1
|
Bresinsky M, Goepferich A. Control of biomedical nanoparticle distribution and drug release in vivo by complex particle design strategies. Eur J Pharm Biopharm 2025; 208:114634. [PMID: 39826847 DOI: 10.1016/j.ejpb.2025.114634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
The utilization of targeted nanoparticles as a selective drug delivery system is a powerful tool to increase the amount of active substance reaching the target site. This can increase therapeutic efficacy while reducing adverse drug effects. However, nanoparticles face several challenges: upon injection, the immediate adhesion of plasma proteins may mask targeting ligands, thereby diminishing the target cell selectivity. In addition, opsonization can lead to premature clearance and the widespread presence of receptors or enzymes limits the accuracy of target cell recognition. Nanoparticles may also suffer from endosomal entrapment, and controlled drug release can be hindered by premature burst release or insufficient particle retention at the target site. Various strategies have been developed to address these adverse events, such as the implementation of switchable particle properties, regulating the composition of the formed protein corona, or using click-chemistry based targeting approaches. This has resulted in increasingly complex particle designs, raising the question of whether this development actually improves the therapeutic efficacy in vivo. This review provides an overview of the challenges in targeted drug delivery and explores potential solutions described in the literature. Subsequently, appropriate strategies for the development of nanoparticular drug delivery concepts are discussed.
Collapse
Affiliation(s)
- Melanie Bresinsky
- Department of Pharmaceutical Technology, University of Regensburg 93053 Regensburg, Bavaria, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg 93053 Regensburg, Bavaria, Germany.
| |
Collapse
|
2
|
Lee MY, Lee D, Choi D, Kim KS, Kang PM. Targeting Reactive Oxygen Species for Diagnosis of Various Diseases. J Funct Biomater 2024; 15:378. [PMID: 39728178 DOI: 10.3390/jfb15120378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
Reactive oxygen species (ROS) are generated predominantly during cellular respiration and play a significant role in signaling within the cell and between cells. However, excessive accumulation of ROS can lead to cellular dysfunction, disease progression, and apoptosis that can lead to organ dysfunction. To overcome the short half-life of ROS and the relatively small amount produced, various imaging methods have been developed, using both endogenous and exogenous means to monitor ROS in disease settings. In this review, we discuss the molecular mechanisms underlying ROS production and explore the methods and materials that could be used to detect ROS overproduction, including iron-based materials, ROS-responsive chemical bond containing polymers, and ROS-responsive molecule containing biomaterials. We also discuss various imaging and imaging techniques that could be used to target and detect ROS overproduction. We discuss the ROS imaging potentials of established clinical imaging methods, such as magnetic resonance imaging (MRI), sonographic imaging, and fluorescence imaging. ROS imaging potentials of other imaging methods, such as photoacoustic imaging (PAI) and Raman imaging (RI) that are currently in preclinical stage are also discussed. Finally, this paper focuses on various diseases that are associated with ROS overproduction, and the current and the future clinical applications of ROS-targeted imaging. While the most widely used clinical condition is cardiovascular diseases, its potential extends into non-cardiovascular clinical conditions, such as neurovascular, neurodegenerative, and other ROS-associated conditions, such as cancers, skin aging, acute kidney injury, and inflammatory arthritis.
Collapse
Affiliation(s)
- Moung Young Lee
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Centers for Research in ICT based Infectious Diseases, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Donguk Lee
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, USA
| | - Dayun Choi
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, USA
| | - Kye S Kim
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Peter M Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
He L, Meng F, Chen R, Qin J, Sun M, Fan Z, Du J. Precise Regulations at the Subcellular Level through Intracellular Polymerization, Assembly, and Transformation. JACS AU 2024; 4:4162-4186. [PMID: 39610726 PMCID: PMC11600172 DOI: 10.1021/jacsau.4c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
A living cell is an intricate machine that creates subregions to operate cell functions effectively. Subcellular dysfunction has been identified as a potential druggable target for successful drug design and therapy. The treatments based on intracellular polymerization, self-assembly, or transformation offer various advantages, including enhanced blood circulation of monomers, long-term drug delivery pharmacokinetics, low drug resistance, and the ability to target deep tissues and organelles. In this review, we discuss the latest developments of intracellular synthesis applied to precisely control cellular functions. First, we discuss the design and applications of endogenous and exogenous stimuli-triggered intracellular polymerization, self-assembly, and dynamic morphology transformation of biomolecules at the subcellular level. Second, we highlight the benefits of these strategies applied in cancer diagnosis and treatment and modulating cellular states or cell metabolism of living systems. Finally, we conclude the recent progress in this field, discuss future perspectives, analyze the challenges of the intracellular functional reactions for regulation, and find future opportunities.
