1
|
Murugaiyan K, Murali VP, Tamura H, Furuike T, Rangasamy J. Overview of chitin dissolution, hydrogel formation and its biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:1289-1320. [PMID: 39704399 DOI: 10.1080/09205063.2024.2442181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Chitin hydrogel and hydrogel-based products are some of the frequently reported biomaterials for biomedical applications. Yet there is a void in understanding chitin's dissolution mechanism and its most suitable solvent system(s). Chitin is a natural polysaccharide polymer which can be dissolved in solvents such as calcium chloride- methanol, sodium hydroxide/urea (NaOH/urea), lithium chloride diacetamide (LiCl/DMAc), ionic liquids and deep eutectic solvents. Among the alkali/urea dissolution systems such as NaOH/urea, KOH/urea, LiOH/urea for dissolution of chitin we will be focussing on NaOH-based system here for ease of comparison with the other systems. Chitin has been used for decades in the biomedical field; however, new solvent systems are still being explored even to this day to identify the most suitable chemical(s) for dissolving it. Chitin, due to its biocompatibility, allows us to use it for multifaceted purposes. Hence, it is important to consolidate the available studies for better understanding about the most sought-after biomaterial. This overview deeply delves into the mechanism of action of the existing solvent systems and highlights its merits and demerits. It discusses the rheological properties of the chitin gel from different solvent systems and puts forth the current biomedical applications of chitin gel in areas such as tissue engineering, drug delivery, biosensing, hemostasis and wound healing. It also outlines recent advances and highlights the potential gaps which need to be addressed in future studies.
Collapse
Affiliation(s)
- Kavipriya Murugaiyan
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | | | - Hiroshi Tamura
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, Suita, Osaka, Japan
| | - Tetsuya Furuike
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, Suita, Osaka, Japan
| | - Jayakumar Rangasamy
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
2
|
Mansouri Moghaddam M, Jooybar E, Imani R. Injectable microgel and micro-granular hydrogels for bone tissue engineering. Biofabrication 2025; 17:032001. [PMID: 40228520 DOI: 10.1088/1758-5090/adcc58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/14/2025] [Indexed: 04/16/2025]
Abstract
Injectable microgels, made from both natural and synthetic materials, are promising platforms for the encapsulation of cells or bioactive agents, such as drugs and growth factors, for delivery to injury sites. They can also serve as effective micro-scaffolds in bone tissue engineering (BTE), offering a supportive environment for cell proliferation or differentiation into osteoblasts. Microgels can be injected in the injury sites individually or in the form of aggregated/jammed ones named micro-granular hydrogels. This review focuses on common materials and fabrication techniques for preparing injectable microgels, as well as their characteristics and applications in BTE. These applications include their use as cell carriers, delivery systems for bioactive molecules, micro-granular hydrogels, bio-inks for bioprinting, three-dimensional microarrays, and the formation of microtissues. Furthermore, we discuss the current and potential future applications of microgels in bone tissue regeneration.
Collapse
Affiliation(s)
- Melika Mansouri Moghaddam
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Elaheh Jooybar
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
3
|
Barbalinardo M, Falini G, Montroni D. Sustainable 3D Scaffolds Based on β-Chitin and Collagen I for Wound Dressing Applications. Polymers (Basel) 2025; 17:140. [PMID: 39861212 PMCID: PMC11769321 DOI: 10.3390/polym17020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
The development of greener substitutes for plastics is gaining massive importance in today's society. This also involves the medical field, where disposable materials are used to grant sterility. Here, a novel protocol using only a water-based solvent for the preparation of bio-based composite foams of actual β-chitin and collagen type I is presented. The influence of the ratio of this chitin polymorph to the collagen on the final material is then studied. The samples with 50:50 and 75:25 ratios produce promising results, such as remarkable water absorption (up to 7000 wt.%), exposed surface (up to 7 m2·g-1), and total pore volume (over 80 vol.%). The materials are also tested using wet mechanical compression, exhibiting a Young's modulus and tenacity (both calculated between 2% and 25% of deformation) of up to 20 Pa and 9 kPa, respectively. Fibroblasts, keratinocytes, and osteoblasts are grown on these scaffolds. The viability of fibroblasts and keratinocytes is observed for 72 h, whereas the viability of osteoblasts is observed for up to 21 days. Under the two conditions mentioned, cell activity and adhesion work even better than under its counterpart condition of pure collagen. In conclusion, these materials are promising candidates for sustainable regenerative medicine scaffolds or, specifically, as biodegradable wound dressings.
Collapse
Affiliation(s)
- Marianna Barbalinardo
- National Research Council (CNR), Institute for Nanostructured Materials (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Giuseppe Falini
- Dipartimento di Chimica “G. Ciamician”, Alma Mater Studiorum−Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Devis Montroni
- Dipartimento di Chimica “G. Ciamician”, Alma Mater Studiorum−Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
4
|
Murugaiyan K, Chandramouli A, Rangasamy J. Synthesis, Characterization and Osteogenic Properties of Chitin-Polydioxanone Composite Gel. Chem Asian J 2024; 19:e202401024. [PMID: 39313868 DOI: 10.1002/asia.202401024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
In this study, we have developed a Chitin(Ch)-Poly(dioxanone)(PDO) gel system, which can be potentially used for tissue engineering. Hydrogel has been widely used in biomedical applications for its tuneable properties and biocompatibility. Chitin (Ch) is a natural biopolymer used for its ability to mimic the natural extracellular matrix due to its N-acetyl glucosamine structural units. Poly (dioxanone) (PDO) is a FDA-approved synthetic biopolymer known for its mechanical properties, good biocompatibility, and poor inflammatory response. Based on this, we have developed Ch-PDO composite gel using simple regeneration chemistry and characterized it using FT-IR and SEM. The developed composite gel showed improved gel strength, good swelling ability, and controlled degradation behaviour. It also showed good inject ability with shear thinning properties and hemocompatibility. Further, the biocompatibility and cell adhesion studies of the prepared gels were studied using dental follicle stem cells (DFSCs). The prepared Ch-PDO gel was biocompatible and showed DFSCs cell attachment. Osteogenic mineralization, RUNX2 and OPN expression of the prepared Ch and Ch-PDO gel was studied and Ch-PDO gel showed an enhanced mineralization and RUNX2 and OPN expression showed enhanced osteogenic activity in Ch-PDO. Therefore, the developed chitin-PDO gel could be potentially used for bone tissue engineering.
Collapse
Affiliation(s)
- Kavipriya Murugaiyan
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Arthi Chandramouli
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Jayakumar Rangasamy
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| |
Collapse
|
5
|
Moghaddam MM, Jooybar E, Imani R, Ehrbar M. Development of injectable microgel-based scaffolds via enzymatic cross-linking of hyaluronic acid-tyramine/gelatin-tyramine for potential bone tissue engineering. Int J Biol Macromol 2024; 279:135176. [PMID: 39214205 DOI: 10.1016/j.ijbiomac.2024.135176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Currently, the healing of large bone defects relies on invasive surgeries and the transplantation of autologous bone. As a less invasive treatment option, the provision of microenvironments that promote the regeneration of defective bones holds great promise. Here, we developed hyaluronic acid (HA)/gelatin (Ge) microgel-based scaffolds to guide bone regeneration. To enable the formation of microgels by enzymatic cross-linking in the presence of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2), we modified the polymers with tyramine (TA). Spectrophotometry and proton nuclear magnetic resonance (1H NMR) spectroscopy analysis confirmed successful tyramine substitution on polymer backbones. To enable the formation of microgels by a water-in-oil emulsion approach, the HRP and H2O2 concentrations were tuned to achieve the gelation in a few seconds. By varying the stirring speed from 600 to 1000 rpm, spherical microgels were produced with an average size of 116 ± 8.7 and 68 ± 4.7 μm, respectively. The results showed that microgels were injectable through needles and showed good biocompatibility with the cultured human osteosarcoma cell line (MG-63). HA/Ge-TA microgels served as a promising substrate for MG-63 cells since they improved the alkaline phosphatase activity and level of calcium deposition. In summary, the developed HA/Ge-TA microgels are promising injectable microgel-based scaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Melika Mansouri Moghaddam
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Elaheh Jooybar
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Martin Ehrbar
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Kocak FZ, Yar M, Rehman IU. In vitro degradation, swelling, and bioactivity performances of in situ forming injectable chitosan-matrixed hydrogels for bone regeneration and drug delivery. Biotechnol Bioeng 2024; 121:2767-2779. [PMID: 38837342 DOI: 10.1002/bit.28755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/25/2023] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
Injectable, tissue mimetic, bioactive, and biodegradable hydrogels offer less invasive regeneration and repair of tissues. The monitoring swelling and in vitro degradation capacities of hydrogels are highly important for drug delivery and tissue regeneration processes. Bioactivity of bone tissue engineered constructs in terms of mineralized apatite formation capacity is also pivotal. We have previously reported in situ forming chitosan-based injectable hydrogels integrated with hydroxyapatite and heparin for bone regeneration, promoting angiogenesis. These hydrogels were functionalized by glycerol and pH to improve their mechano-structural properties. In the present study, functionalized hybrid hydrogels were investigated for their swelling, in vitro degradation, and bioactivity performances. Hydrogels have degraded gradually in phosphate-buffered saline (PBS) with and without lysozyme enzyme. The percentage weight loss of hydrogels and their morphological and chemical properties, and pH of media were analyzed. The swelling ratio of hydrogels (55%-68%(wt), 6 h of equilibrium) indicated a high degree of cross-linking, can be suitable for controlled drug release. Hydrogels have gradually degraded reaching to 60%-70% (wt%) in 42 days in the presence and absence of lysozyme, respectively. Simulated body fluid (SBF)-treated hydrogels containing hydroxyapatite-induced needle-like carbonated-apatite mineralization was further enhanced by heparin content significantly.
