1113/jp282053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/21/2022] [Indexed: 07/28/2023] Open
Abstract
Exosomes are nanosized vesicles that carry biologically diverse molecules for intercellular communication. Researchers have been trying to engineer exosomes for therapeutic purposes by using different approaches to deliver biologically active molecules to the various target cells efficiently. Recent technological advances may allow the biodistribution and pharmacokinetics of exosomes to be modified to meet scientific needs with respect to specific diseases. However, it is essential to determine an exosome's optimal dosage and potential side effects before its clinical use. Significant breakthroughs have been made in recent decades concerning exosome labelling and imaging techniques. These tools provide in situ monitoring of exosome biodistribution and pharmacokinetics and pinpoint targetability. However, because exosomes are nanometres in size and vary significantly in contents, a deeper understanding is required to ensure accurate monitoring before they can be applied in clinical settings. Different research groups have established different approaches to elucidate the roles of exosomes and visualize their spatial properties. This review covers current and emerging strategies for in vivo and in vitro exosome imaging and tracking for potential studies.
Collapse
Affiliation(s)
- Prabhat Ranjan
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
| | - Karen Colin
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
- UAB School of Health Professions, The University of Alabama at Birmingham, Birmingham, AL
| | - Roshan Kumar Dutta
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
| | - Suresh Kumar Verma
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
7
|
Bernava G, Iop L. Advances in the design, generation, and application of tissue-engineered myocardial equivalents. Front Bioeng Biotechnol 2023; 11:1247572. [PMID: 37811368 PMCID: PMC10559975 DOI: 10.3389/fbioe.2023.1247572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Due to the limited regenerative ability of cardiomyocytes, the disabling irreversible condition of myocardial failure can only be treated with conservative and temporary therapeutic approaches, not able to repair the damage directly, or with organ transplantation. Among the regenerative strategies, intramyocardial cell injection or intravascular cell infusion should attenuate damage to the myocardium and reduce the risk of heart failure. However, these cell delivery-based therapies suffer from significant drawbacks and have a low success rate. Indeed, cardiac tissue engineering efforts are directed to repair, replace, and regenerate native myocardial tissue function. In a regenerative strategy, biomaterials and biomimetic stimuli play a key role in promoting cell adhesion, proliferation, differentiation, and neo-tissue formation. Thus, appropriate biochemical and biophysical cues should be combined with scaffolds emulating extracellular matrix in order to support cell growth and prompt favorable cardiac microenvironment and tissue regeneration. In this review, we provide an overview of recent developments that occurred in the biomimetic design and fabrication of cardiac scaffolds and patches. Furthermore, we sift in vitro and in situ strategies in several preclinical and clinical applications. Finally, we evaluate the possible use of bioengineered cardiac tissue equivalents as in vitro models for disease studies and drug tests.
Collapse
Affiliation(s)
| | - Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, Padua Medical School, University of Padua, Padua, Italy
| |
Collapse
|
8
|
Ma B, Zhang J, Mi Y, Miao Q, Tan W, Guo Z. Preparation of imidazole acids grafted chitosan with enhanced antioxidant, antibacterial and antitumor activities. Carbohydr Polym 2023; 315:120978. [PMID: 37230617 DOI: 10.1016/j.carbpol.2023.120978] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/27/2023]
Abstract
Herein, imidazole acids grafted chitosan derivatives were synthesized, including HACC, HACC derivatives, TMC, TMC derivatives, amidated chitosan and amidated chitosan bearing imidazolium salts. The prepared chitosan derivatives were characterized by FT-IR and 1H NMR. The tests evaluated the biological antioxidant, antibacterial, and cytotoxic activities of chitosan derivatives. The antioxidant capacity (DPPH radical, superoxide anion radical and hydroxyl radical) of chitosan derivatives was 2.4-8.3 times higher than that of chitosan. The antibacterial capacity against E. coli and S. aureus of cationic derivatives (HACC derivatives, TMC derivatives, and amidated chitosan bearing imidazolium salts) was more active than only imidazole-chitosan (amidated chitosan). In particular, the inhibition effect of HACC derivatives on E. coli was 15.625 μg/mL. Moreover, the series of chitosan derivatives bearing imidazole acids showed certain activity against MCF-7 and A549 cells. The present results suggest that the chitosan derivatives in this paper seem to be promising carrier materials for use in drug delivery systems.
Collapse
Affiliation(s)
- Bing Ma
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Qin Miao
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
9
|
Feng J, Xing M, Qian W, Qiu J, Liu X. An injectable hydrogel combining medicine and matrix with anti-inflammatory and pro-angiogenic properties for potential treatment of myocardial infarction. Regen Biomater 2023; 10:rbad036. [PMID: 37153848 PMCID: PMC10159687 DOI: 10.1093/rb/rbad036] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/20/2023] [Accepted: 04/07/2023] [Indexed: 05/10/2023] Open
Abstract
One of the main illnesses that put people's health in jeopardy is myocardial infarction (MI). After MI, damaged or dead cells set off an initial inflammatory response that thins the ventricle wall and degrades the extracellular matrix. At the same time, the ischemia and hypoxic conditions resulting from MI lead to significant capillary obstruction and rupture, impairing cardiac function and reducing blood flow to the heart. Therefore, attenuating the initial inflammatory response and promoting angiogenesis are very important for the treatment of MI. Here, to reduce inflammation and promote angiogenesis in infarcted area, we report a new kind of injectable hydrogel composed of puerarin and chitosan via in situ self-assembly with simultaneous delivery of mesoporous silica nanoparticles (CHP@Si) for myocardial repair. On the one hand, puerarin degraded from CHP@Si hydrogel modulated the inflammatory response via inhibiting M1-type polarization of macrophages and expression of pro-inflammatory factors. On the other hand, silica ions and puerarin released from CHP@Si hydrogel showed synergistic activity to improve the cell viability, migration and angiogenic gene expression of HUVECs in both conventional and oxygen/glucose-deprived environments. It suggests that this multifunctional injectable CHP@Si hydrogel with good biocompatibility may be an appropriate candidate as a bioactive material for myocardial repair post-MI.
Collapse
Affiliation(s)
- Jiayin Feng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Xing
- Shanghai Xuhui District Dental Center, Shanghai 200032, China
| | - Wenhao Qian
- Shanghai Xuhui District Dental Center, Shanghai 200032, China
| | - Jiajun Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
10
|
Kazemi Asl S, Rahimzadegan M, Ostadrahimi R. The recent advancement in the chitosan hybrid-based scaffolds for cardiac regeneration after myocardial infarction. Carbohydr Polym 2023; 300:120266. [DOI: 10.1016/j.carbpol.2022.120266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/08/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
11
|
Doescher C, Thai A, Cha E, Cheng PV, Agrawal DK, Thankam FG. Intelligent Hydrogels in Myocardial Regeneration and Engineering. Gels 2022; 8:576. [PMID: 36135287 PMCID: PMC9498403 DOI: 10.3390/gels8090576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Myocardial infarction (MI) causes impaired cardiac function due to the loss of cardiomyocytes following an ischemic attack. Intelligent hydrogels offer promising solutions for post-MI cardiac tissue therapy to aid in structural support, contractility, and targeted drug therapy. Hydrogels are porous hydrophilic matrices used for biological scaffolding, and upon the careful alteration of ideal functional groups, the hydrogels respond to the chemistry of the surrounding microenvironment, resulting in intelligent hydrogels. This review delves into the perspectives of various intelligent hydrogels and evidence from successful models of hydrogel-assisted treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | - Devendra K. Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Finosh G. Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
12
|
Vijayan V, Lakra R, Korrapati PS, Kiran MS. Lanthanum oxide nanoparticle-collagen bio matrix induced endothelial cell activation for sustained angiogenic response for biomaterial integration. Colloids Surf B Biointerfaces 2022; 216:112589. [PMID: 35660195 DOI: 10.1016/j.colsurfb.2022.112589] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/20/2022] [Accepted: 05/19/2022] [Indexed: 01/08/2023]
Abstract
Rare earth lanthanum oxide nanoparticle reinforced collagen biomatrix that elicited the endothelial cell activation to promote angiogenesis for biomaterial integration was developed and evaluated in the present study. The structural integrity of collagen was not compromised on crosslinking of lanthanum oxide nanoparticle to collagen biomolecule. As-synthesised collagen biomatrix was shown to have improved mechanical strength, a lesser susceptibility to proteolytic degradation and good swelling properties. Superior cytocompatibility, hemocompatibility and minimal ROS generation was observed with Lanthanum oxide nanoparticle reinforced collagen bio matrix. The Lanthanum oxide nanoparticle reinforced collagen bio matrix elicited endothelial cell activation eliciting pro-angiogensis as observed in tube formation and aortic arch assays. The bio-matrix promoted the infiltration and proliferation of endothelial cells which is an unexplored domain in the area of tissue engineering that is very essential for biomaterial integration into host tissue. The wound healing effect of Lanthanum oxide nanoparticle stabilized collagen showed enhanced cell migration in vitro in cells maintained in Lanthanum oxide nanoparticle reinforced collagen bio matrix. The study paves the way for developing rare earth-based dressing materials which promoted biomatrix integration by enhancing vascularisation for tissue regenerative applications in comparison with traditional biomaterials.