Collapse
Affiliation(s)
- Le He
- School
of Materials Science and Engineering, East
China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Department
of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology
and Brain Functional Modulation, Clinical Research Center for Anesthesiology
and Perioperative Medicine, Translational Research Institute of Brain
and Brain-Like Intelligence, Shanghai Fourth People’s Hospital,
School of Medicine, Tongji University, Shanghai 200434, China
| | - Fanying Meng
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Ran Chen
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jinlong Qin
- Department
of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology
and Brain Functional Modulation, Clinical Research Center for Anesthesiology
and Perioperative Medicine, Translational Research Institute of Brain
and Brain-Like Intelligence, Shanghai Fourth People’s Hospital,
School of Medicine, Tongji University, Shanghai 200434, China
| | - Min Sun
- Department
of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology
and Brain Functional Modulation, Clinical Research Center for Anesthesiology
and Perioperative Medicine, Translational Research Institute of Brain
and Brain-Like Intelligence, Shanghai Fourth People’s Hospital,
School of Medicine, Tongji University, Shanghai 200434, China
| | - Zhen Fan
- Department
of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology
and Brain Functional Modulation, Clinical Research Center for Anesthesiology
and Perioperative Medicine, Translational Research Institute of Brain
and Brain-Like Intelligence, Shanghai Fourth People’s Hospital,
School of Medicine, Tongji University, Shanghai 200434, China
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- School
of Materials Science and Engineering, East
China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Department
of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology
and Brain Functional Modulation, Clinical Research Center for Anesthesiology
and Perioperative Medicine, Translational Research Institute of Brain
and Brain-Like Intelligence, Shanghai Fourth People’s Hospital,
School of Medicine, Tongji University, Shanghai 200434, China
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
4
|
Guo Y, Li P, Guo X, Yao C, Yang D. Synthetic Nanoassemblies for Regulating Organelles: From Molecular Design to Precision Therapeutics. ACS NANO 2024; 18:30224-30246. [PMID: 39441007 DOI: 10.1021/acsnano.4c10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Each organelle referring to a complex multiorder architecture executes respective biological processes via its distinct spatial organization and internal microenvironment. As the assembly of biomolecules is the structural basis of living cells, creating synthetic nanoassemblies with specific physicochemical and morphological properties in living cells to interfere or couple with the natural organelle architectures has attracted great attention in precision therapeutics of cancers. In this review, we give an overview of the latest advances in the synthetic nanoassemblies for precise organelle regulation, including the formation mechanisms, triggering strategies, and biomedical applications in precision therapeutics. We summarize the emerging material systems, including polymers, peptides, and deoxyribonucleic acids (DNAs), and their respective intermolecular interactions for intercellular synthetic nanoassemblies, and highlight their design principles in constructing precursors that assemble into synthetic nanoassemblies targeting specific organelles in the complex cellular environment. We further showcase the developed intracellular synthetic nanoassemblies targeting specific organelles including mitochondria, the endoplasmic reticulum, lysosome, Golgi apparatus, and nucleus and describe their underlying mechanisms for organelle regulation and precision therapeutics for cancer. Last, the essential challenges in this field and prospects for future precision therapeutics of synthetic nanoassemblies are discussed. This review should facilitate the rational design of organelle-targeting synthetic nanoassemblies and the comprehensive recognition of organelles by materials and contribute to the deep understanding and application of the synthetic nanoassemblies for precision therapeutics.