Collapse
Affiliation(s)
- Fatma Zehra Kocak
- Engineering-Architecture Faculty, Metallurgy and Materials Engineering, Nevsehir Haci Bektas Veli University, Nevsehir, Turkey
- Engineering Department, Lancaster University, Lancaster, UK
| | - Muhammad Yar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Ihtesham U Rehman
- School of Medicine and Dentistry, University of Central Lancashire, Lancashire, UK
| |
Collapse
|
7
|
Xia Y, Chen Z, Zheng Z, Chen H, Chen Y. Nanomaterial-integrated injectable hydrogels for craniofacial bone reconstruction. J Nanobiotechnology 2024; 22:525. [PMID: 39217329 PMCID: PMC11365286 DOI: 10.1186/s12951-024-02801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The complex anatomy and biology of craniofacial bones pose difficulties in their effective and precise reconstruction. Injectable hydrogels (IHs) with water-swollen networks are emerging as a shape-adaptive alternative for noninvasively rebuilding craniofacial bones. The advent of versatile nanomaterials (NMs) customizes IHs with strengthened mechanical properties and therapeutically favorable performance, presenting excellent contenders over traditional substitutes. Structurally, NM-reinforced IHs are energy dissipative and covalently crosslinked, providing the mechanics necessary to support craniofacial structures and physiological functions. Biofunctionally, incorporating unique NMs into IH expands a plethora of biological activities, including immunomodulatory, osteogenic, angiogenic, and antibacterial effects, further favoring controllable dynamic tissue regeneration. Mechanistically, NM-engineered IHs optimize the physical traits to direct cell responses, regulate intracellular signaling pathways, and control the release of biomolecules, collectively bestowing structure-induced features and multifunctionality. By encompassing state-of-the-art advances in NM-integrated IHs, this review offers a foundation for future clinical translation of craniofacial bone reconstruction.
Collapse
Affiliation(s)
- Yong Xia
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Zihan Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Zebin Zheng
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Huimin Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yuming Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
8
|
Rajendran AK, Anthraper MSJ, Hwang NS, Rangasamy J. Osteogenesis and angiogenesis promoting bioactive ceramics. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2024; 159:100801. [DOI: 10.1016/j.mser.2024.100801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Mothilal NP, Pradeep A, Arthi C, Gopal K, Kaliannagounder VK, Park CH, Kumar VA, Rangasamy J. Amikacin sulphate loaded chitosan-diopside nanoparticles composite scaffold for infectious wound healing. Int J Biol Macromol 2024; 263:130217. [PMID: 38368979 DOI: 10.1016/j.ijbiomac.2024.130217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
A wound dressing material should inhibit infections that may occur at the wound site, and at the same time, it should enhance the healing process. In this study, we developed an amikacin sulphate (AK) incorporated chitosan (Ch) and Diopside nanoparticles composite dressing (Ch-nDE-AK) for controlling wound infection and healing. The diopside nanoparticles (nDE) were prepared using sol-gel synthesis and characterized using XRD, FT-IR, and FESEM. nDE shows a size range of 142 ± 31 nm through FESEM analysis. Later, the developed composite dressing was characterized using SEM, EDS, and FT-IR analysis. Ch-nDE-AK dressing possesses a porous nature that will aid in easy cell infiltration and proliferation. The swelling studies indicated the expansion capability of the scaffold when applied to the injured site. Ch-nDE-AK scaffold showed a 69.6 ± 8.2 % amikacin sulphate release up to 7 days, which indicates the sustained release of the drug from Ch-nDE-AK scaffold. The drug release data was subjected to various kinetics models and was observed to follow the Higuchi model. The scaffold showed antibacterial activity against ATCC strains of S. aureus and E. coli for 7 days by in vitro. Ch-nDE-AK scaffold also showed antibacterial activity against S. aureus and E. coli clinical strains in vitro. The ex vivo antibacterial study confirmed the antibacterial ability of Ch-nDE-AK scaffold against S. aureus and E. coli. Ch-nDE-AK scaffold also exhibits anti-biofilm activity against S. aureus and E. coli. The Ch-nDE-AK scaffold showed cytocompatibility and cell attachment to fibroblast cells. Additionally, the scratch assay using fibroblast cells confirmed the role of the nDE in the scaffold, helping in cell migration. Thus, the developed Ch-nDE-AK dressing can potentially be used to treat infectious wound healing.
Collapse
Affiliation(s)
- Nazreen P Mothilal
- School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Aathira Pradeep
- School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - C Arthi
- School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Kavitha Gopal
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju, South Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, South Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, South Korea
| | - Vignesh Krishnamoorthi Kaliannagounder
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju, South Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, South Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, South Korea; School of Engineering, Newcastle University, Newcastle UponTyne, United Kingdom
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju, South Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, South Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, South Korea
| | - Vasudevan Anil Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Jayakumar Rangasamy
- School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India.
| |
Collapse
|
10
|
Zeshan M, Amjed N, Ashraf H, Farooq A, Akram N, Zia KM. A review on the application of chitosan-based polymers in liver tissue engineering. Int J Biol Macromol 2024; 262:129350. [PMID: 38242400 DOI: 10.1016/j.ijbiomac.2024.129350] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/29/2023] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
Chitosan-based polymers have enormous structural tendencies to build bioactive materials with novel characteristics, functions, and various applications, mainly in liver tissue engineering (LTE). The specific physicochemical, biological, mechanical, and biodegradation properties give the effective ways to blend these biopolymers with synthetic and natural polymers to fabricate scaffolds matrixes, sponges, and complexes. A variety of natural and synthetic biomaterials, including chitosan (CS), alginate (Alg), collagen (CN), gelatin (GL), hyaluronic acid (HA), hydroxyapatite (HAp), polyethylene glycol (PEG), polycaprolactone (PCL), poly(lactic-co-glycolic) acid (PGLA), polylactic acid (PLA), and silk fibroin gained considerable attention due to their structure-properties relationship. The incorporation of CS within the polymer matrix results in increased mechanical strength and also imparts biological behavior to the designed PU formulations. The significant and growing interest in the LTE sector, this review aims to be a detailed exploration of CS-based polymers biomaterials for LTE. A brief explanation of the sources and extraction, properties, structure, and scope of CS is described in the introduction. After that, a full overview of the liver, its anatomy, issues, hepatocyte transplantation, LTE, and CS LTE applications are discussed.
Collapse
Affiliation(s)
- Muhammad Zeshan
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Nyla Amjed
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Humna Ashraf
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ariba Farooq
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Nadia Akram
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Khalid Mahmood Zia
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| |
Collapse
|
11
|
Kumar N, Bose P, Kumar S, Daksh S, Verma YK, Roy BG, Som S, Singh JD, Datta A. Nanoapatite-Loaded κ-Carrageenan/Poly(vinyl alcohol)-Based Injectable Cryogel for Hemostasis and Wound Healing. Biomacromolecules 2024; 25:1228-1245. [PMID: 38235663 DOI: 10.1021/acs.biomac.3c01180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Immediate control of excessive bleeding and prevention of infections are of utmost importance in the management of wounds. Cryogels have emerged as promising materials for the rapid release of medication and achieving hemostasis. However, their quick release properties pose the challenge of exposing patients to high concentrations of drugs. In this study, hybrid nanocomposites were developed to address this issue by combining poly(vinyl alcohol) and κ-carrageenan with whitlockite nanoapatite (WNA) particles and ciprofloxacin, aiming to achieve rapid hemostasis and sustained antibacterial effects. A physically cross-linked cryogel was obtained by subjecting a blend of poly(vinyl alcohol) and κ-carrageenan to successive freezing-thawing cycles, followed by the addition of WNA. Furthermore, ciprofloxacin was introduced into the cryogel matrix for subsequent evaluation of its wound healing properties. The resulting gel system exhibited a 3D microporous structure and demonstrated excellent swelling, low cytotoxicity, and outstanding mechanical properties. These characteristics were evaluated through analytical and rheological experiments. The nanocomposite cryogel with 4% whitlockite showed extended drug release of 71.21 ± 3.5% over 21 days and antibacterial activity with a considerable growth inhibition zone (4.19 ± 3.55 cm). Experiments on a rat model demonstrated a rapid hemostasis property of cryogels within an average of 83 ± 4 s and accelerated the process of wound healing with 96.34% contraction compared to the standard, which exhibited only ∼78% after 14 days. The histopathological analysis revealed that the process of epidermal re-epithelialization took around 14 days following the skin incision. The cryogel loaded with WNAs and ciprofloxacin holds great potential for strategic utilization in wound management applications as an effective material for hemostasis and anti-infection purposes.
Collapse
Affiliation(s)
- Nikhil Kumar
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig SK Mazumdar Marg, Delhi 110054, India
- Department of Chemistry, Indian Institute of Technology, Delhi 110016, India
| | - Pritha Bose
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig SK Mazumdar Marg, Delhi 110054, India
| | - Subodh Kumar
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig SK Mazumdar Marg, Delhi 110054, India
| | - Shivani Daksh
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig SK Mazumdar Marg, Delhi 110054, India
- Department of Chemistry, Indian Institute of Technology, Delhi 110016, India
| | - Yogesh Kumar Verma
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig SK Mazumdar Marg, Delhi 110054, India
| | - Bal G Roy
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig SK Mazumdar Marg, Delhi 110054, India
| | - Swati Som
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig SK Mazumdar Marg, Delhi 110054, India
| | - Jai Deo Singh
- Department of Chemistry, Indian Institute of Technology, Delhi 110016, India
| | - Anupama Datta
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig SK Mazumdar Marg, Delhi 110054, India
| |
Collapse
|
12
|
Pouya FD, Salehi R, Rasmi Y, Kheradmand F, Fathi-Azarbayjani A. Combination chemotherapy against colorectal cancer cells: Co-delivery of capecitabine and pioglitazone hydrochloride by polycaprolactone-polyethylene glycol carriers. Life Sci 2023; 332:122083. [PMID: 37717622 DOI: 10.1016/j.lfs.2023.122083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Colorectal cancer causes numerous deaths despite many treatment options. Capecitabine (CAP) is the standard chemotherapy regimen for colorectal cancer, and pioglitazone hydrochloride (PGZ) for diabetic disease treatment. However, free drugs do not induce effective apoptosis. This work aims to co-encapsulate CAP and PGZ and evaluate cytotoxic and apoptotic effects on HCT-119, HT-29 colorectal cancer cells, and human umbilical vein endothelial cells (HUVECs). METHOD CAP, PGZ, and combination treatment nano-formulations were prepared by triblock (TB) (PCL-PEG-PCL) biodegradable copolymers to enhance drugs' bioavailability as anti-cancer agents. The Ultrasonic homogenization method was used for preparing nanoparticles. The physicochemical characteristics of nanoparticles were studied using 1H NMR, FTIR, DLS, and FESEM techniques. The zeta potential, entrapment efficiency, drug release, and storage stability were studied. Also, cell viability and apoptosis were examined by using MTT, acridine orange (AO), and propidium iodide (PI), respectively. RESULT The smaller hydrodynamic size (236.1 nm), polydispersity index (0.159), and zeta potential (-20.8 mV) were observed in nanoparticles. Nanoparticles revealed a proper formulation and storage stability at 25 °C than 4 °C in 90 days. The synergistic effect was observed in (CAP-PGZ)-loaded TB nanoparticles in HUVEC, HCT-116, and HT-29 cells. In (AO/PI) staining, the high percentage of apoptotic cells in the (CAP-PGZ)-loaded TB nanoparticles in HUVEC, HCT-116, and HT-29 were calculated as 78 %, 71.66 %, and 69.31 %, respectively. CONCLUSION The (CAP-PGZ)-loaded TB nanoparticles in this research offer an effective strategy for targeted combinational colorectal cancer therapy.