Collapse
Affiliation(s)
- Vinu Vijayan
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai, Tamil Nadu 600020, India; University of Madras, Chennai, Tamil Nadu 600005, India
| | - Rachita Lakra
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai, Tamil Nadu 600020, India
| | - Purna Sai Korrapati
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research, Central Leather Research Institute, Chennai, Tamil Nadu 600020, India
| | - Manikantan Syamala Kiran
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai, Tamil Nadu 600020, India; University of Madras, Chennai, Tamil Nadu 600005, India; Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research, Central Leather Research Institute, Chennai, Tamil Nadu 600020, India.
| |
Collapse
|
13
|
Hu W, Yang C, Guo X, Wu Y, Loh XJ, Li Z, Wu YL, Wu C. Research Advances of Injectable Functional Hydrogel Materials in the Treatment of Myocardial Infarction. Gels 2022; 8:423. [PMID: 35877508 PMCID: PMC9316750 DOI: 10.3390/gels8070423] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 12/10/2022] Open
Abstract
Myocardial infarction (MI) has become one of the serious diseases threatening human life and health. However, traditional treatment methods for MI have some limitations, such as irreversible myocardial necrosis and cardiac dysfunction. Fortunately, recent endeavors have shown that hydrogel materials can effectively prevent negative remodeling of the heart and improve the heart function and long-term prognosis of patients with MI due to their good biocompatibility, mechanical properties, and electrical conductivity. Therefore, this review aims to summarize the research progress of injectable hydrogel in the treatment of MI in recent years and to introduce the rational design of injectable hydrogels in myocardial repair. Finally, the potential challenges and perspectives of injectable hydrogel in this field will be discussed, in order to provide theoretical guidance for the development of new and effective treatment strategies for MI.
Collapse
Affiliation(s)
- Wei Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Cui Yang
- School of Medicine, Xiamen University, Xiamen 361003, China;
| | - Xiaodan Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Yihong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore;
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore;
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE) Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| |
Collapse
|
14
|
A chitosan-vitamin C based injectable hydrogel improves cell survival under oxidative stress. Int J Biol Macromol 2022; 202:102-111. [PMID: 35038464 DOI: 10.1016/j.ijbiomac.2022.01.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022]
Abstract
Stem cell transplantation technology provides the cell reconstruction of damaged heart a completely new therapy approach. Due to the inappropriate microenvironment such as reactive oxygen radicals caused by ischemic infarct, the survival and retention rates of cell transplantation are not desirable. A thermo sensitive chitosan-vitamin C (CSVC) hydrogel scaffold was developed to reduce oxidative stress injury after myocardial infarction, thereby increasing the cell survival rate of cell transplantation. Vitamin C was conjugated on the chitosan chain by electrostatic adsorption. Compared to chitosan, CSVC complex had a higher solubility and stronger antioxidant property. CSVC hydrogel has suitable gelation time and injectable properties. Scanning electron microscopy showed that chitosan hydrogels had three-dimensional porous structure with irregular pores interconnected throughout the construct. Live/dead and H&E staining results showed that CSVC hydrogel can support the survival and adhesion of cardiomyocytes. Compared with chitosan hydrogel, CSVC hydrogel can clearly improve the survival of cardiomyocytes and reduce the ROS level under H2O2-induced oxidative stress conditions. These results suggest that CSVC hydrogel has the potential to support the survival of cardiomyocytes in tissue engineering.
Collapse
|
15
|
Chitosan as Functional Biomaterial for Designing Delivery Systems in Cardiac Therapies. Gels 2021; 7:gels7040253. [PMID: 34940314 PMCID: PMC8702013 DOI: 10.3390/gels7040253] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are a leading cause of mortality across the globe, and transplant surgeries are not always successful since it is not always possible to replace most of the damaged heart tissues, for example in myocardial infarction. Chitosan, a natural polysaccharide, is an important biomaterial for many biomedical and pharmaceutical industries. Based on the origin, degree of deacetylation, structure, and biological functions, chitosan has emerged for vital tissue engineering applications. Recent studies reported that chitosan coupled with innovative technologies helped to load or deliver drugs or stem cells to repair the damaged heart tissue not just in a myocardial infarction but even in other cardiac therapies. Herein, we outlined the latest advances in cardiac tissue engineering mediated by chitosan overcoming the barriers in cardiac diseases. We reviewed in vitro and in vivo data reported dealing with drug delivery systems, scaffolds, or carriers fabricated using chitosan for stem cell therapy essential in cardiac tissue engineering. This comprehensive review also summarizes the properties of chitosan as a biomaterial substrate having sufficient mechanical stability that can stimulate the native collagen fibril structure for differentiating pluripotent stem cells and mesenchymal stem cells into cardiomyocytes for cardiac tissue engineering.
Collapse
|
16
|
Wang J, Liu J, Yang Z. Recent advances in peptide-based nanomaterials for targeting hypoxia. NANOSCALE ADVANCES 2021; 3:6027-6039. [PMID: 36133944 PMCID: PMC9418673 DOI: 10.1039/d1na00637a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 06/16/2023]
Abstract
Hypoxia is a prominent feature of many severe diseases such as malignant tumors, ischemic strokes, and rheumatoid arthritis. The lack of oxygen has a paramount impact on angiogenesis, invasion, metastasis, and chemotherapy resistance. The potential of hypoxia as a therapeutic target has been increasingly recognized over the last decade. In order to treat these disease states, peptides have been extensively investigated due to their advantages in safety, target specificity, and tumor penetrability. Peptides can overcome difficulties such as low drug/energy delivery efficiency, hypoxia-induced drug resistance, and tumor nonspecificity. There are three main strategies for targeting hypoxia through peptide-based nanomaterials: (i) using peptide ligands to target cellular environments unique to hypoxic conditions, such as cell surface receptors that are upregulated in cells under hypoxic conditions, (ii) utilizing peptide linkers sensitive to the hypoxic microenvironment that can be cleaved to release therapeutic or diagnostic payloads, and (iii) a combination of the above where targeting peptides will localize the system to a hypoxic environment for it to be selectively cleaved to release its payload, forming a dual-targeting system. This review focuses on recent developments in the design and construction of novel peptide-based hypoxia-targeting nanomaterials, followed by their mechanisms and potential applications in diagnosis and treatment of hypoxic diseases. In addition, we address challenges and prospects of how peptide-based hypoxia-targeting nanomaterials can achieve a wider range of clinical applications.