Collapse
Affiliation(s)
- Yanfei Guo
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P.R. China
| | - Peiran Li
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Xiaocui Guo
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Dayong Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P.R. China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| |
Collapse
|
5
|
Yi H, Yu H, Wang L, Wang Y, Ouyang C, Keshta BE. Microneedle transdermal drug delivery as a candidate for the treatment of gouty arthritis: Material structure, design strategies and prospects. Acta Biomater 2024; 187:20-50. [PMID: 39182801 DOI: 10.1016/j.actbio.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Gouty arthritis (GA) is caused by monosodium urate (MSU) crystals deposition. GA is difficult to cure because of its complex disease mechanism and the tendency to reoccur. GA patients require long-term uric acid-lowering and anti-inflammatory treatments. In the past ten years, as a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles (MNs) administration has been continuously developed, which can realize various drug release modes to deal with various complex diseases. Compared with the traditional administration methods (oral and injection), MNs are more conducive to the long-term independent treatment of GA patients because of their safe, efficient and controllable drug delivery ability. In this review, the pathological mechanism of GA and common therapeutic drugs for GA are summarized. After that, MNs drug delivery mechanisms were summarized: dissolution release mechanism, swelling release mechanism and channel-assisted release mechanism. According to drug delivery patterns of MNs, the mechanisms and applications of rapid-release MNs, long-acting MNs, intelligent-release MNs and multiple-release MNs were reviewed. Additionally, existing problems and future trends of MNs in the treatment of GA were also discussed. STATEMENT OF SIGNIFICANCE: Gout is an arthritis caused by metabolic disease "hyperuricemia". Epidemiological studies show that the number of gouty patients is increasing rapidly worldwide. Due to the complex disease mechanism and recurrent nature of gout, gouty patients require long-term therapy. However, traditional drug delivery modes (oral and injectable) have poor adherence, low drug utilization, and lack of local localized targeting. They may lead to adverse effects such as rashes and gastrointestinal reactions. As a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles have been continuously developed, which can realize various drug release modes to deal with gouty arthritis. In this review, the material structure, design strategy and future outlook of microneedles for treating gouty arthritis will be reviewed.
Collapse
Affiliation(s)
- Hong Yi
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chenguang Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Basem E Keshta
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
6
|
Zhang Y, Jiang M, Wang T. Reactive oxygen species (ROS)-responsive biomaterials for treating myocardial ischemia-reperfusion injury. Front Bioeng Biotechnol 2024; 12:1469393. [PMID: 39286345 PMCID: PMC11402825 DOI: 10.3389/fbioe.2024.1469393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a critical issue that arises when restoring blood flow after an ischemic event in the heart. Excessive reactive oxygen species (ROS) production during this process exacerbates cellular damage and impairs cardiac function. Recent therapeutic strategies have focused on leveraging the ROS microenvironment to design targeted drug delivery systems. ROS-responsive biomaterials have emerged as promising candidates, offering enhanced therapeutic efficacy with reduced systemic adverse effects. This review examines the mechanisms of ROS overproduction during myocardial ischemia-reperfusion and summarizes significant advancements in ROS-responsive biomaterials for MIRI treatment. We discuss various chemical strategies to impart ROS sensitivity to these materials, emphasizing ROS-induced solubility switches and degradation mechanisms. Additionally, we highlight various ROS-responsive therapeutic platforms, such as nanoparticles and hydrogels, and their unique advantages in drug delivery for MIRI. Preclinical studies demonstrating the efficacy of these materials in mitigating MIRI in animal models are reviewed, alongside their mechanisms of action and potential clinical implications. We also address the challenges and future prospects of translating these state of the art biomaterial-based therapeutics into clinical practice to improve MIRI management and cardiac outcomes. This review will provide valuable insights for researchers and clinicians working on novel therapeutic strategies for MIRI intervention.