Collapse
Affiliation(s)
- Fahima Danesh Pouya
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Roya Salehi
- Department of Medical Nanotechnology, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Fatemeh Kheradmand
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Anahita Fathi-Azarbayjani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
13
|
Moghaddam SV, Abedi F, Lotfi H, Salehi R, Barzegar A, Eslaminejad MB, Khalili M, Alizadeh E. An efficient method for cell sheet bioengineering from rBMSCs on thermo-responsive PCL-PEG-PCL copolymer. J Biol Eng 2023; 17:27. [PMID: 37024910 PMCID: PMC10080813 DOI: 10.1186/s13036-023-00346-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/25/2023] [Indexed: 04/08/2023] Open
Abstract
Utilizing both medium enrichment and a thermos-responsive substrate to maintain the cell-to-cell junctions and extracellular matrix (ECM) intact, cell sheet technology has emerged as a ground-breaking approach. Investigating the possibility of using sodium selenite (as medium supplementation) and PCL-PEG-PCL (as vessel coating substrate) in the formation of the sheets from rat bone marrow-derived mesenchymal stem cells (rBMSCs) was the main goal of the present study. To this end, first, Polycaprolactone-co-Poly (ethylene glycol)-co-Polycaprolactone triblock copolymer (PCEC) was prepared by ring-opening copolymerization method and characterized by FTIR, 1 H NMR, and GPC. The sol-gel-sol phase transition temperature of the PCEC aqueous solutions with various concentrations was either measured. Next, rBMSCs were cultured on the PCEC, and let be expanded in five different media containing vitamin C (50 µg/ml), sodium selenite (0.1 µM), vitamin C and sodium selenite (50 µg/ml + 0.1 µM), Trolox, and routine medium. The proliferation of the cells exposed to each material was evaluated. Produced cell sheets were harvested from the polymer surface by temperature reduction and phenotypically analyzed via an inverted microscope, hematoxylin and eosin (H&E) staining, and field emission scanning electron microscopy (FESEM). Through the molecular level, the expression of the stemness-related genes (Sox2, Oct-4, Nanog), selenium-dependent enzymes (TRX, GPX-1), and aging regulator gene (Sirt1) were measured by q RT-PCR. Senescence in cell sheets was checked by beta-galactosidase assay. The results declared the improved ability of the rBMSCs for osteogenesis and adipogenesis in the presence of antioxidants vitamin C, sodium selenite, and Trolox in growth media. The data indicated that in the presence of vitamin C and sodium selenite, the quality of the cell sheet was risen by reducing the number of senescent cells and high transcription of the stemness genes. Monolayers produced by sodium selenite was in higher-quality than the ones produced by vitamin C.
Collapse
Affiliation(s)
- Sevil Vaghefi Moghaddam
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Abedi
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegar
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mostafa Khalili
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Pal A, Das Karmakar P, Vel R, Bodhak S. Synthesis and Characterizations of Bioactive Glass Nanoparticle-Incorporated Triblock Copolymeric Injectable Hydrogel for Bone Tissue Engineering. ACS APPLIED BIO MATERIALS 2023; 6:445-457. [PMID: 36633203 DOI: 10.1021/acsabm.2c00718] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recently, injectable hydrogels have attracted much interest in tissue engineering (TE) applications because of their controlled flowability, adaptability, and easy handling properties. This work emphasizes the synthesis and characterizations of bioactive glass (BAG) nanoparticle-reinforced poly(ethylene glycol) (PEG)- and poly(N-vinylcarbazole) (pNVC)-based minimally invasive composite injectable hydrogel suitable for bone regeneration. First, the copolymer was synthesized from a combination of PEG and pNVC through reversible addition-fragmentation chain-transfer (RAFT) polymerization and nanocomposite hydrogel constructs were subsequently prepared by conjugating BAG particles at varying loading concentrations. Gel permeation chromatography (GPC) analysis confirmed the controlled nature of the polymer. Various physicochemical characterization results confirmed the successful synthesis of copolymer and nanocomposite hydrogels that showed good gelling and injectability properties. Our optimal nanocomposite hydrogel formulation showed excellent swelling properties in comparison to the copolymeric hydrogel due to the presence of hydrophilic BAG particles. The bone cell proliferation rate was found to be evidently higher in the nanocomposite hydrogel than in the copolymeric hydrogel. Moreover, the enhanced level of ALP activity and apatite mineralization for the nanocomposite in comparison to that for the copolymeric hydrogel indicates accelerated in vitro osteogenesis. Overall, our study findings indicate BAG particle-conjugated nanocomposite hydrogels can be used as promising grafting materials in orthopedic reconstructive surgeries complementary to conventional bone graft substitutes in cancellous bone defects due to their 3D porous framework, minimal invasiveness, and ability to form any desired shape to match irregular bone defects.
Collapse
Affiliation(s)
- Aniruddha Pal
- Bioceramics and Coating Division, CSIR─Central Glass & Ceramic Research Institute, 196 Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata 700032, India
| | - Puja Das Karmakar
- Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| | - Rathina Vel
- Bioceramics and Coating Division, CSIR─Central Glass & Ceramic Research Institute, 196 Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata 700032, India
| | - Subhadip Bodhak
- Bioceramics and Coating Division, CSIR─Central Glass & Ceramic Research Institute, 196 Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata 700032, India
| |
Collapse
|
15
|
Yang Y, Sha L, Zhao H, Guo Z, Wu M, Lu P. Recent advances in cellulose microgels: Preparations and functionalized applications. Adv Colloid Interface Sci 2023; 311:102815. [PMID: 36427465 DOI: 10.1016/j.cis.2022.102815] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/20/2022]
Abstract
Microgels are soft, deformable, permeable, and stimuli-responsive microscopic polymeric particles that are now emerging as prospective multifunctional soft materials for delivery systems, interface stabilization, cell cultures and tissue engineering. Cellulose microgels are emerging biopolymeric microgels with unique characteristics such as abound hydroxyl structure, admirable designability, multiscale pore network and excellent biocompatibility. This review summarizes the fabrication strategies for microgel, then highlights the fabrication routes for cellulose microgels, and finally elaborates cellulose microgels' bright application prospects with unique characteristics in the fields of controlled release, interface stabilization, coating, purification, nutrition/drug delivery, and bio-fabrication. The challenges to be addressed for further applications and considerable scope for development in future of cellulose microgels are also discussed.
Collapse
Affiliation(s)
- Yang Yang
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Lishan Sha
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Han Zhao
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhaojun Guo
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Min Wu
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Peng Lu
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
16
|
Rajendran AK, Hwang NS. Silk and silk fibroin in tissue engineering. NATURAL BIOPOLYMERS IN DRUG DELIVERY AND TISSUE ENGINEERING 2023:627-661. [DOI: 10.1016/b978-0-323-98827-8.00001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Sah MK, Mukherjee S, Flora B, Malek N, Rath SN. Advancement in "Garbage In Biomaterials Out (GIBO)" concept to develop biomaterials from agricultural waste for tissue engineering and biomedical applications. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:1015-1033. [PMID: 36406592 PMCID: PMC9672289 DOI: 10.1007/s40201-022-00815-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/27/2022] [Indexed: 06/16/2023]
Abstract
Presently on a global scale, one of the major concerns is to find effective strategies to manage the agricultural waste to protect the environment. One strategy that has been drawing attention among the researchers is the development of biocompatible materials from agricultural waste. This strategy implies successful conversion of agricultural waste products (e.g.: cellulose, eggshell etc.) into building blocks for biomaterial development. Some of these wastes contain even bioactive compounds having biomedical applications. The replacement and augmentation of human tissue with biomaterials as alternative to traditional method not only bypasses immune-rejection, donor scarcity, and maintenance; but also provides long term solution to damaged or malfunctioning organs. Biomaterials development as one of the key challenges in tissue engineering approach, resourced from natural origin imparts better biocompatibility due to closely mimicking composition with cellular microenvironment. The "Garbage In, Biomaterials Out (GIBO)" concept, not only recycles the agricultural wastes, but also adds to biomaterial raw products for further product development in tissue regeneration. This paper reviews the conversion of garbage agricultural by-products to the biocompatible materials for various biomedical applications. Graphical abstract The agro-waste biomass processed, purified, modified, and further utilized for the fabrication of biomaterials-based support system for tissue engineering applications to grow living body parts in vitro or in vivo.
Collapse
Affiliation(s)
- Mahesh Kumar Sah
- Department of Biotechnology, Dr. B. R. Ambedkar, National Institute of Technology, Jalandhar, Punjab 144011 India
| | - Sunny Mukherjee
- Department of Biotechnology, Dr. B. R. Ambedkar, National Institute of Technology, Jalandhar, Punjab 144011 India
| | - Bableen Flora
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab India
| | - Naved Malek
- Department of Chemistry, S. V. National Institute of Technology, Surat, Gujarat India
| | - Subha Narayan Rath
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Medak, Telangana India
| |
Collapse
|
18
|
Xia D, Chen J, Zhang Z, Dong M. Emerging polymeric biomaterials and manufacturing techniques in regenerative medicine. AGGREGATE 2022; 3. [DOI: 10.1002/agt2.176] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractThe current demand for patients’ organ and tissue repair and regeneration is continually increasing, where autologous or allograft is the golden standard treatment in the clinic. However, due to the shortage of donors, mismatched size and modality, functional loss of the donor region, possible immune rejection, and so forth, the application of auto‐/allo‐grafts is frequently hindered in many cases. In order to solve these problems, artificial constructs structurally and functionally imitating the extracellular matrix have been developed as substitutes to promoting cell attachment, proliferation, and differentiation, and ultimately forming functional tissues or organs for better tissue regeneration. Particularly, polymeric materials have been widely utilized in regenerative medicine because of their ease of manufacturing, flexibility, biocompatibility, as well as good mechanical, chemical, and thermal properties. This review presents a comprehensive overview of a variety of polymeric materials, their fabrication methods as well applications in regenerative medicine. Finally, we discussed the future challenges and perspectives in the development and clinical transformation of polymeric biomaterials.