Collapse
Affiliation(s)
- Jun Wang
- School of Pharmacy, Jining Medical University Rizhao 276800 China
| | - Jing Liu
- School of Pharmacy, Jining Medical University Rizhao 276800 China
| | - Zhongxing Yang
- School of Pharmacy, Jining Medical University Rizhao 276800 China
| |
Collapse
|
17
|
Hemalatha T, Aarthy M, Pandurangan S, Kamini NR, Ayyadurai N. A deep dive into the darning effects of biomaterials in infarct myocardium: current advances and future perspectives. Heart Fail Rev 2021; 27:1443-1467. [PMID: 34342769 DOI: 10.1007/s10741-021-10144-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 12/21/2022]
Abstract
Myocardial infarction (MI) occurs due to the obstruction of coronary arteries, a major crux that restricts blood flow and thereby oxygen to the distal part of the myocardium, leading to loss of cardiomyocytes and eventually, if left untreated, leads to heart failure. MI, a potent cardiovascular disorder, requires intense therapeutic interventions and thereby presents towering challenges. Despite the concerted efforts, the treatment strategies for MI are still demanding, which has paved the way for the genesis of biomaterial applications. Biomaterials exhibit immense potentials for cardiac repair and regeneration, wherein they act as extracellular matrix replacing scaffolds or as delivery vehicles for stem cells, protein, plasmids, etc. This review concentrates on natural, synthetic, and hybrid biomaterials; their function; and interaction with the body, mechanisms of repair by which they are able to improve cardiac function in a MI milieu. We also provide focus on future perspectives that need attention. The cognizance provided by the research results certainly indicates that biomaterials could revolutionize the treatment paradigms for MI with a positive impact on clinical translation.
Collapse
Affiliation(s)
- Thiagarajan Hemalatha
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Mayilvahanan Aarthy
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Suryalakshmi Pandurangan
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Numbi Ramudu Kamini
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India.
| |
Collapse
|
18
|
Zhang Z, Pan Y, Zhao Y, Ren M, Li Y, Lu G, Wu K, He S. Topotecan-loaded thermosensitive nanocargo for tumor therapy: In vitro and in vivo analyses. Int J Pharm 2021; 606:120871. [PMID: 34246742 DOI: 10.1016/j.ijpharm.2021.120871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 01/09/2023]
Abstract
This study demonstrates the development of topotecan (TCN) loaded thermosensitive nanocargos (TCN-TS-NC) for intramuscular (IM) administration with enhanced antitumor activity. In this regards, TCN loaded temperature dependent solid lipid nanoparticles (SLNs) were prepared with micro-emulsion method, which were then incorporated into temperature sensitive poloxamer solution to develop TCN-TS-NC. The particle size, entrapment efficiency (%EE), zeta potential and transmission electron microscopy (TEM) analysis of the TCN-TS-NC were performed. Moreover, the inject-ability, release pattern, apoptosis, cellular uptake, pharmacokinetics and antitumor studies of the TCN-TS-NC were attained and compared with TCN solution and TCN-Emulgel (poloxamer solution containing TCN). At room temperature, the TCN loaded SLNs were solid and poloxamer solution remains liquid, however, TCN loaded SLNs melted to liquid and Emulgel converted into gel from, at body temperature, resulting controlled release of the incorporated drug. The TCN-TS-NC showed enhanced cellular uptake and better apoptosis. Similarly, it reduces Cmax and sustained its level for a significantly longer time in rats, as compared to the TCN-Emulgel and TCN solution. Moreover, a significantly improved antitumor activity was observed in TCN-TS-NC treated tumor bearing athymic nude mice when compared with the control, TCN solution and TCN-Emulgel applied mice. Thus, the TCN-TS-NC system showed control release of the drug with no initial fast effect. Furthermore, it enhanced the antitumor activity of TCN with comparatively no toxicity. It is therefore concluded that TCN-TS-NC could be a potentially more suitable drug delivery system for the delivery of TCN.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Yan Pan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi, China
| | - Yan Zhao
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Mudan Ren
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Yarui Li
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Guifang Lu
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi, China
| | - Shuixiang He
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China.
| |
Collapse
|
19
|
Li H, Li M, Liu P, Wang K, Fang H, Yin J, Zhu D, Yang Q, Gao J, Ke Q, Yu H, Guo Y, Gao Y, Zhang C. A multifunctional substance P-conjugated chitosan hydrochloride hydrogel accelerates full-thickness wound healing by enhancing synchronized vascularization, extracellular matrix deposition, and nerve regeneration. Biomater Sci 2021; 9:4199-4210. [PMID: 33989376 DOI: 10.1039/d1bm00357g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Due to the native skin limitations and the complexity of reconstructive microsurgery, advanced biomaterials are urgently required to promote wound healing for severe skin defects caused by accidents and disasters. Accumulating evidence has supported that substance P (SP) has a potential effect on skin regeneration. However, SP application is seriously impeded by its poor stability and oxidative reactions occurring during production, transportation, and storage. An SP-conjugated chitosan hydrochloride hydrogel (CSCl-SP) fabricated in this study demonstrated an enhanced capacity to repair full-thickness skin defects. CSCl-SP provided a stable in vitro delivery system for SP. The dissolution of CSCl-SP promoted the proliferation, migration, and tube formation, as well as angiogenesis-related gene and protein expression in human umbilical vein endothelial cells. CSCI-SP also stimulated the proliferation, migration, and production of anabolic growth factor in human fibroblasts. Moreover, CSCl-SP significantly promoted the neurite outgrowth in Neuro-2A cells. In vivo, CSCl-SP dramatically strengthened the vascularization, extracellular matrix deposition and remodeling, and nerve regeneration, thereby promoting efficient recovery of the full-thickness skin defect. Thus, synchronized multifunction of the CSCl-SP hydrogel makes it a promising and smart material for intractable skin defects.
Collapse
Affiliation(s)
- Hao Li
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Mengna Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China.
| | - Pei Liu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Kaiyang Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Haoyu Fang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Junhui Yin
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Daoyu Zhu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Qianhao Yang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Junjie Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China. and Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Qinfei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China.
| | - Hongping Yu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China. and The First Affiliated Hospital of Xiamen University, Xiamen 361005, China
| | - Yaping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China.
| | - Youshui Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Changqing Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
20
|
Rodin M, Li J, Kuckling D. Dually cross-linked single networks: structures and applications. Chem Soc Rev 2021; 50:8147-8177. [PMID: 34059857 DOI: 10.1039/d0cs01585g] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cross-linked polymers have attracted an immense attention over the years, however, there are many flaws of these systems, e.g. softness and brittleness; such materials possess non-adjustable properties and cannot recover from damage and thus are limited in their practical applications. Supramolecular chemistry offers a variety of dynamic interactions that when integrated into polymeric gels endow the systems with reversibility and responsiveness to external stimuli. A combination of different cross-links in a single gel could be the key to tackle these drawbacks, since covalent or chemical cross-linking serve to maintain the permanent shape of the material and to improve overall mechanical performance, whereas non-covalent cross-links impart dynamicity, reversibility, stimuli-responsiveness and often toughness to the material. In the present review we sought to give a comprehensive overview of the progress in design strategies of different types of dually cross-linked single gels made by researchers over the past decade as well as the successful implementations of these advances in many demanding fields where versatile multifunctional materials are required, such as tissue engineering, drug delivery, self-healing and adhesive systems, sensors as well as shape memory materials and actuators.
Collapse
Affiliation(s)
- Maksim Rodin
- Department of Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany.
| | | | | |
Collapse
|
21
|
Therapies to prevent post-infarction remodelling: From repair to regeneration. Biomaterials 2021; 275:120906. [PMID: 34139506 DOI: 10.1016/j.biomaterials.2021.120906] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/02/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
Myocardial infarction is the first cause of worldwide mortality, with an increasing incidence also reported in developing countries. Over the past decades, preclinical research and clinical trials continually tested the efficacy of cellular and acellular-based treatments. However, none of them resulted in a drug or device currently used in combination with either percutaneous coronary intervention or coronary artery bypass graft. Inflammatory, proliferation and remodelling phases follow the ischaemic event in the myocardial tissue. Only recently, single-cell sequencing analyses provided insights into the specific cell populations which determine the final fibrotic deposition in the affected region. In this review, ischaemia, inflammation, fibrosis, angiogenesis, cellular stress and fundamental cellular and molecular components are evaluated as therapeutic targets. Given the emerging evidence of biomaterial-based systems, the increasing use of injectable hydrogels/scaffolds and epicardial patches is reported both as acellular and cellularised/functionalised treatments. Since several variables influence the outcome of any experimented treatment, we return to the pathological basis with an unbiased view towards any specific process or cellular component. Thus, by evaluating the benefits and limitations of the approaches based on these targets, the reader can weigh the rationale of each of the strategies that reached the clinical trials stage. As recent studies focused on the relevance of the extracellular matrix in modulating ischaemic remodelling and enhancing myocardial regeneration, we aim to portray current trends in the field with this review. Finally, approaches towards feasible translational studies that are as yet unexplored are also suggested.