Collapse
Affiliation(s)
- Ying Zhang
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Mantang Jiang
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wang
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Hu J, Ran S, Huang Z, Liu Y, Hu H, Zhou Y, Ding X, Yin J, Zhang Y. Antibacterial tellurium-containing polycarbonate drug carriers to eliminate intratumor bacteria for synergetic chemotherapy against colorectal cancer. Acta Biomater 2024; 185:323-335. [PMID: 38964527 DOI: 10.1016/j.actbio.2024.06.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Intratumor microbes have attracted great attention in cancer research due to its influence on the tumorigenesis, progression and metastasis of cancer. However, the therapeutic strategies targeting intratumoral microbes are still in their infancy. Specific microorganisms, such as Fusobacterium nucleatum (F. nucleatum), are abundant in various cancer and always result in the CRC progression and chemotherapy resistance. Here, a combined anticancer and antibacterial therapeutic strategy is proposed to deliver antitumor drug to the tumors containing intratumor microbiota by the antibacerial polymeric drug carriers. We construct oral tellurium-containing drug carriers using a complex of tellurium-containing polycarbonate with cisplatin (PTE@CDDP). The results show that the particle size of the prepared nanoparticles could be maintained at about 105 nm in the digestive system environment, which is in line with the optimal particle size of oral nanomedicine. In vitro mechanism study indicates that the tellurium-containing polymers are highly effective in killing F.nucleatum through a membrane disruption mechanism. The pharmacokinetic experiments confirmed that PTE@CDDP has the potential function of enhancing the oral bioavailability of cisplatin. Both in vitro and in vivo studies show that PTE@CDDP could inhibit intratumor F.nucleatum and lead to a reduction in cell proliferation and inflammation in the tumor site. Together, the study identifies that the CDDP-loaded tellurium-containing nanoparticles have great potential for treating the F.nucleatum-promoted colorectal cancer (CRC) by combining intratumor microbiota modulation and chemotherapy. The synergistic therapeutic strategy provide new insight into treating various cancers combined with bacterial infection. STATEMENT OF SIGNIFICANCE: The synthesized antibacterial polymer was first employed to remodel the intratumor microbes in tumor microenvironment (TME). Moreover, it was the first report of tellurium-containing polymers against F.nucleatum and employed for treatment of the CRC. A convenient oral dosage form of cisplatin (CDDP)-loaded tellurium-containing nanoparticles (PTE@CDDP) was adopted here, and the synergistic antibacterial/chemotherapy effect occurred. The PTE@CDDP could quickly and completely eliminate F.nucleatum in a safe dose. In the CRC model, PTE@CDDP effectively reversed the inflammation level and even restored the intestinal barrier damaged by F.nucleatum. The ultrasensitive ROS-responsiveness of PTE@CDDP triggered the fast oxidation and efficient drug release of CDDP and thus a highly efficient apoptosis of the tumors. Therefore, the tellurium-containing polymers are expected to serve as novel antibacterial agents in vivo and have great potential in the F.nucleatum-associated cancers. The achievements provided new insight into treating CRC and other cancers combined with bacterial infection.
Collapse
Affiliation(s)
- Jieni Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shujun Ran
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Zhengwei Huang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yanyuan Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haiyan Hu
- M.D. Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai 200233, China.
| | - Yan Zhou
- M.D. Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai 200233, China
| | - Xiaomin Ding
- M.D. Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai 200233, China
| | - Junyi Yin
- M.D. Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai 200233, China
| | - Yan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
8
|
Vasvani S, Vasukutty A, Bardhan R, Park IK, Uthaman S. Reactive oxygen species driven prodrug-based nanoscale carriers for transformative therapies. Biomater Sci 2024; 12:4335-4353. [PMID: 39041781 DOI: 10.1039/d4bm00647j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Reactive oxygen species (ROS) drive processes in various pathological conditions serving as an attractive target for therapeutic strategies. This review highlights the development and use of ROS-dependent prodrug-based nanoscale carriers that has transformed many biomedical applications. Incorporating prodrugs into nanoscale carriers not only improves their stability and solubility but also enables site-specific drug delivery ultimately enhancing the therapeutic effectiveness of the nanoscale carriers. We critically examine recent advances in ROS-responsive nanoparticulate platforms, encompassing liposomes, polymeric nanoparticles, and inorganic nanocarriers. These platforms facilitate precise control over drug release upon encountering elevated ROS levels at disease sites, thereby minimizing off-target effects and maximizing therapeutic efficiency. Furthermore, we investigate the potential of combination therapies in which ROS-activated prodrugs are combined with other therapeutic agents and underscore their synergistic potential for treating multifaceted diseases. This comprehensive review highlights the immense potential of ROS-dependent prodrug-based nanoparticulate systems in revolutionizing biomedical applications; such nanoparticulate systems can facilitate selective and controlled drug delivery, reduce toxicity, and improve therapeutic outcomes for ROS-associated diseases.