Collapse
Affiliation(s)
- Dan Xia
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering Hebei University of Technology Tianjin China
| | - Jiatian Chen
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering Hebei University of Technology Tianjin China
| | - Zhongyang Zhang
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Aarhus Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Aarhus Denmark
| |
Collapse
|
19
|
Peng Y, Wang J, Dai X, Chen M, Bao Z, Yang X, Xie J, Wang C, Shao J, Han H, Yao K, Gou Z, Ye J. Precisely Tuning the Pore-Wall Surface Composition of Bioceramic Scaffolds Facilitates Angiogenesis and Orbital Bone Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43987-44001. [PMID: 36102779 DOI: 10.1021/acsami.2c14909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Orbital bone damage (OBD) may result in severe post-traumatic enophthalmos, craniomaxillofacial deformities, vision loss, and intracranial infections. However, it is still a challenge to fabricate advanced biomaterials that can match the individual anatomical structure and enhance OBD repair in situ. Herein, we aimed to develop a selective surface modification strategy on bioceramic scaffolds and evaluated the effects of inorganic or organic functional coating on angiogenesis and osteogenesis, ectopically and orthotopically in OBD models. It was shown that the low thermal bioactive glass (BG) modification or layer-by-layer assembly of a biomimetic hydrogel (Biogel) could readily integrate into the pore wall of the bioceramic scaffolds. The BG and Biogel modification showed appreciable enhancement in the initial compressive strength (∼30-75%) or structural stability in vivo, respectively. BG modification could enhance by nearly 2-fold the vessel ingrowth, and the osteogenic capacity was also accelerated, accompanied with a mild scaffold biodegradation after 3 months. Meanwhile, the Biogel-modified scaffolds showed enhanced osteogenic differentiation and mineralization through calcium and phosphorus retention. The potential mechanism of the enhanced bone repair was elucidated via vascular and osteogenic cell responses in vitro, and the cell tests indicated that the Biogel and BG functional layers were both beneficial for in vitro osteoblastic differentiation and mineralization on bioceramics. Totally, these findings demonstrated that the bioactive ions or biomolecules could significantly improve the angiogenic and osteogenic capabilities of conventional bioceramics, and the integration of inorganic or organic functional coating in the pore wall is a highly flexible material toolbox that can be tailored directly to improve orbital bone defect repair.
Collapse
Affiliation(s)
- Yiyu Peng
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jingyi Wang
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xizhe Dai
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Menglu Chen
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhaonan Bao
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Jiajun Xie
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Changjun Wang
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ji Shao
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Haijie Han
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ke Yao
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Juan Ye
- Eye Center, Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
20
|
Montroni D, Di Giosia M, Calvaresi M, Falini G. Supramolecular Binding with Lectins: A New Route for Non-Covalent Functionalization of Polysaccharide Matrices. Molecules 2022; 27:molecules27175633. [PMID: 36080399 PMCID: PMC9457544 DOI: 10.3390/molecules27175633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
The chemical functionalization of polysaccharides to obtain functional materials has been of great interest in the last decades. This traditional synthetic approach has drawbacks, such as changing the crystallinity of the material or altering its morphology or texture. These modifications are crucial when a biogenic matrix is exploited for its hierarchical structure. In this work, the use of lectins and carbohydrate-binding proteins as supramolecular linkers for polysaccharide functionalization is proposed. As proof of concept, a deproteinized squid pen, a hierarchically-organized β-chitin matrix, was functionalized using a dye (FITC) labeled lectin; the lectin used was the wheat germ agglutinin (WGA). It has been observed that the binding of this functionalized protein homogenously introduces a new property (fluorescence) into the β-chitin matrix without altering its crystallographic and hierarchical structure. The supramolecular functionalization of polysaccharides with protein/lectin molecules opens up new routes for the chemical modification of polysaccharides. This novel approach can be of interest in various scientific fields, overcoming the synthetic limits that have hitherto hindered the technological exploitation of polysaccharides-based materials.
Collapse
|
21
|
Ling SD, Liu Z, Ma W, Chen Z, Du Y, Xu J. A Novel Step-T-Junction Microchannel for the Cell Encapsulation in Monodisperse Alginate-Gelatin Microspheres of Varying Mechanical Properties at High Throughput. BIOSENSORS 2022; 12:bios12080659. [PMID: 36005055 PMCID: PMC9406195 DOI: 10.3390/bios12080659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
Cell encapsulation has been widely employed in cell therapy, characterization, and analysis, as well as many other biomedical applications. While droplet-based microfluidic technology is advantageous in cell microencapsulation because of its modularity, controllability, mild conditions, and easy operation when compared to other state-of-art methods, it faces the dilemma between high throughput and monodispersity of generated cell-laden microdroplets. In addition, the lack of a biocompatible method of de-emulsification transferring cell-laden hydrogel from cytotoxic oil phase into cell culture medium also hurtles the practical application of microfluidic technology. Here, a novel step-T-junction microchannel was employed to encapsulate cells into monodisperse microspheres at the high-throughput jetting regime. An alginate–gelatin co-polymer system was employed to enable the microfluidic-based fabrication of cell-laden microgels with mild cross-linking conditions and great biocompatibility, notably for the process of de-emulsification. The mechanical properties of alginate-gelatin hydrogel, e.g., stiffness, stress–relaxation, and viscoelasticity, are fully adjustable in offering a 3D biomechanical microenvironment that is optimal for the specific encapsulated cell type. Finally, the encapsulation of HepG2 cells into monodisperse alginate–gelatin microgels with the novel microfluidic system and the subsequent cultivation proved the maintenance of the long-term viability, proliferation, and functionalities of encapsulated cells, indicating the promising potential of the as-designed system in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Si Da Ling
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhiqiang Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences Tsinghua University, Beijing 100084, China
| | - Wenjun Ma
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhuo Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Correspondence: (Z.C.); (Y.D.); (J.X.)
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences Tsinghua University, Beijing 100084, China
- Correspondence: (Z.C.); (Y.D.); (J.X.)
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Correspondence: (Z.C.); (Y.D.); (J.X.)
| |
Collapse
|
22
|
Singh N, Aery S, Juneja S, Kumari L, Lone MS, Dar AA, Pawar SV, Mehta SK, Dan A. Chitosan Hydrogels with Embedded Thermo- and pH-Responsive Microgels as a Potential Carrier for Controlled Release of Drugs. ACS APPLIED BIO MATERIALS 2022; 5:3487-3499. [PMID: 35729496 DOI: 10.1021/acsabm.2c00401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a promising strategy based on chitosan (CS) hydrogels and dual temperature- and pH-responsive poly(N-isopropylacrylamide-co-methacrylic acid) (PNIPAM-co-MAA) microgels to facilitate release of a model drug, moxifloxacin (MFX). In this protocol, first, the microgels were prepared using a free radical copolymerization method, and subsequently, these carboxyl-group-rich soft particles were incorporated inside the hydrogel matrix using an EDC-NHS amidation method. Interestingly, the resulting microgel-embedded hydrogel composites (MG-HG) acting as a double barrier system largely reduced the drug release rate and prolonged the delivery time for up to 68 h, which was significantly longer than that obtained using microgels or hydrogels alone (20 h). On account of the dual-responsive features of the embedded microgels and the variation of water-solubility of drug molecules as a function of pH, MFX could be released in a controllable manner by regulating the temperature and pH of the delivery medium. The release kinetics followed a Korsmeyer-Peppas model, and the drug delivery mechanism was described by Fickian diffusion. Both the gel precursors and the hydrogel composites exhibited low cytotoxicity against mammalian cell lines (HeLa and HEK-293) and no deleterious hemolytic activity up to a certain higher concentration, indicating excellent biocompatibility of the materials. Thus, the unprecedented combination of modularity of physical properties caused by soft particle entrapment, unique macromolecular architecture, biocompatibility, and the general utility of the stimuli-responsive polymers offers a great promise to use these composite materials in drug delivery applications.
Collapse
Affiliation(s)
- Nirbhai Singh
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh - 160014, India
| | - Shikha Aery
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh - 160014, India
| | - Smayira Juneja
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh - 160014, India
| | - Laxmi Kumari
- University Institute of Pharmaceutical Sciences, Panjab University - Chandigarh, Sector 14, Chandigarh - 160014, India
| | - Mohd Sajid Lone
- Physical Chemistry Section, Department of Chemistry, University of Kashmir, Srinagar - 190006, Jammu and Kashmir, India
| | - Aijaz Ahmad Dar
- Physical Chemistry Section, Department of Chemistry, University of Kashmir, Srinagar - 190006, Jammu and Kashmir, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University - Chandigarh, Sector 14, Chandigarh - 160014, India
| | - Surinder K Mehta
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh - 160014, India
| | - Abhijit Dan
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh - 160014, India
| |
Collapse
|
23
|
Li C, Liu R, Song Y, Chen Y, Zhu D, Yu L, Huang Q, Zhang Z, Xue Z, Hua Z, Lu C, Lu A, Liu Y. Hyaluronic Acid Hydrogels Hybridized With Au-Triptolide Nanoparticles for Intraarticular Targeted Multi-Therapy of Rheumatoid Arthritis. Front Pharmacol 2022; 13:849101. [PMID: 35712709 PMCID: PMC9197263 DOI: 10.3389/fphar.2022.849101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease, characterized by synovial inflammation in multiple joints. Triptolide (TP) is a disease-modifying anti-rheumatic drug (DMARD) highly effective in patients with RA and has anti-inflammatory properties. However, its clinical application has been limited owing to practical disadvantages. In the present study, hyaluronic acid (HA) hydrogel-loaded RGD-attached gold nanoparticles (AuNPs) containing TP were synthesized to alleviate the toxicity and increase therapeutic specificity. The hydrogels can be applied for targeted photothermal-chemo treatment and in vivo imaging of RA. Hydrogel systems with tyramine-modified HA (TA-HA) conjugates have been applied to artificial tissue models as surrogates of cartilage to investigate drug transport and release properties. After degradation of HA chains, heat was locally generated at the inflammation region site due to near-infrared resonance (NIR) irradiation of AuNPs, and TP was released from nanoparticles, delivering heat and drug to the inflamed joints simultaneously. RA can be penetrated with NIR light. Intraarticular administration of the hydrogels containing low dosage of TP with NIR irradiation improved the inflamed conditions in mice with collagen-induced arthritis (CIA). Additionally, in vitro experiments were applied to deeply verify the antirheumatic mechanisms of TP-PLGA-Au@RGD/HA hydrogels. TP-PLGA-Au@RGD/HA hydrogel treatment significantly reduced the migratory and invasive capacities of RA fibroblast-like synoviocytes (RA-FLS) in vitro, through the decrease of phosphorylation of mTOR and its substrates, p70S6K1, thus inhibiting the mTOR pathway.