Collapse
|
22
|
Biotherapeutic-loaded injectable hydrogels as a synergistic strategy to support myocardial repair after myocardial infarction. J Control Release 2021; 335:216-236. [PMID: 34022323 DOI: 10.1016/j.jconrel.2021.05.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Myocardial infarction (MI) has been considered as the leading cause of cardiovascular-related deaths worldwide. Although traditional therapeutic agents including various bioactive species such as growth factors, stem cells, and nucleic acids have demonstrated somewhat usefulness for the restoration of cardiac functions, the therapeutic efficiency remains unsatisfactory most likely due to the off-target-associated side effects and low localized retention of the used therapeutic agents in the infarcted myocardium, which constitutes a substantial barrier for the effective treatment of MI. Injectable hydrogels are regarded as a minimally invasive technology that can overcome the clinical and surgical limitations of traditional stenting by a modulated sol-gel transition and localized transport of a variety of encapsulated cargoes, leading to enhanced therapeutic efficiency and improved patient comfort and compliance. However, the design of injectable hydrogels for myocardial repair and the mechanism of action of bioactive substance-loaded hydrogels for MI repair remain unclear. To elucidate these points, we summarized the recent progresses made on the use of injectable hydrogels for encapsulation of various therapeutic substances for MI treatment with an emphasis on the mechanism of action of hydrogel systems for myocardial repair. Specifically, the pathogenesis of MI and the rational design of injectable hydrogels for myocardial repair were presented. Next, the mechanisms of various biotherapeutic substance-loaded injectable hydrogels for myocardial repair was discussed. Finally, the potential challenges and future prospects for the use of injectable hydrogels for MI treatment were proposed for the purpose of drawing theoretical guidance on the development of novel therapeutic strategies for efficient treatment of MI.
Collapse
|
23
|
Santos ARMP, Jang Y, Son I, Kim J, Park Y. Recapitulating Cardiac Structure and Function In Vitro from Simple to Complex Engineering. MICROMACHINES 2021; 12:mi12040386. [PMID: 33916254 PMCID: PMC8067203 DOI: 10.3390/mi12040386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Cardiac tissue engineering aims to generate in vivo-like functional tissue for the study of cardiac development, homeostasis, and regeneration. Since the heart is composed of various types of cells and extracellular matrix with a specific microenvironment, the fabrication of cardiac tissue in vitro requires integrating technologies of cardiac cells, biomaterials, fabrication, and computational modeling to model the complexity of heart tissue. Here, we review the recent progress of engineering techniques from simple to complex for fabricating matured cardiac tissue in vitro. Advancements in cardiomyocytes, extracellular matrix, geometry, and computational modeling will be discussed based on a technology perspective and their use for preparation of functional cardiac tissue. Since the heart is a very complex system at multiscale levels, an understanding of each technique and their interactions would be highly beneficial to the development of a fully functional heart in cardiac tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Jongseong Kim
- Correspondence: (J.K.); (Y.P.); Tel.: +82-10-8858-7260 (J.K.); +82-10-4260-6460 (Y.P.)
| | - Yongdoo Park
- Correspondence: (J.K.); (Y.P.); Tel.: +82-10-8858-7260 (J.K.); +82-10-4260-6460 (Y.P.)
| |
Collapse
|
24
|
Xiong Y, Zhang X, Ma X, Wang W, Yan F, Zhao X, Chu X, Xu W, Sun C. A review of the properties and applications of bioadhesive hydrogels. Polym Chem 2021. [DOI: 10.1039/d1py00282a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to their outstanding properties, bioadhesive hydrogels have been extensively studied by researchers in recent years.
Collapse
Affiliation(s)
- Yingshuo Xiong
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaoran Zhang
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xintao Ma
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Wenqi Wang
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Feiyan Yan
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaohan Zhao
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaoxiao Chu
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Wenlong Xu
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Changmei Sun
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| |
Collapse
|
25
|
Yang X, Wang B, Sha D, Liu Y, Xu J, Shi K, Yu C, Ji X. Injectable and antibacterial ε-poly(l-lysine)-modified poly(vinyl alcohol)/chitosan/AgNPs hydrogels as wound healing dressings. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123155] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Bisht B, Lohani UC, Kumar V, Gururani P, Sinhmar R. Edible hydrocolloids as sustainable substitute for non-biodegradable materials. Crit Rev Food Sci Nutr 2020; 62:693-725. [DOI: 10.1080/10408398.2020.1827219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Bhawna Bisht
- Department of Food Technology, Uttaranchal University, Dehradun, Uttarakhand, India
- Department of Post-Harvest Process and Food Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - U. C. Lohani
- Department of Post-Harvest Process and Food Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Vinod Kumar
- Algal Research and Bioenergy Lab, Department of Chemistry, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Prateek Gururani
- Department of Food Technology, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Rajat Sinhmar
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| |
Collapse
|
27
|
Wang CY, Hsiao CY, Tsai KL, Cheng YH. Injectable thermosensitive chitosan-based hydrogel containing ferulic acid for treating peripheral arterial disease. J Tissue Eng Regen Med 2020; 14:1438-1448. [PMID: 32767844 DOI: 10.1002/term.3109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/16/2020] [Accepted: 07/25/2020] [Indexed: 12/20/2022]
Abstract
Peripheral arterial disease (PAD) affects more than 200 million people worldwide. Recent studies suggest that oxidative stress-related inflammation can lead to the initiation and progression of PAD. Ferulic acid (FA) is a natural phenolic compound and has been proven to have antioxidant and angiogenesis effects. In this study, thermosensitive chitosan-gelatin-based hydrogel was used as a delivery vehicle of FA. The effects of hydrogel encapsulating FA (FA-gel) have been demonstrated in vitro and in vivo. The results revealed that the developed hydrogel with porous structure could provide a sustained release of FA. Post-treatment of FA-gel effectively decreased the oxidative stress-induced damage in human umbilical vein endothelial cells via decreasing endogenous reactive oxygen species production, inflammation-related gene expression and apoptosis level. In the mouse hindlimb ischemia model, the results revealed that FA-gel could improve blood flow, muscle regeneration and decreases inflammation in veins. These results suggested that FA-gel may have a therapeutic potential in PAD.
Collapse
Affiliation(s)
- Chien-Ying Wang
- Emergency Department, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Pharmacy & Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | - Kun-Ling Tsai
- Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Hsin Cheng
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
28
|
Abstract
The spectrum of ischemic heart diseases, encompassing acute myocardial infarction to heart failure, represents the leading cause of death worldwide. Although extensive progress in cardiovascular diagnoses and therapy has been made, the prevalence of the disease continues to increase. Cardiac regeneration has a promising perspective for the therapy of heart failure. Recently, extracellular matrix (ECM) has been shown to play an important role in cardiac regeneration and repair after cardiac injury. There is also evidence that the ECM could be directly used as a drug to promote cardiomyocyte proliferation and cardiac regeneration. Increasing evidence supports that applying ECM biomaterials to maintain heart function recovery is an important approach to apply the concept of cardiac regenerative medicine to clinical practice in the future. Here, we will introduce the essential role of cardiac ECM in cardiac regeneration and summarize the approaches of delivering ECM biomaterials to promote cardiac repair in this review.
Collapse
Affiliation(s)
- Haotong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Minghui Bao
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
29
|
Liao X, Yang X, Deng H, Hao Y, Mao L, Zhang R, Liao W, Yuan M. Injectable Hydrogel-Based Nanocomposites for Cardiovascular Diseases. Front Bioeng Biotechnol 2020; 8:251. [PMID: 32296694 PMCID: PMC7136457 DOI: 10.3389/fbioe.2020.00251] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs), including a series of pathological disorders, severely affect millions of people all over the world. To address this issue, several potential therapies have been developed for treating CVDs, including injectable hydrogels as a minimally invasive method. However, the utilization of injectable hydrogel is a bit restricted recently owing to some limitations, such as transporting the therapeutic agent more accurately to the target site and prolonging their retention locally. This review focuses on the advances in injectable hydrogels for CVD, detailing the types of injectable hydrogels (natural or synthetic), especially that complexed with stem cells, cytokines, nano-chemical particles, exosomes, genetic material including DNA or RNA, etc. Moreover, we summarized the mainly prominent mechanism, based on which injectable hydrogel present excellent treating effect of cardiovascular repair. All in all, it is hopefully that injectable hydrogel-based nanocomposites would be a potential candidate through cardiac repair in CVDs treatment.
Collapse
Affiliation(s)
- Xiaoshan Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xushan Yang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hong Deng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuting Hao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lianzhi Mao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Rongjun Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
30
|
Mastrullo V, Cathery W, Velliou E, Madeddu P, Campagnolo P. Angiogenesis in Tissue Engineering: As Nature Intended? Front Bioeng Biotechnol 2020; 8:188. [PMID: 32266227 PMCID: PMC7099606 DOI: 10.3389/fbioe.2020.00188] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the steady increase in the number of studies focusing on the development of tissue engineered constructs, solutions delivered to the clinic are still limited. Specifically, the lack of mature and functional vasculature greatly limits the size and complexity of vascular scaffold models. If tissue engineering aims to replace large portions of tissue with the intention of repairing significant defects, a more thorough understanding of the mechanisms and players regulating the angiogenic process is required in the field. This review will present the current material and technological advancements addressing the imperfect formation of mature blood vessels within tissue engineered structures.
Collapse
Affiliation(s)
- Valeria Mastrullo
- Section of Cardiovascular Sciences, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| | - William Cathery
- Experimental Cardiovascular Medicine, Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Eirini Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, United Kingdom
| | - Paolo Madeddu
- Experimental Cardiovascular Medicine, Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Paola Campagnolo
- Section of Cardiovascular Sciences, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
31
|
Singhal A, Sinha N, Kumari P, Purkayastha M. Synthesis and Applications of Hydrogels in Cancer Therapy. Anticancer Agents Med Chem 2020; 20:1431-1446. [PMID: 31958041 DOI: 10.2174/1871521409666200120094048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 11/10/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022]
Abstract
Hydrogels are water-insoluble, hydrophilic, cross-linked, three-dimensional networks of polymer chains having the ability to swell and absorb water but do not dissolve in it, that comprise the major difference between gels and hydrogels. The mechanical strength, physical integrity and solubility are offered by the crosslinks. The different applications of hydrogels can be derived based on the methods of their synthesis, response to different stimuli, and their different kinds. Hydrogels are highly biocompatible and have properties similar to human tissues that make it suitable to be used in various biomedical applications, including drug delivery and tissue engineering. The role of hydrogels in cancer therapy is highly emerging in recent years. In the present review, we highlighted different methods of synthesis of hydrogels and their classification based on different parameters. Distinctive applications of hydrogels in the treatment of cancer are also discussed.
Collapse
Affiliation(s)
- Anchal Singhal
- Department of Chemistry, St. Joseph's College (Autonomous), Bangalore-560027, India
| | - Niharika Sinha
- Department of Chemistry, Gautam Buddha University, Noida, India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| | | |
Collapse
|
32
|
Hosoyama K, Lazurko C, Muñoz M, McTiernan CD, Alarcon EI. Peptide-Based Functional Biomaterials for Soft-Tissue Repair. Front Bioeng Biotechnol 2019; 7:205. [PMID: 31508416 PMCID: PMC6716508 DOI: 10.3389/fbioe.2019.00205] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/09/2019] [Indexed: 11/15/2022] Open
Abstract
Synthetically derived peptide-based biomaterials are in many instances capable of mimicking the structure and function of their full-length endogenous counterparts. Combine this with the fact that short mimetic peptides are easier to produce when compared to full length proteins, show enhanced processability and ease of modification, and have the ability to be prepared under well-defined and controlled conditions; it becomes obvious why there has been a recent push to develop regenerative biomaterials from these molecules. There is increasing evidence that the incorporation of peptides within regenerative scaffolds can result in the generation of structural recognition motifs that can enhance cell attachment or induce cell signaling pathways, improving cell infiltration or promote a variety of other modulatory biochemical responses. By highlighting the current approaches in the design and application of short mimetic peptides, we hope to demonstrate their potential in soft-tissue healing while at the same time drawing attention to the advances made to date and the problems which need to be overcome to advance these materials to the clinic for applications in heart, skin, and cornea repair.
Collapse
Affiliation(s)
- Katsuhiro Hosoyama
- Division of Cardiac Surgery Research, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Caitlin Lazurko
- Division of Cardiac Surgery Research, University of Ottawa Heart Institute, Ottawa, ON, Canada.,Biochemistry, Microbiology and Immunology Department, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Marcelo Muñoz
- Division of Cardiac Surgery Research, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Christopher D McTiernan
- Division of Cardiac Surgery Research, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Emilio I Alarcon
- Division of Cardiac Surgery Research, University of Ottawa Heart Institute, Ottawa, ON, Canada.,Biochemistry, Microbiology and Immunology Department, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
33
|
Kuraitis D, Hosoyama K, Blackburn NJR, Deng C, Zhong Z, Suuronen EJ. Functionalization of soft materials for cardiac repair and regeneration. Crit Rev Biotechnol 2019; 39:451-468. [PMID: 30929528 DOI: 10.1080/07388551.2019.1572587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Coronary artery disease is a leading cause of death in developed nations. As the disease progresses, myocardial infarction can occur leaving areas of dead tissue in the heart. To compensate, the body initiates its own repair/regenerative response in an attempt to restore function to the heart. These efforts serve as inspiration to researchers who attempt to capitalize on the natural regenerative processes to further augment repair. Thus far, researchers are exploiting these repair mechanisms in the functionalization of soft materials using a variety of growth factor-, ligand- and peptide-incorporating approaches. The goal of functionalizing soft materials is to best promote and direct the regenerative responses that are needed to restore the heart. This review summarizes the opportunities for the use of functionalized soft materials for cardiac repair and regeneration, and some of the different strategies being developed.
Collapse
Affiliation(s)
- Drew Kuraitis
- a Division of Cardiac Surgery , University of Ottawa Heart Institute , Ottawa , Canada
| | - Katsuhiro Hosoyama
- a Division of Cardiac Surgery , University of Ottawa Heart Institute , Ottawa , Canada
| | - Nick J R Blackburn
- a Division of Cardiac Surgery , University of Ottawa Heart Institute , Ottawa , Canada
| | - Chao Deng
- b Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , People's Republic of China
| | - Zhiyuan Zhong
- b Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , People's Republic of China
| | - Erik J Suuronen
- a Division of Cardiac Surgery , University of Ottawa Heart Institute , Ottawa , Canada
| |
Collapse
|
34
|
α-Tocopherol liposome loaded chitosan hydrogel to suppress oxidative stress injury in cardiomyocytes. Int J Biol Macromol 2019; 125:1192-1202. [DOI: 10.1016/j.ijbiomac.2018.09.092] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/30/2018] [Accepted: 09/15/2018] [Indexed: 11/23/2022]
|
35
|
Mu M, Li X, Tong A, Guo G. Multi-functional chitosan-based smart hydrogels mediated biomedical application. Expert Opin Drug Deliv 2019; 16:239-250. [PMID: 30753086 DOI: 10.1080/17425247.2019.1580691] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Min Mu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, R. P. China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, R. P. China
- Collaborative Innovation Center for Biotherapy, Chengdu, R. P. China
| | - Xiaoling Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, R. P. China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, R. P. China
- Collaborative Innovation Center for Biotherapy, Chengdu, R. P. China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, R. P. China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, R. P. China
- Collaborative Innovation Center for Biotherapy, Chengdu, R. P. China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, R. P. China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, R. P. China
- Collaborative Innovation Center for Biotherapy, Chengdu, R. P. China
| |
Collapse
|
36
|
Zeglinski MR, Moghadam AR, Ande SR, Sheikholeslami K, Mokarram P, Sepehri Z, Rokni H, Mohtaram NK, Poorebrahim M, Masoom A, Toback M, Sareen N, Saravanan S, Jassal DS, Hashemi M, Marzban H, Schaafsma D, Singal P, Wigle JT, Czubryt MP, Akbari M, Dixon IM, Ghavami S, Gordon JW, Dhingra S. Myocardial Cell Signaling During the Transition to Heart Failure. Compr Physiol 2018; 9:75-125. [DOI: 10.1002/cphy.c170053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Pal A, Vernon BL, Nikkhah M. Therapeutic neovascularization promoted by injectable hydrogels. Bioact Mater 2018; 3:389-400. [PMID: 30003178 PMCID: PMC6038261 DOI: 10.1016/j.bioactmat.2018.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/27/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of therapeutic neovascularization is to repair ischemic tissues via formation of new blood vessels by delivery of angiogenic growth factors, stem cells or expansion of pre-existing cells. For efficient neovascularization, controlled release of growth factors is particularly necessary since bolus injection of molecules generally lead to a poor outcome due to inadequate retention within the injured site. In this regard, injectable hydrogels, made of natural, synthetic or hybrid biomaterials, have become a promising solution for efficient delivery of angiogenic factors or stem and progenitor cells for in situ tissue repair, regeneration and neovascularization. This review article will broadly discuss the state-of-the-art in the development of injectable hydrogels from natural and synthetic precursors, and their applications in ischemic tissue repair and wound healing. We will cover a wide range of in vitro and in vivo studies in testing the functionalities of the engineered injectable hydrogels in promoting tissue repair and neovascularization. We will also discuss some of the injectable hydrogels that exhibit self-healing properties by promoting neovascularization without the presence of angiogenic factors.