Collapse
Affiliation(s)
- Chenxi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yurong Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dongjie Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qingcai Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhengjia Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zeyu Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Cheng Lu, ; Aiping Lu, ; Yuanyan Liu,
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hongkong, China
- *Correspondence: Cheng Lu, ; Aiping Lu, ; Yuanyan Liu,
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Cheng Lu, ; Aiping Lu, ; Yuanyan Liu,
| |
Collapse
|
24
|
Edwards SD, Hou S, Brown JM, Boudreau RD, Lee Y, Kim YJ, Jeong KJ. Fast-Curing Injectable Microporous Hydrogel for In Situ Cell Encapsulation. ACS APPLIED BIO MATERIALS 2022; 5:2786-2794. [PMID: 35576622 DOI: 10.1021/acsabm.2c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seth D. Edwards
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Shujie Hou
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Jason M. Brown
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Ryann D. Boudreau
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Yuhan Lee
- Engineering in Medicine, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Young Jo Kim
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Kyung Jae Jeong
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
25
|
Biomedyczne właściwości chitozanu – zastosowanie w inżynierii tkankowej Biomedical properties of chitosan: Application in tissue engineering. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2021-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstrakt
Inżynieria tkankowa to interdyscyplinarna dziedzina badań, która stosuje zasady inżynierii i nauk przyrodniczych do opracowywania substytutów biologicznych, przywracania, utrzymywania lub poprawy funkcji tkanek. Łączy medycy-nę kliniczną, inżynierię mechaniczną, materiałoznawstwo i biologię molekularną. Chitozan jest związkiem, który może być stosowany na szeroką skalę w biomedycynie, m.in. jako nośnik leków, nici chirurgiczne, materiały opatrunkowe przeznaczone do przyspieszonego gojenia ran oraz rusztowania komórkowe w inżynierii tkankowej. Chitozon spełnia najważniejsze kryteria dla biomateriałów, m.in. kompatybilność, odpowiednie właściwości mechaniczne, morfologia i porowatość, nietoksyczność i biodegradowalność. Rusztowania chitozanowe mogą sprzyjać adhezji, różnicowaniu i proliferacji na powierzchni komórek. Z chitozanu można tworzyć różne formy funkcjonalne w zależności od potrzeb i wymagań, w tym: hydrożele 3D, gąbki 3D, folie i membrany oraz nanowłókna. Ze względu na unikalne właściwości fizykochemiczne biopolimer ten może być również wykorzystany do oczyszczania białek terapeutycznych z endotoksyn bakteryjnych, co jest dziś istotnym problemem w oczyszczaniu produktu końcowego w zastosowaniach medycznych. Obecnie terapie oparte na białkach rekombinowanych znajdują szerokie zastosowanie w terapiach celowanych, inżynierii tkankowej oraz szeroko pojętej medycynie regeneracyjnej. Dlatego tak ważny jest współistniejący, dobrze zapro-jektowany system oczyszczania produktu białkowego, który nie zmieni swoich zasadniczych właściwości. Artykuł jest przeglądem aktualnych badań nad zastosowaniem materiałów bioaktywnych na bazie chitozanu w medycynie regene-racyjnej różnych tkanek i narządów (m.in. tkanki chrzęstnej i kostnej, tkanki skórnej czy tkanki nerwowej).
Collapse
|
26
|
Iqbal S, Javed M, Qamar MA, Bahadur A, Fayyaz M, Akbar A, Alsaab HO, Awwad NS, Ibrahium HA. Synthesis of Cu‐ZnO/Polyacrylic Acid Hydrogel as Visible‐Light‐Driven Photocatalyst for Organic Pollutant Degradation. ChemistrySelect 2022. [DOI: 10.1002/slct.202103694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shahid Iqbal
- School of Chemistry and Materials Engineering Huizhou University Huizhou 516007 Guangdong China
| | - Mohsin Javed
- Department of Chemistry School of Science University of Management and Technology Lahore 54770 Pakistan
| | - Muhammad Azam Qamar
- Department of Chemistry School of Science University of Management and Technology Lahore 54770 Pakistan
| | - Ali Bahadur
- Department of Transdisciplinary Studies Graduate School of Convergence Science and Technology Seoul National University Seoul 08826 South Korea
| | - Muhammad Fayyaz
- Department of Chemistry School of Science University of Management and Technology Lahore 54770 Pakistan
| | - Ali Akbar
- Department of Physics University of Agriculture Faisalabad (UAF) Faisalabad Punjab 38000 Pakistan
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology Taif University, P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Nasser S. Awwad
- Chemistry Department, Faculty of Science King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A. Ibrahium
- Biology Department, Faculty of Science King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
- Department of Semi Pilot Plant Nuclear Materials Authority P.O. Box 530 El Maadi Egypt
| |
Collapse
|
27
|
Nguyen TPT, Li F, Shrestha S, Tuan RS, Thissen H, Forsythe JS, Frith JE. Cell-laden injectable microgels: Current status and future prospects for cartilage regeneration. Biomaterials 2021; 279:121214. [PMID: 34736147 DOI: 10.1016/j.biomaterials.2021.121214] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/19/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022]
Abstract
Injectable hydrogels have been employed extensively as versatile materials for cartilage regeneration due to their excellent biocompatibility, tunable structure, and ability to accommodate bioactive factors, as well as their ability to be locally delivered via minimally invasive injection to fill irregular defects. More recently, in vitro and in vivo studies have revealed that processing these materials to produce cell-laden microgels can enhance cell-cell and cell-matrix interactions and boost nutrient and metabolite exchange. Moreover, these studies have demonstrated gene expression profiles and matrix regeneration that are superior compared to conventional injectable bulk hydrogels. As cell-laden microgels and their application in cartilage repair are moving closer to clinical translation, this review aims to present an overview of the recent developments in this field. Here we focus on the currently used biomaterials and crosslinking strategies, the innovative fabrication techniques being used for the production of microgels, the cell sources used, the signals used for induction of chondrogenic differentiation and the resultant biological responses, and the ability to create three-dimensional, functional cartilage tissues. In addition, this review also covers the current clinical approaches for repairing cartilage as well as specific challenges faced when attempting the regeneration of damaged cartilage tissue. New findings related to the macroporous nature of the structures formed by the assembled microgel building blocks and the novel use of microgels in 3D printing for cartilage tissue engineering are also highlighted. Finally, we outline the challenges and future opportunities for employing cell-laden microgels in clinical applications.
Collapse
Affiliation(s)
- Thuy P T Nguyen
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Fanyi Li
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Surakshya Shrestha
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Helmut Thissen
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia; Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Clayton, VIC 3800, Australia.
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia; Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Clayton, VIC 3800, Australia.
| |
Collapse
|
28
|
Agnihotri P, Aery S, Dan A. Temperature- and pH-responsive poly( N-isopropylacrylamide- co-methacrylic acid) microgels as a carrier for controlled protein adsorption and release. SOFT MATTER 2021; 17:9595-9606. [PMID: 34633021 DOI: 10.1039/d1sm01197a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we report controlled protein adsorption and delivery of thermo- and pH-responsive poly(N-isopropylacrylamide-co-methacrylic acid) (PNIPAM-co-MAA) microgels at different temperatures, pH values and ionic strengths by employing bovine serum albumin (BSA) as a model protein. For these dual-responsive microgels, we found that the BSA adsorption was driven by several of six competing contributions, viz., physical diffusion (PD), hydrophobic interactions (HI), electrostatic attraction (EA), hydrogen bonding (HB) and temperature or pH-induced seizing action (SAT or SApH), depending on the temperature and pH of the solution. Compared to the pure PNIPAM microgels, the higher swelling degree of the PNIPAM-co-MAA microgels allowed a large amount of BSA loading under any experimental conditions. A largest BSA adsorption of 45.1 μg mg-1 was achieved at 40 °C and pH 4 due to the presence of all six contributions. The BSA adsorption and delivery could be further tuned by changing the crosslinking density within the microgels. The BSA binding onto the microgels was found to be ionic strength dependent, which could be attributed to the charge shielding of Na+ ions, salting out of BSA and aggregate formation of the microgels. The adsorbed BSA could be controllably released by adjusting the temperature and pH of the experiment, and with the help of sodium dodecyl sulphate (SDS) addition so as to eliminate each interaction between BSA and the microgels. Thus, this study can be useful to design a stimuli-responsive microgel-based carrier for controlled release of proteins.
Collapse
Affiliation(s)
- Priyanshi Agnihotri
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh 160014, India.
| | - Shikha Aery
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh 160014, India.
| | - Abhijit Dan
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh 160014, India.
| |
Collapse
|
29
|
Barbalinardo M, Biagetti M, Valle F, Cavallini M, Falini G, Montroni D. Green Biocompatible Method for the Synthesis of Collagen/Chitin Composites to Study Their Composition and Assembly Influence on Fibroblasts Growth. Biomacromolecules 2021; 22:3357-3365. [PMID: 34278777 DOI: 10.1021/acs.biomac.1c00463] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A green biocompatible route for the deposition and simultaneous assembly, by pH increment, of collagen/chitin composites was proposed. Both assembled and unassembled samples with different collagen/chitin ratios were synthesized, maintaining the β-chitin polymorph. The first set showed a microfibrous organization with compositional submicron homogeneity. The second set presented a nanohomogeneous composition based on collagen nanoaggregates and chitin nanofibrils. The sets were tested as scaffolds for fibroblast growth (NIH-3T3) to study the influence of composition and assembly. In the unassembled scaffolds, the positive influence of collagen on cell growth mostly worn out in 48 h, while the addition of chitin enhanced this effect for over 72 h. The assembled samples showed higher viability at 24 h but a less positive effect on viability along the time. This work highlighted critical aspects of the influence that composition and assembly has on fibroblast growth, a knowledge worth exploiting in scaffold design and preparation.