Collapse
Affiliation(s)
| | - Brent L. Vernon
- School of Biological and Health Systems Engineering, Arizona State University, Arizona 85281, USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Arizona 85281, USA
| |
Collapse
|
38
|
Graham S, Marina PF, Blencowe A. Thermoresponsive polysaccharides and their thermoreversible physical hydrogel networks. Carbohydr Polym 2018; 207:143-159. [PMID: 30599994 DOI: 10.1016/j.carbpol.2018.11.053] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 01/22/2023]
Abstract
Thermoresponsive polymers have been used extensively for various applications including food additives, pharmaceutical formulations, therapeutic delivery, cosmetics and environmental remediation, to mention a few. Many thermoresponsive polymers have the ability to form physical hydrogel networks in response to temperature changes, which are particularly useful for emerging biomedical applications, including cell therapies, drug delivery systems, tissue engineering, wound healing and 3D bioprinting. In particular, the use of polysaccharides with thermoresponsive properties has been of interest due to their wide availability, versatile functionality, biodegradability, and in many cases, inherent biocompatibility. Naturally thermoresponsive polysaccharides include agarose, carrageenans and gellan gum, which exhibit upper critical solution temperatures, transitioning from a solution to a gel state upon cooling. Arguably, this limits their use in biomedical applications, particularly for cell encapsulation as they require raised temperatures to maintain a solution state that may be detrimental to living systems. Conversely, significant progress has been made over recent years to develop synthetically modified polysaccharides, which tend to exhibit lower critical solution temperatures, transitioning from a solution to a gel state upon warming. Of particular interest are thermoresponsive polysaccharides with a lower critical solution temperature in between room temperature and physiological temperature, as their solutions can conveniently be manipulated at room temperature before gelling upon warming to physiological temperature, which makes them ideal candidates for many biological applications. Therefore, this review provides an introduction to the different types of thermoresponsive polysaccharides that have been developed, their resulting hydrogels and properties, and the exciting applications that have emerged as a result of these properties.
Collapse
Affiliation(s)
- Sarah Graham
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Paula Facal Marina
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia; Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Anton Blencowe
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia; Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia.
| |
Collapse
|
39
|
Li X, Su X. Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy. J Mater Chem B 2018; 6:4714-4730. [PMID: 32254299 DOI: 10.1039/c8tb01078a] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In recent years, clinical applications have been proposed for various hydrogel products. Hydrogels can be derived from animal tissues, plant extracts and/or adipose tissue extracellular matrices; each type of hydrogel presents significantly different functional properties and may be used for many different applications, including medical therapies, environmental pollution treatments, and industrial materials. Due to complicated preparation techniques and the complexities associated with the selection of suitable materials, the applications of many host-guest supramolecular polymeric hydrogels are limited. Thus, improvements in the design and construction of smart materials are highly desirable in order to increase the lifetimes of functional materials. Here, we summarize different functional hydrogels and their varied preparation methods and source materials. The multifunctional properties of hydrogels, particularly their unique ability to adapt to certain environmental stimuli, are chiefly based on the incorporation of smart materials. Smart materials may be temperature sensitive, pH sensitive, pH/temperature dual sensitive, photoresponsive or salt responsive and may be used for hydrogel wound repair, hydrogel bone repair, hydrogel drug delivery, cancer therapy, and so on. This review focuses on the recent development of smart hydrogels for tissue engineering applications and describes some of the latest advances in using smart materials to create hydrogels for cancer therapy.
Collapse
Affiliation(s)
- Xian Li
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, 1 Tong Dao Street, Hohhot 010050, Inner Mongolia Autonomous Region, P. R. China.
| | | |
Collapse
|
40
|
Ali A, Ahmed S. Recent Advances in Edible Polymer Based Hydrogels as a Sustainable Alternative to Conventional Polymers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6940-6967. [PMID: 29878765 DOI: 10.1021/acs.jafc.8b01052] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The over increasing demand of eco-friendly materials to counter various problems, such as environmental issues, economics, sustainability, biodegradability, and biocompatibility, open up new fields of research highly focusing on nature-based products. Edible polymer based materials mainly consisting of polysaccharides, proteins, and lipids could be a prospective contender to handle such problems. Hydrogels based on edible polymer offer many valuable properties compared to their synthetic counterparts. Edible polymers can contribute to the reduction of environmental contamination, advance recyclability, provide sustainability, and thereby increase its applicability along with providing environmentally benign products. This review is highly emphasizing on toward the development of hydrogels from edible polymer, their classification, properties, chemical modification, and their potential applications. The application of edible polymer hydrogels covers many areas including the food industry, agricultural applications, drug delivery to tissue engineering in the biomedical field and provide more safe and attractive products in the pharmaceutical, agricultural, and environmental fields, etc.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry , Jamia Millia Islamia , New Delhi , 110025 , India
| | - Shakeel Ahmed
- Department of Chemistry , Government Degree College Mendhar , Jammu , Jammu and Kashmir , 185211 , India
- Higher Education Department , Government of Jammu and Kashmir , Jammu , 180001 , India
| |
Collapse
|
41
|
Zou YJ, He SS, Du JZ. ε-Poly(L-lysine)-based Hydrogels with Fast-acting and Prolonged Antibacterial Activities. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-018-2156-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Peña B, Laughter M, Jett S, Rowland TJ, Taylor MRG, Mestroni L, Park D. Injectable Hydrogels for Cardiac Tissue Engineering. Macromol Biosci 2018; 18:e1800079. [PMID: 29733514 PMCID: PMC6166441 DOI: 10.1002/mabi.201800079] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/27/2018] [Indexed: 12/21/2022]
Abstract
In light of the limited efficacy of current treatments for cardiac regeneration, tissue engineering approaches have been explored for their potential to provide mechanical support to injured cardiac tissues, deliver cardio-protective molecules, and improve cell-based therapeutic techniques. Injectable hydrogels are a particularly appealing system as they hold promise as a minimally invasive therapeutic approach. Moreover, injectable acellular alginate-based hydrogels have been tested clinically in patients with myocardial infarction (MI) and show preservation of the left ventricular (LV) indices and left ventricular ejection fraction (LVEF). This review provides an overview of recent developments that have occurred in the design and engineering of various injectable hydrogel systems for cardiac tissue engineering efforts, including a comparison of natural versus synthetic systems with emphasis on the ideal characteristics for biomimetic cardiac materials.