Collapse
Affiliation(s)
- Marianna Barbalinardo
- National Research Council (CNR), Institute for Nanostructured Materials (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Michele Biagetti
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum-Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Francesco Valle
- National Research Council (CNR), Institute for Nanostructured Materials (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy.,Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), ISMN-CNR, 40129 Bologna, Italy
| | - Massimiliano Cavallini
- National Research Council (CNR), Institute for Nanostructured Materials (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Giuseppe Falini
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum-Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Devis Montroni
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum-Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
30
|
Dan A, Agnihotri P, Bochenek S, Richtering W. Adsorption dynamics of thermoresponsive microgels with incorporated short oligo(ethylene glycol) chains at the oil-water interface. SOFT MATTER 2021; 17:6127-6139. [PMID: 34076021 DOI: 10.1039/d1sm00146a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, we report a systematic study of the adsorption behaviour of short oligo(ethylene glycol) (OEG) chains incorporated into poly(N-isopropylaccrylamide) (PNIPAM) microgels at the dodecane-water interface as a function of the microgel concentration at two different temperatures: 298 and 313 K. The dynamic interfacial tension of the interface for the adsorption of these functional microgels is measured by means of a pendent drop method. We find that similar to pure PNIPAM microgels, the functionalized microgels initially get transported from the bulk to the interface, where they undergo the deformability dependent spreading process, and thus leading to a reduction of interfacial tension. However, the OEG chains significantly influence the dynamic processes of the microgels at the interface, enabling precise control over the interfacial activity. A tuneability of adsorption behaviour that is interpreted in terms of the diversity of structural and morphological features of the microgels, can be achieved by changing the temperature and/or the OEG chain length of the comonomer. While the temperature induced phase transition generally slows down the adsorption kinetics of the microgels, increasing the temperature from 298 to 313 K allows faster reduction of interfacial tension for the adsorption of the microgels with long OEG chains among the studied comonomers, making them a unique interfacially active functional material. Overall, incorporation of OEG chains allows tailoring the interfacial activity of microgels, thereby paving the way for the use of these microgels to act as effective Pickering emulsion stabilizers in a range of applications.
Collapse
Affiliation(s)
- Abhijit Dan
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh 160014, India.
| | - Priyanshi Agnihotri
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh 160014, India.
| | - Steffen Bochenek
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| |
Collapse
|
31
|
Lee SS, Santschi M, Ferguson SJ. A Biomimetic Macroporous Hybrid Scaffold with Sustained Drug Delivery for Enhanced Bone Regeneration. Biomacromolecules 2021; 22:2460-2471. [PMID: 33971092 DOI: 10.1021/acs.biomac.1c00241] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone regeneration is a highly complex physiological process regulated by several factors. In particular, bone-mimicking extracellular matrix and available osteogenic growth factors such as bone morphogenetic protein (BMP) have been regarded as key contributors for bone regeneration. In this study, we developed a biomimetic hybrid scaffold (CEGH) with sustained release of BMP-2 that would result in enhanced bone formation. This hybrid scaffold, composed of BMP-2-loaded cryoelectrospun poly(ε-caprolactone) (PCL) (CE) surrounded by a macroporous gelatin/heparin cryogel (GH), is designed to overcome the drawbacks of the relatively weak mechanical properties of cryogels and poor biocompatibility and hydrophobicity of electrospun PCL. The GH component of the hybrid scaffold provides a hydrophilic surface to improve the biological response of the cells, while the CE component increases the mechanical strength of the scaffold to provide enhanced mechanical support for the defect area and a stable environment for osteogenic differentiation. After analyzing characteristics of the hybrid scaffold such as hydrophilicity, pore difference, mechanical properties, and surface charge, we confirmed that the hybrid scaffold shows enhanced cell proliferation rate and apatite formation in simulated body fluid. Then, we evaluated drug release kinetics of CEGH and confirmed the sustained release of BMP-2. Finally, the enhanced osteogenic differentiation of CEGH with sustained release of BMP-2 was confirmed by Alizarin Red S staining and real-time PCR analysis.
Collapse
Affiliation(s)
- Seunghun S Lee
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Matthias Santschi
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Stephen J Ferguson
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Amirthalingam S, Lee SS, Rajendran AK, Kim I, Hwang NS, Rangasamy J. Addition of lactoferrin and substance P in a chitin/PLGA-CaSO 4 hydrogel for regeneration of calvarial bone defects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112172. [PMID: 34082973 DOI: 10.1016/j.msec.2021.112172] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 11/25/2022]
Abstract
Calcium-based injectable hydrogels with various bioactive active molecules possess a great potential for bone regeneration. Herein, we have synthesized a chitin-PLGA-calcium sulfate hydrogel (CSG) containing bioactive molecules - lactoferrin (LF) and substance P (SP). SEM and XRD analysis revealed that CS crystal growth was altered with the addition of LF. Rheological measurements indicated that the injectability of the hydrogels was maintained after the addition of LF, however, there was a reduction in storage modulus after LF addition. The addition of LF increased stem cell proliferation whereas, SP enhanced the cell migration. Osteogenic gene expression revealed that LF concentration at 25 μg/mg of CSG was optimal for a favourable outcome. To this optimized LF containing CSG, SP was incorporated and 0.05 μg/mg was found to be most effective (CSG-L3S2) in vitro studies. Further, the μ-CT and histological studies confirmed that CSG-L3S2 showed enhanced bone regeneration compared to the controls in critical-sized calvarial defect of mice. Thus the results indicate that a combination of the chemotactic agent (SP), pleiotropic growth protein (LF), and CS in the chitin-PLGA hydrogel could be a promising approach for non-load bearing bone defects.
Collapse
Affiliation(s)
- Sivashanmugam Amirthalingam
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi-682041, India; School of Chemical and Biological Engineering, the Institute of Chemical Processes, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Seunghun S Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Arun Kumar Rajendran
- School of Chemical and Biological Engineering, the Institute of Chemical Processes, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Inseon Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Nathaniel S Hwang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 151-742, Republic of Korea; School of Chemical and Biological Engineering, the Institute of Chemical Processes, Seoul National University, Seoul, 151-742, Republic of Korea; Bio-MAX Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 151-742, Republic of Korea.
| | - Jayakumar Rangasamy
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi-682041, India.
| |
Collapse
|
33
|
Xue X, Hu Y, Deng Y, Su J. Recent Advances in Design of Functional Biocompatible Hydrogels for Bone Tissue Engineering. ADVANCED FUNCTIONAL MATERIALS 2021; 31. [DOI: 10.1002/adfm.202009432] [Citation(s) in RCA: 240] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Indexed: 01/06/2025]
Abstract
AbstractBone related diseases have caused serious threats to human health owing to their complexity and specificity. Fortunately, owing to the unique 3D network structure with high aqueous content and functional properties, emerging hydrogels are regarded as one of the most promising candidates for bone tissue engineering, such as repairing cartilage injury, skull defect, and arthritis. Herein, various design strategies and synthesis methods (e.g., 3D‐printing technology and nanoparticle composite strategy) are introduced to prepare implanted hydrogel scaffolds with tunable mechanical strength, favorable biocompatibility, and excellent bioactivity for applying in bone regeneration. Injectable hydrogels based on biocompatible materials (e.g., collagen, hyaluronic acid, chitosan, polyethylene glycol, etc.) possess many advantages in minimally invasive surgery, including adjustable physicochemical properties, filling irregular shapes of defect sites, and on‐demand release drugs or growth factors in response to different stimuli (e.g., pH, temperature, redox, enzyme, light, magnetic, etc.). In addition, drug delivery systems based on micro/nanogels are discussed, and its numerous promising designs used in the application of bone diseases (e.g., rheumatoid arthritis, osteoarthritis, cartilage defect) are also briefed in this review. Particularly, several key factors of hydrogel scaffolds (e.g., mechanical property, pore size, and release behavior of active factors) that can induce bone tissue regeneration are also summarized in this review. It is anticipated that advanced approaches and innovative ideas of bioactive hydrogels will be exploited in the clinical field and increase the life quality of patients with the bone injury.
Collapse
Affiliation(s)
- Xu Xue
- Institute of Translational Medicine Shanghai University Shanghai 200444 China
| | - Yan Hu
- Department of Orthopaedics Trauma Changhai Hospital Second Military Medical University Shanghai 200433 China
| | - Yonghui Deng
- Department of Chemistry Institute of Biomedical Sciences Fudan University Shanghai 200433 China
- State Key Lab of Transducer Technology Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China
| | - Jiacan Su
- Institute of Translational Medicine Shanghai University Shanghai 200444 China
| |
Collapse
|
34
|
Ding Z, Zhang Y, Guo P, Duan T, Cheng W, Guo Y, Zheng X, Lu G, Lu Q, Kaplan DL. Injectable Desferrioxamine-Laden Silk Nanofiber Hydrogels for Accelerating Diabetic Wound Healing. ACS Biomater Sci Eng 2021; 7:1147-1158. [PMID: 33522800 DOI: 10.1021/acsbiomaterials.0c01502] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dysangiogenesis and chronic inflammation are two critical reasons for diabetic foot ulcers. Desferrioxamine (DFO) was used clinically in the treatment of diabetic foot ulcers by repeated injections because of its capacity to induce vascularization. Biocompatible carriers that release DFO slowly and facilitate healing simultaneously are preferable options to accelerate the healing of diabetic wounds. Here, DFO-laden silk nanofiber hydrogels that provided a sustained release of DFO for more than 40 days were used to treat diabetic wounds. The DFO-laden hydrogels stimulated the healing of diabetic wounds. In vitro cell studies revealed that the DFO-laden hydrogels modulated the migration and gene expression of endothelial cells, and they also tuned the inflammation behavior of macrophages. These results were confirmed in an in vivo diabetic wound model. The DFO-laden hydrogels alleviated dysangiogenesis and chronic inflammation in the diabetic wounds, resulting in a more rapid wound healing and increased collagen deposition. Both in vitro and in vivo studies suggested potential clinical applications of these DFO-laden hydrogels in the treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Yunhua Zhang
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, P. R. China
| | - Peng Guo
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, P. R. China
| | - Tianbi Duan
- Center of Technology, Shuanghai Inoherb Cosmetics Co. Ltd., Shanghai 200444, P. R. China
| | - Weinan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen 361000, P. R. China
| | - Yang Guo
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen 361000, P. R. China
| | - Xin Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou 318000, P. R. China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
35
|
Yuan Q, Li L, Peng Y, Zhuang A, Wei W, Zhang D, Pang Y, Bi X. Biomimetic nanofibrous hybrid hydrogel membranes with sustained growth factor release for guided bone regeneration. Biomater Sci 2021; 9:1256-1271. [PMID: 33470265 DOI: 10.1039/d0bm01821j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A biomimetic nanofibrous membrane can immobilize growth factors or agents to obtain sustained release and prolonged effect in tissue engineering.