Collapse
Affiliation(s)
- Brisa Peña
- Cardiovascular Institute, School of Medicine, Division of Cardiology, University of Colorado Denver Anschutz Medical Campus, 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, USA
| | - Melissa Laughter
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, CO, 80045, USA
| | - Susan Jett
- Cardiovascular Institute, School of Medicine, Division of Cardiology, University of Colorado Denver Anschutz Medical Campus, 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, USA
| | - Teisha J Rowland
- Cardiovascular Institute, School of Medicine, Division of Cardiology, University of Colorado Denver Anschutz Medical Campus, 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, USA
| | - Matthew R G Taylor
- Cardiovascular Institute, School of Medicine, Division of Cardiology, University of Colorado Denver Anschutz Medical Campus, 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, USA
| | - Luisa Mestroni
- Cardiovascular Institute, School of Medicine, Division of Cardiology, University of Colorado Denver Anschutz Medical Campus, 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, USA
| | - Daewon Park
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, CO, 80045, USA
| |
Collapse
|
43
|
In Situ Organ-Specific Vascularization in Tissue Engineering. Trends Biotechnol 2018; 36:834-849. [PMID: 29555346 DOI: 10.1016/j.tibtech.2018.02.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
Other than a few avascular tissues, almost all human tissues are connected to the systemic circulation via blood vessels that promote metabolism and function. Accordingly, engineered vascularization is a vital goal in tissue engineering for regenerative medicine. Endothelial cells (ECs) play a central role in vascularization with two significant specificities: physical interfaces between vascular stroma and blood, and phenotypic organ-specificity. Biomaterial scaffolding technologies that address these unique properties of ECs have been developed to promote the vascularization of various engineered tissues, and these have advanced from mimicking vascular architectures ex situ towards promoting spontaneous angiogenic remodeling in situ. Simultaneously, endothelial progenitor cells (EPCs) and organ-specific ECs are attracting more and more attention with the increasing awareness of the diversity of ECs in different organs.
Collapse
|
44
|
Hao T, Li J, Yao F, Dong D, Wang Y, Yang B, Wang C. Injectable Fullerenol/Alginate Hydrogel for Suppression of Oxidative Stress Damage in Brown Adipose-Derived Stem Cells and Cardiac Repair. ACS NANO 2017; 11:5474-5488. [PMID: 28590722 DOI: 10.1021/acsnano.7b00221] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Stem cell implantation strategy has exhibited potential to treat the myocardial infarction (MI), however, the low retention and survival limit their applications due to the reactive oxygen species (ROS) microenvironment after MI. In this study, the fullerenol nanoparticles are introduced into alginate hydrogel to create an injectable cell delivery vehicle with antioxidant activity. Results suggest that the prepared hydrogels exhibit excellent injectable and mechanical strength. In addition, the fullerenol/alginate hydrogel can effectively scavenge the superoxide anion and hydroxyl radicals. Based on these results, the biological behaviors of brown adipose-derived stem cells (BADSCs) seeded in fullerenol/alginate hydrogel were investigated in the presence of H2O2. Results suggest that the fullerenol/alginate hydrogels have no cytotoxicity effects on BADSCs. Moreover, they can suppress the oxidative stress damage of BADSCs and improve their survival capacity under ROS microenvironment via activating the ERK and p38 pathways while inhibiting JNK pathway. Further, the addition of fullerenol can improve the cardiomyogenic differentiation of BADSCs even under ROS microenvironment. To assess its therapeutic effects in vivo, the fullerenol/alginate hydrogel loaded with BADSCs were implanted in the MI area in rats. Results suggest that the fullerenol/alginate hydrogel can effectively decrease ROS level in MI zone, improve the retention and survival of implanted BADSCs, and induce angiogenesis, which in turn promote cardiac functional recovery. Therefore, the fullerenol/alginate hydrogel can act as injectable cell delivery vehicles for cardiac repair.
Collapse
Affiliation(s)
- Tong Hao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , No. 27, Taiping Road, Beijing 100850, China
| | - Junjie Li
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , No. 27, Taiping Road, Beijing 100850, China
| | - Fanglian Yao
- Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
| | - Dianyu Dong
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , No. 27, Taiping Road, Beijing 100850, China
- Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
| | - Yan Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , No. 27, Taiping Road, Beijing 100850, China
| | - Boguang Yang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , No. 27, Taiping Road, Beijing 100850, China
- Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
| | - Changyong Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , No. 27, Taiping Road, Beijing 100850, China
| |
Collapse
|
45
|
Hydrogel based approaches for cardiac tissue engineering. Int J Pharm 2017; 523:454-475. [DOI: 10.1016/j.ijpharm.2016.10.061] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 01/04/2023]
|
46
|
Din FU, Kim DW, Choi JY, Thapa RK, Mustapha O, Kim DS, Oh YK, Ku SK, Youn YS, Oh KT, Yong CS, Kim JO, Choi HG. Irinotecan-loaded double-reversible thermogel with improved antitumor efficacy without initial burst effect and toxicity for intramuscular administration. Acta Biomater 2017; 54:239-248. [PMID: 28285074 DOI: 10.1016/j.actbio.2017.03.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 02/07/2023]
Abstract
Intramuscularly administered, anti-tumour drugs induce severe side effects due to their direct contact with body tissues and initial burst effect. In this study, to solve this problem, a novel double-reversible thermogel system (DRTG) for the intramuscular administration of irinotecan was developed. This irinotecan-loaded DRTG was prepared by dispersing the irinotecan-loaded thermoreversible solid lipid nanoparticles (SLNs) in the thermoreversible hydrogel. In DRTG, the former was solid at 25°C but converted to liquid at 36.5°C; in contrast, the latter existed in a liquid form but transformed to gel state in the body. The DRTG was easily administered intramuscularly. Its particle size and drug content were not noticeably changeable, resulting that it was stable at 40°C for at least 6months. Compared to the irinotecan-loaded solution and conventional hydrogel, the DRTG significantly delayed drug release, leading to a reduced burst effect. Moreover, it showed decreased Cmax and maintained the sustained plasma concentrations at a relatively low level for the long period of 60h in rats, resulting in ameliorated side effects of the anti-tumour drug. Furthermore, it gave significantly improved anti-tumour efficacy in tumour-bearing mice compared to the hydrogel but, unlike the conventional hydrogel, induced no body weight loss and local damage to the muscle. Thus, this DRTG with improved antitumor efficacy without initial burst effect and toxicity could provide a potential pharmaceutical system for the intramuscular administration of irinotecan. STATEMENT OF SIGNIFICANCE Intramuscularly administered, anti-tumour drugs induce severe side effects due to their direct contact with body tissues and initial burst effect. To solve this problem, we developed a novel double-reversible thermogel system (DRTG) for the intramuscular administration of irinotecan. Unlike the conventional hydrogel, the DRTG is a dispersion of the irinotecan-loaded thermoreversible solid lipid nanoparticles in the thermoreversible hydrogel. In DRTG, the former was solid at 25°C but converted to liquid at 36.5°C; in contrast, the latter existed in a liquid form but transformed to gel state in the body. This DRTG gave significantly improved anti-tumour efficacy in tumour-bearing mice compared to the hydrogel but, unlike the conventional hydrogel, induced no body weight loss and local damage to the muscle.
Collapse
|
47
|
Din FU, Choi JY, Kim DW, Mustapha O, Kim DS, Thapa RK, Ku SK, Youn YS, Oh KT, Yong CS, Kim JO, Choi HG. Irinotecan-encapsulated double-reverse thermosensitive nanocarrier system for rectal administration. Drug Deliv 2017; 24:502-510. [PMID: 28181835 PMCID: PMC8241086 DOI: 10.1080/10717544.2016.1272651] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intravenously administered for the treatment of rectum cancer, irinotecan produces severe side effects due to very high plasma concentrations. A novel irinotecan-encapsulated double reverse thermosensitive nanocarrier system (DRTN) for rectal administration was developed as an alternative. The DRTN was fabricated by dispersing the thermosensitive irinotecan-encapsulated solid lipid nanoparticles (SLN) in the thermosensitive poloxamer solution. Its gel properties, pharmacokinetics, morphology, anticancer activity and immunohistopathology were assessed after its rectal administration to rats and tumor-bearing mice. In the DRTN, the solid form of the SLN and the liquid form of the poloxamer solution persisted at 25 °C; the former melted to liquid, and the latter altered to gel at 36.5 °C. The DRTN was easily administered to the anus, gelling rapidly and strongly after rectal administration. Compared to the conventional hydrogel and intravenously administered solution, it retarded dissolution and initial plasma concentration. The DRTN gave sustained release and nearly constant plasma concentrations of irinotecan at 1–3 h in rats, resulting in improved anticancer activity. It induced no damage to the rat rectum and no body weight loss in tumor-bearing mice. Thus, this irinotecan-encapsulated DRTN associated with a reduced burst effect, lack of toxicity and excellent antitumor efficacy would be strongly recommended as a rectal pharmaceutical product alternative to commercial intravenous injection in the treatment of rectum and colon cancer.
Collapse
Affiliation(s)
- Fakhar Ud Din
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea.,b Department of Pharmacy, Quaid-I-Azam University , Islamabad , Pakistan
| | - Ju Yeon Choi
- c College of Pharmacy, Yeungnam University , Gyongsan , South Korea
| | - Dong Wuk Kim
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea
| | - Omer Mustapha
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea.,d International Center of Chemical and Biological Sciences, University of Karachi , Karachi , Pakistan
| | - Dong Shik Kim
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea
| | - Raj Kumar Thapa
- c College of Pharmacy, Yeungnam University , Gyongsan , South Korea
| | - Sae Kwang Ku
- e College of Oriental Medicine, Daegu Haany University , Gyongsan , South Korea
| | - Yu Seok Youn
- f School of Pharmacy, Sungkyunkwan University , Suwon , South Korea , and
| | - Kyung Taek Oh
- g College of Pharmacy, Chung-Ang University , Seoul , Republic of Korea
| | - Chul Soon Yong
- c College of Pharmacy, Yeungnam University , Gyongsan , South Korea
| | - Jong Oh Kim
- c College of Pharmacy, Yeungnam University , Gyongsan , South Korea
| | - Han-Gon Choi
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea
| |
Collapse
|
48
|
Kharaziha M, Memic A, Akbari M, Brafman DA, Nikkhah M. Nano-Enabled Approaches for Stem Cell-Based Cardiac Tissue Engineering. Adv Healthc Mater 2016; 5:1533-53. [PMID: 27199266 DOI: 10.1002/adhm.201600088] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/01/2016] [Indexed: 12/20/2022]
Abstract
Cardiac diseases are the most prevalent causes of mortality in the world, putting a major economic burden on global healthcare system. Tissue engineering strategies aim at developing efficient therapeutic approaches to overcome the current challenges in prolonging patients survival upon cardiac diseases. The integration of advanced biomaterials and stem cells has offered enormous promises for regeneration of damaged myocardium. Natural or synthetic biomaterials have been extensively used to deliver cells or bioactive molecules to the site of injury in heart. Additionally, nano-enabled approaches (e.g., nanomaterials, nanofeatured surfaces) have been instrumental in developing suitable scaffolding biomaterials and regulating stem cells microenvironment to achieve functional therapeutic outcomes. This review article explores tissue engineering strategies, which have emphasized on the use of nano-enabled approaches in combination with stem cells for regeneration and repair of injured myocardium upon myocardial infarction (MI). Primarily a wide range of biomaterials, along with different types of stem cells, which have utilized in cardiac tissue engineering will be presented. Then integration of nanomaterials and surface nanotopographies with biomaterials and stem cells for myocardial regeneration will be presented. The advantages and challenges of these approaches will be reviewed and future perspective will be discussed.
Collapse
Affiliation(s)
- Mahshid Kharaziha
- Biomaterials Research Group; Department of Materials Engineering; Isfahan University of Technology; Isfahan 8415683111 Iran
| | - Adnan Memic
- Center of Nanotechnology; King Abdulaziz University; Jeddah 21589 Saudi Arabia
| | - Mohsen Akbari
- Department of Mechanical Engineering; University of Victoria; Victoria BC Canada
| | - David A. Brafman
- School of Biological and Health Systems Engineering (SBHSE) Harington; Bioengineering Program; Arizona State University; Tempe Arizona 85287 USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE) Harington; Bioengineering Program; Arizona State University; Tempe Arizona 85287 USA
| |
Collapse
|
49
|
Stem cells and injectable hydrogels: Synergistic therapeutics in myocardial repair. Biotechnol Adv 2016; 34:362-379. [PMID: 26976812 DOI: 10.1016/j.biotechadv.2016.03.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 02/27/2016] [Accepted: 03/07/2016] [Indexed: 02/08/2023]
Abstract
One of the major problems in the treatment of cardiovascular diseases is the inability of myocardium to self-regenerate. Current therapies are unable to restore the heart's function after myocardial infarction. Myocardial tissue engineering is potentially a key approach to regenerate damaged heart muscle. Myocardial patches are applied surgically, whereas injectable hydrogels provide effective minimally invasive approaches to recover functional myocardium. These hydrogels are easily administered and can be either cell free or loaded with bioactive agents and/or cardiac stem cells, which may apply paracrine effects. The aim of this review is to investigate the advantages and disadvantages of injectable stem cell-laden hydrogels and highlight their potential applications for myocardium repair.
Collapse
|
50
|
Yang B, Yao F, Hao T, Fang W, Ye L, Zhang Y, Wang Y, Li J, Wang C. Development of Electrically Conductive Double-Network Hydrogels via One-Step Facile Strategy for Cardiac Tissue Engineering. Adv Healthc Mater 2016; 5:474-88. [PMID: 26626543 DOI: 10.1002/adhm.201500520] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/21/2015] [Indexed: 12/19/2022]
Abstract
Cardiac tissue engineering is an effective method to treat the myocardial infarction. However, the lack of electrical conductivity of biomaterials limits their applications. In this work, a homogeneous electronically conductive double network (HEDN) hydrogel via one-step facile strategy is developed, consisting of a rigid/hydrophobic/conductive network of chemical crosslinked poly(thiophene-3-acetic acid) (PTAA) and a flexible/hydrophilic/biocompatible network of photo-crosslinking methacrylated aminated gelatin (MAAG). Results suggest that the swelling, mechanical, and conductive properties of HEDN hydrogel can be modulated via adjusting the ratio of PTAA network to MAAG network. HEDN hydrogel has Young's moduli ranging from 22.7 to 493.1 kPa, and its conductivity (≈10(-4) S cm(-1)) falls in the range of reported conductivities for native myocardium tissue. To assess their biological activity, the brown adipose-derived stem cells (BADSCs) are seeded on the surface of HEDN hydrogel with or without electrical stimulation. Our data show that the HEDN hydrogel can support the survival and proliferation of BADSCs, and that it can improve the cardiac differentiation efficiency of BADSCs and upregulate the expression of connexin 43. Moreover, electrical stimulation can further improve this effect. Overall, it is concluded that the HEDN hydrogel may represent an ideal scaffold for cardiac tissue engineering.
Collapse
Affiliation(s)
- Boguang Yang
- Department of Advanced Interdisciplinary Studies; Institute of Basic Medical Sciences and Tissue Engineering Research Center; Academy of Military Medical Sciences; Beijing 100850 China
- Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; No. 92, Weijin Road Tianjin 300072 China
| | - Fanglian Yao
- Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; No. 92, Weijin Road Tianjin 300072 China
| | - Tong Hao
- Department of Advanced Interdisciplinary Studies; Institute of Basic Medical Sciences and Tissue Engineering Research Center; Academy of Military Medical Sciences; Beijing 100850 China
| | - Wancai Fang
- Department of Advanced Interdisciplinary Studies; Institute of Basic Medical Sciences and Tissue Engineering Research Center; Academy of Military Medical Sciences; Beijing 100850 China
- Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; No. 92, Weijin Road Tianjin 300072 China
| | - Lei Ye
- Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; No. 92, Weijin Road Tianjin 300072 China
| | - Yabin Zhang
- Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; No. 92, Weijin Road Tianjin 300072 China
| | - Yan Wang
- Department of Advanced Interdisciplinary Studies; Institute of Basic Medical Sciences and Tissue Engineering Research Center; Academy of Military Medical Sciences; Beijing 100850 China
| | - Junjie Li
- Department of Advanced Interdisciplinary Studies; Institute of Basic Medical Sciences and Tissue Engineering Research Center; Academy of Military Medical Sciences; Beijing 100850 China
| | - Changyong Wang
- Department of Advanced Interdisciplinary Studies; Institute of Basic Medical Sciences and Tissue Engineering Research Center; Academy of Military Medical Sciences; Beijing 100850 China
| |
Collapse
|