Collapse
Affiliation(s)
- Qingyue Yuan
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Lunhao Li
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Yiyu Peng
- Department of Ophthalmology
- the First Affiliated Hospital of Zhejiang University
- China
| | - Ai Zhuang
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Wei Wei
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Dandan Zhang
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Yan Pang
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Xiaoping Bi
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| |
Collapse
|
36
|
Zia I, Jolly R, Mirza S, Umar MS, Owais M, Shakir M. Hydroxyapatite Nanoparticles Fortified Xanthan Gum-Chitosan Based Polyelectrolyte Complex Scaffolds for Supporting the Osteo-Friendly Environment. ACS APPLIED BIO MATERIALS 2020; 3:7133-7146. [PMID: 35019373 DOI: 10.1021/acsabm.0c00948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanoparticle-reinforced polymer-based scaffolding matrices as artificial bone-implant materials are potential suitors for bone regenerative medicine as they simulate the native bone. In the present work, a series of bioinspired, osteoconductive tricomposite scaffolds made up of nano-hydroxyapatite (NHA) embedded xanthan gum-chitosan (XAN-CHI) polyelectrolyte complex (PEC) are explored for their bone-regeneration potential. The Fourier transform infrared spectroscopy studies confirmed complex formation between XAN and CHI and showed strong interactions between the NHA and PEC matrix. The X-ray diffraction studies indicated regulation of the nanocomposite (NC) scaffold crystallinity by the physical cues of the PEC matrix. Further results exhibited that the XAN-CHI/NHA5 scaffold, with a 50/50 (polymer/NHA) ratio, has optimized porous structure, appropriate compressive properties, and sufficient swelling ability with slower degradation rates, which are far better than those of CHI/NHA and other XAN-CHI/NHA NC scaffolds. The simulated body fluid studies showed XAN-CHI/NHA5 generated apatite-like surface structures of a Ca/P ratio ∼1.66. Also, the in vitro cell-material interaction studies with MG-63 cells revealed that relative to the CHI/NHA NC scaffold, the cellular viability, attachment, and proliferation were better on XAN-CHI/NHA scaffold surfaces, with XAN-CHI/NHA5 specimens exhibiting an effective increment in cell spreading capacity compared to XAN-CHI/NHA4 and XAN-CHI/NHA6 specimens. The presence of an osteo-friendly environment is also indicated by enhanced alkaline phosphatase expression and protein adsorption ability. The higher expression of extracellular matrix proteins, such as osteocalcin and osteopontin, finally validated the induction of differentiation of MG-63 cells by tricomposite scaffolds. In summary, this study demonstrates that the formation of PEC between XAN and CHI and incorporation of NHA in XAN-CHI PEC developed tricomposite scaffolds with robust potential for use in bone regeneration applications.
Collapse
Affiliation(s)
- Iram Zia
- Inorganic Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Reshma Jolly
- Inorganic Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Sumbul Mirza
- Inorganic Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Saad Umar
- Molecular Immunology Group Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Owais
- Molecular Immunology Group Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Shakir
- Inorganic Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
37
|
Agnihotri P, Raj R, Kumar D, Dan A. Short oligo(ethylene glycol) chain incorporated thermoresponsive microgels: from structural analysis to modulation of solution properties. SOFT MATTER 2020; 16:7845-7859. [PMID: 32756713 DOI: 10.1039/d0sm01187h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we report synthesis of thermoresponsive poly(N-isopropylaccrylamide) (PNIPAM) microgels with short oligo(ethylene glycol) (OEG) chain comonomers (1 to 4/5 repeating unit) by surfactant-free precipitation copolymerization. The efficient incorporation of the comonomers was confirmed by a complete set of characterization methods viz., FTIR, 1H NMR, TEM, DLS, and viscometry. The structural heterogeneity and the distribution of the comonomers within the microgels were determined by means of 1H high-resolution transverse relaxation magnetization measurements. Interestingly, the incorporation of these short OEG chain comonomers led to the formation of a core-corona structure, in which the comonomers were mainly located in the core of the polymeric network with PNIPAM dangling chains at the microgel periphery. The experimental investigations of deswelling behaviours revealed that the OEG chains allowed precise control over the colloidal properties, including phase transition, particles size, swelling degree and polydispersity of the microgels. The tuneability of these properties that was interpreted in terms of polymeric hydrophobic/hydrophilic balance as well as structural diversity, could be achieved by changing the OEG chain length, comonomer feed and crosslinking density. Further, we found that the microgels with more hydrophilic OEG chains were able to show a higher relative swelling, and the same solid content thus led to a higher viscosity at all temperatures. The OEG chains remarkably improved the colloidal stability of the microgels in electrolyte solutions even at higher temperatures, thereby paving the way for the use of these microgels in a range of applications.
Collapse
Affiliation(s)
- Priyanshi Agnihotri
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh 160014, India.
| | - Ritu Raj
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raibareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raibareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Abhijit Dan
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh 160014, India.
| |
Collapse
|
38
|
Abd El-Fattah A, Nageeb Hassan M, Rashad A, Marei M, Kandil S. Viscoelasticity, mechanical properties, and in vivo biocompatibility of injectable polyvinyl alcohol/bioactive glass composite hydrogels as potential bone tissue scaffolds. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2020. [DOI: 10.1080/1023666x.2020.1790253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ahmed Abd El-Fattah
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
- Department of Chemistry, College of Science, University of Bahrain, Sakhir, Kingdom of Bahrain
| | - Mohamad Nageeb Hassan
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
- Department of Dental Biomaterials, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Ahmad Rashad
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
- Department of Dental Biomaterials, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Mona Marei
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Sherif Kandil
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
39
|
Cheng W, Ding Z, Zheng X, Lu Q, Kong X, Zhou X, Lu G, Kaplan DL. Injectable hydrogel systems with multiple biophysical and biochemical cues for bone regeneration. Biomater Sci 2020; 8:2537-2548. [PMID: 32215404 PMCID: PMC7204512 DOI: 10.1039/d0bm00104j] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone regeneration is a complex process in which angiogenesis and osteogenesis are crucial. Introducing multiple angiogenic and osteogenic cues simultaneously into a single system and tuning these cues to optimize the niche remains a challenge for bone tissue engineering. Herein, based on our injectable biomimetic hydrogels composed of silk nanofibers (SNF) and hydroxyapatite nanoparticles (HA), deferoxamine (DFO) and bone morphogenetic protein-2 (BMP-2) were loaded on SNF and HA to introduce more angiogenic and osteogenic cues. The angiogenesis and osteogenesis capacity of injectable hydrogels could be regulated by tuning the delivery of DFO and BMP-2 independently, resulting in vascularization and bone regeneration in cranial defects. The angiogenesis and osteogenesis outcomes accelerated the regeneration of vascularized bones toward similar composition and structure to natural bones. Therefore, the multiple biophysical and chemical cues provided by the nanofibrous structures, organic-inorganic compositions, and chemical and biochemical angiogenic and osteogenic inducing cues suggest the potential for clinical applicability of these hydrogels in bone tissue engineering.
Collapse
Affiliation(s)
- Weinan Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People's Republic of China. and Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, People's Republic of China. and Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen 361000, People's Republic of China
| | - Zhaozhao Ding
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, People's Republic of China.
| | - Xin Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou 318000, People's Republic of China
| | - Qiang Lu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People's Republic of China. and Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, People's Republic of China.
| | - Xiangdong Kong
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People's Republic of China.
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, People's Republic of China.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
40
|
Magnesium-containing silk fibroin/polycaprolactone electrospun nanofibrous scaffolds for accelerating bone regeneration. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.03.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
41
|
Zheng X, Ding Z, Cheng W, Lu Q, Kong X, Zhou X, Lu G, Kaplan DL. Microskin-Inspired Injectable MSC-Laden Hydrogels for Scarless Wound Healing with Hair Follicles. Adv Healthc Mater 2020; 9:e2000041. [PMID: 32338466 PMCID: PMC7473495 DOI: 10.1002/adhm.202000041] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/26/2020] [Indexed: 12/20/2022]
Abstract
Scarless skin regeneration with functional tissue remains a challenge for full-thickness wounds. Here, mesenchymal stem cell (MSC)-laden hydrogels are developed for scarless wound healing with hair follicles. Microgels composed of aligned silk nanofibers are used to load MSCs to modulate the paracrine. MSC-laden microgels are dispersed into injectable silk nanofiber hydrogels, forming composites biomaterials containing the cells. The injectable hydrogels protect and stabilize the MSCs in the wounds. The synergistic action of silk-based composite hydrogels and MSCs stimulated angiogenesis and M1-M2 phenotype switching of macrophages, provides a suitable niche for functional recovery of wounds. Compared to skin defects treated with MSC-free hydrogels, the defects treated with the MSC-laden composite hydrogels heal faster and form scarless tissues with hair follicles. Wound healing can be further improved by adjusting the ratio of silk nanofibers and particles and the loaded MSCs, suggesting tunability of the system. To the best of current knowledge, this is the first time scarless skin regeneration with hair follicles based on silk material systems is reported. The improved wound healing capacity of the systems suggests future in vivo studies to compare to other biomaterial systems related to clinical goals in skin regeneration in the absence of scarring.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, P. R. China
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, 318000, P. R. China
| | - Zhaozhao Ding
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, P. R. China
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi, 214041, P. R. China
| | - Weinan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, 361000, P. R. China
| | - Qiang Lu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, P. R. China
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, P. R. China
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi, 214041, P. R. China
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Xiangdong Kong
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, P. R. China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, P. R. China
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi, 214041, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
42
|
Jolly R, Khan AA, Ahmed SS, Alam S, Kazmi S, Owais M, Farooqi MA, Shakir M. Bioactive Phoenix dactylifera seeds incorporated chitosan/hydroxyapatite nanoconjugate for prospective bone tissue engineering applications: A bio-synergistic approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110554. [DOI: 10.1016/j.msec.2019.110554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/16/2019] [Accepted: 12/12/2019] [Indexed: 01/10/2023]
|
43
|
Islam MM, Shahruzzaman M, Biswas S, Nurus Sakib M, Rashid TU. Chitosan based bioactive materials in tissue engineering applications-A review. Bioact Mater 2020; 5:164-183. [PMID: 32083230 PMCID: PMC7016353 DOI: 10.1016/j.bioactmat.2020.01.012] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, there have been increasingly rapid advances of using bioactive materials in tissue engineering applications. Bioactive materials constitute many different structures based upon ceramic, metallic or polymeric materials, and can elicit specific tissue responses. However, most of them are relatively brittle, stiff, and difficult to form into complex shapes. Hence, there has been a growing demand for preparing materials with tailored physical, biological, and mechanical properties, as well as predictable degradation behavior. Chitosan-based materials have been shown to be ideal bioactive materials due to their outstanding properties such as formability into different structures, and fabricability with a wide range of bioactive materials, in addition to their biocompatibility and biodegradability. This review highlights scientific findings concerning the use of innovative chitosan-based bioactive materials in the fields of tissue engineering, with an outlook into their future applications. It also covers latest developments in terms of constituents, fabrication technologies, structural, and bioactive properties of these materials that may represent an effective solution for tissue engineering materials, making them a realistic clinical alternative in the near future.
Collapse
Affiliation(s)
- Md. Minhajul Islam
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md. Shahruzzaman
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shanta Biswas
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md. Nurus Sakib
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Taslim Ur Rashid
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
- Fiber and Polymer Science, North Carolina State University, Campus Box 7616, Raleigh, NC, 27695, United States
| |
Collapse
|
44
|
Kocak FZ, Talari AC, Yar M, Rehman IU. In-Situ Forming pH and Thermosensitive Injectable Hydrogels to Stimulate Angiogenesis: Potential Candidates for Fast Bone Regeneration Applications. Int J Mol Sci 2020; 21:E1633. [PMID: 32120998 PMCID: PMC7084557 DOI: 10.3390/ijms21051633] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
Biomaterials that promote angiogenesis are required for repair and regeneration of bone. In-situ formed injectable hydrogels functionalised with bioactive agents, facilitating angiogenesis have high demand for bone regeneration. In this study, pH and thermosensitive hydrogels based on chitosan (CS) and hydroxyapatite (HA) composite materials loaded with heparin (Hep) were investigated for their pro-angiogenic potential. Hydrogel formulations with varying Hep concentrations were prepared by sol-gel technique for these homogeneous solutions were neutralised with sodium bicarbonate (NaHCO3) at 4 °C. Solutions (CS/HA/Hep) constituted hydrogels setting at 37 °C which was initiated from surface in 5-10 minutes. Hydrogels were characterised by performing injectability, gelation, rheology, morphology, chemical and biological analyses. Hydrogel solutions facilitated manual dropwise injection from 21 Gauge which is highly used for orthopaedic and dental administrations, and the maximum injection force measured through 19 G needle (17.191 ± 2.296N) was convenient for manual injections. Angiogenesis tests were performed by an ex-ovo chick chorioallantoic membrane (CAM) assay by applying injectable solutions on CAM, which produced in situ hydrogels. Hydrogels induced microvascularity in CAM assay this was confirmed by histology analyses. Hydrogels with lower concentration of Hep showed more efficiency in pro-angiogenic response. Thereof, novel injectable hydrogels inducing angiogenesis (CS/HA/Hep) are potential candidates for bone regeneration and drug delivery applications.
Collapse
Affiliation(s)
- Fatma Z. Kocak
- Engineering Department, Lancaster University, Lancaster LA1 4YW, UK; (F.Z.K.)
| | | | - Muhammad Yar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Punjab 54000, Pakistan;
| | - Ihtesham U. Rehman
- Engineering Department, Lancaster University, Lancaster LA1 4YW, UK; (F.Z.K.)
| |
Collapse
|
45
|
Biodegradable polymers: a cure for the planet, but a long way to go. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-2004-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Lowe B, Hardy JG, Walsh LJ. Optimizing Nanohydroxyapatite Nanocomposites for Bone Tissue Engineering. ACS OMEGA 2020; 5:1-9. [PMID: 31956745 PMCID: PMC6963893 DOI: 10.1021/acsomega.9b02917] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/04/2019] [Indexed: 05/29/2023]
Abstract
Bone tissue engineering involves the combined use of materials with functional properties to regenerate bone. Nanohydroxyapatite (nHA) can influence the behavior of cells. The functional and structural properties of nHA can be controlled during nanoparticle synthesis. This review defines the relationship between the attributes of nHA nanoparticles and their biological effects, focusing on biocompatibility, surface-area-to-volume ratio, bonding chemistry, and substrate functionality. The paper explores how these aspects have been applied in the development of scaffolds for the repair of damaged bone or regeneration of missing bone.
Collapse
Affiliation(s)
- Baboucarr Lowe
- School
of Dentistry, The University of Queensland, Brisbane QLD 4006, Australia
| | - John G. Hardy
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K.
- Materials
Science Institute, Lancaster University, Lancaster LA1 4YB, U.K.
| | - Laurence J. Walsh
- School
of Dentistry, The University of Queensland, Brisbane QLD 4006, Australia
| |
Collapse
|
47
|
Kruppke B, Farack J, Weil S, Aflalo ED, Poláková D, Sagi A, Hanke T. Crayfish hemocyanin on chitin bone substitute scaffolds promotes the proliferation and osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A 2019; 108:694-708. [DOI: 10.1002/jbm.a.36849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden Dresden Germany
| | - Jana Farack
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden Dresden Germany
| | - Simy Weil
- Department of Life Sciences Ben‐Gurion University of the Negev Beer‐Sheva Israel
| | - Eliahu David Aflalo
- Department of Life Sciences Ben‐Gurion University of the Negev Beer‐Sheva Israel
- Department of Life Sciences Achva Academic College Arugot Israel
| | - Dagmar Poláková
- Faculty of Mechatronics and Interdisciplinary Engineering Studies, Technical University of Liberec Liberec Czech Republic
| | - Amir Sagi
- Department of Life Sciences Ben‐Gurion University of the Negev Beer‐Sheva Israel
- The National Institute for Biotechnology in the Negev, Ben‐Gurion University of the Negev Beer‐Sheva Israel
| | - Thomas Hanke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden Dresden Germany
| |
Collapse
|
48
|
Hou F, Ma X, Fan L, Wang D, Ding T, Ye X, Liu D. Enhancement of chitin suspension hydrolysis by a combination of ultrasound and chitinase. Carbohydr Polym 2019; 231:115669. [PMID: 31888808 DOI: 10.1016/j.carbpol.2019.115669] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 12/16/2022]
Abstract
This study evaluated the degradation kinetics and structural characteristics of chitin suspension (CS) with a combination of ultrasound and chitinase. Compared with the enzymolysis, the degradation degree of sonoenzymolysis was enhanced to the maximum by 27.93 % at an intensity of 25 W/mL for 20 min. According to degradation kinetics, ultrasound intensified molecular collision rate between chitinase and substrate, thereby increasing the degradation degree. What's more, combined with chitinase, ultrasound intensified the rate of the breakage of glycosidic bond and viscosity-average molecular weight (Mv) decrease, but no obvious change in acetylation degree (DA). Additionally, the intra- or inter-hydrogen bindings were weakened by ultrasound during sonoenzymolysis, leading to a slight decrease in crystalline index and a more ordered structure, which increased the accessibility of the substrate to enzyme. In conclusion, combination of chitinase and ultrasound could enhance the hydrolysis of CS while without changing its primary structure.
Collapse
Affiliation(s)
- Furong Hou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Xiaobin Ma
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Lihua Fan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Danli Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Hangzhou 310058, China.
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Hangzhou 310058, China.
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Hangzhou 310058, China.
| |
Collapse
|
49
|
Zhu C, Ding Z, Lu Q, Lu G, Xiao L, Zhang X, Dong X, Ru C, Kaplan DL. Injectable Silk-Vaterite Composite Hydrogels with Tunable Sustained Drug Release Capacity. ACS Biomater Sci Eng 2019; 5:6602-6609. [PMID: 33423479 DOI: 10.1021/acsbiomaterials.9b01313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Improving the efficiency of chemotherapy remains a key challenge in drug delivery. Many drug carriers have been designed to achieve multifunctional factors as part of their performance, including controlled release, dispersibility in aqueous environments, and targeting to cancer sites. However, it is difficult to optimize multiple properties simultaneously for a single carrier system. Here, synergistic carriers composed of vaterite microspheres and silk nanofiber hydrogels were developed to improve the dispersibility of vaterite spheres and the control of drug delivery without compromising the injectability or sensitivity to pH. The vaterite microspheres were dispersed homogeneously and remained stable in the silk nanofiber hydrogels. Doxorubicin (DOX) was effectively loaded on the vaterite spheres and silk nanofibers, forming synergistic silk-vaterite hydrogel delivery systems. The sustained delivery of DOX was tuned and controlled by vaterite stability and the DOX content loaded on the spheres and nanofibers. The cytotoxicity was regulated via the controlled delivery of DOX, suggesting the possibility of optimizing chemotherapeutic strategies. These silk-vaterite delivery hydrogels suggest a useful strategy for designing novel delivery systems for improved delivery and therapeutic benefits.
Collapse
Affiliation(s)
- Caihong Zhu
- Research Center of Robotics and Micro System & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 178 Ganjiang East Road, Suzhou 215021, People's Republic of China.,National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, 585 Xingyuan North Road, Wuxi 214041, People's Republic of China
| | - Liying Xiao
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China
| | - Xiaodan Dong
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China
| | - Changhai Ru
- Research Center of Robotics and Micro System & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 178 Ganjiang East Road, Suzhou 215021, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, Massachusetts 02155, United States
| |
Collapse
|
50
|
Wu J, Zheng K, Huang X, Liu J, Liu H, Boccaccini AR, Wan Y, Guo X, Shao Z. Thermally triggered injectable chitosan/silk fibroin/bioactive glass nanoparticle hydrogels for in-situ bone formation in rat calvarial bone defects. Acta Biomater 2019; 91:60-71. [PMID: 30986530 DOI: 10.1016/j.actbio.2019.04.023] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/24/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
Copper-containing bioactive glass nanoparticles (Cu-BG NPs) with designed compositions and sizes were synthesized and incorporated into chitosan (CH)/silk fibroin (SF)/glycerophosphate (GP) composites to prepare injectable hydrogels for cell-free bone repair. The resulting Cu-BG/CH/SF/GP gels were found to exhibit well-defined injectability and to undergo rapid gelation at physiological temperature and pH. They were highly porous and showed the ability to administer Si, Ca and Cu ions at their respective safe doses in a sustained and controlled manner. In vitro studies revealed that the gels supported the growth of seeded MC3T3-E1 and human umbilical vein endothelial cells, and effectively induced them toward osteogenesis and angiogenesis, respectively. In vivo bone repair based on a critical-size rat calvarial bone defect model demonstrated that the optimal Cu-BG/CH/SF/GP gel was able to fully restore the bone defect with formation of vascularized bone tissue and mineralized collagen deposition during a treatment period of 8 weeks without utilization of any cells and/or growth factors. The results suggest that the presently developed Cu-BG/CH/SF/GP composite hydrogels have great potential and translation ability for bone regeneration owing to their thermo-sensitive properties, cell-free bioactivity, and cost-effectiveness. STATEMENT OF SIGNIFICANCE: Hydrogels loaded with cells and/or growth factors exhibit potential in bone repair. However, they have been facing obstacles related to the clinic translation. Here, a novel type of hydrogel system consisting of copper-containing bioactive glass nanoparticles and chitosan/silk fibroin composite was developed. These gels showed injectability and thermally triggered in situ gelation properties and were able to administer the release of ions at safe but effective doses in a controlled manner while inducing the seeded cells toward osteogenesis and angiogenesis. The optimal gel showed the ability to fully repair critical-size rat calvarial bone defects without involving time consuming cell processing and/or the use of expensive growth factors, confirming that this novel hydrogel system has great potential for translation to the clinic.
Collapse
|