Collapse
Affiliation(s)
- Shyam Vasvani
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
- DR Cure Inc., Hwasun 58128, Republic of Korea
| | - Arathy Vasukutty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
- DR Cure Inc., Hwasun 58128, Republic of Korea
- Center for Global Future Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Saji Uthaman
- Smart Materials and Devices (SMAD) Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
9
|
Shangguan J, Yu F, Ding B, Jiang Z, Wang J, Li D, Chen Y, Zhao Y, Hu S, Xu H. Hydrogel-forming viscous liquid in response to ROS restores the gut mucosal barrier of colitis mice via regulating oxidative redox homeostasis. Acta Biomater 2024; 184:127-143. [PMID: 38906207 DOI: 10.1016/j.actbio.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The disrupted oxidative redox homeostasis plays a critical role in the progress of ulcerative colitis (UC). Herein, hydrogel-forming viscous liquid (HSD) composed of cysteamine-grafted hyaluronic acid (HS) and superoxide dismutase (SOD) has been designed for UC. When the viscous HSD liquid was infused into colitis colon, SOD would convert the pathological superoxide (O2·-) to hydrogen peroxides (H2O2), which was subsequently scavenged by HS. Accordingly, the sol-gel transition of HSD was initiated by scavenging H2O2, enhancing its adhesion toward colitis colon. H2O2-treated HSD presented the higher storage modulus and stronger adhesion force toward porcine colon than the untreated HSD. Besides, H2O2-treated HSD presented the slower erosion profile in the colitis-mimicking medium (pH 3-5), while its rapid degradation was displayed in physiologic condition (pH7.4). The combination of pH-resistant erosion and ROS-responsive adhesion for HSD rendered it with the specifical retention on the inflamed colonic mucosa of DSS-induced colitis mice. Rectally administrating HSD could effectively hinder the body weight loss, reduce the disease activity index and improve the colonic shorting of DSS-induced colitis mice. Moreover, the pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) were substantially decreased, the colonic epitheliums were well rearranged and the tight junction proteins were greatly recovered after HSD treatment. Besides, HSD also modulated the gut flora, markedly augmenting the abundance of Firmicutes, Barnesiella and Lachnospiraceae. Moreover, HSD treatment could regulate oxidative redox homeostasis via activating Nrf2-HO-1 pathway to reduce ROS and malondialdehyde and upregulate antioxidant enzymes (SOD, GPx and GSH). Collectively, HSD might be a promising therapy for UC treatments. STATEMENT OF SIGNIFICANCE: Herein, a hydrogel-forming viscous liquid (HSD) was designed by cysteamine-grafted hyaluronic acid (HS) and superoxide dismutase (SOD) for UC treatments. When the viscous HSD liquid was infused into a colitis colon, SOD would convert the pathological superoxide to hydrogen peroxides (H2O2), which was subsequently scavenged by HS. Accordingly, the sol-gel transition of HSD was initiated by scavenging H2O2, enhancing its adhesion to the colitis colon. The colonic epitheliums of DSS-induced colitis mice were well rearranged and the tight junction proteins (Zonula-1 and Claudin-5) were greatly recovered after the HSD treatment. Moreover, the HSD treatment could regulate oxidative redox homeostasis via activating the Nrf2-HO-1 pathway to reduce ROS and malondialdehyde and upregulate antioxidant enzymes (SOD, GPx and GSH).
Collapse
Affiliation(s)
- Jianxun Shangguan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Fengnan Yu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Bingyu Ding
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Zhijiang Jiang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Jie Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Dingwei Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Yi Chen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Yingzheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Sunkuan Hu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Helin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China.
| |
Collapse
|
10
|
Lin J, Jia S, Cao F, Huang J, Chen J, Wang J, Liu P, Zeng H, Zhang X, Cui W. Research Progress on Injectable Microspheres as New Strategies for the Treatment of Osteoarthritis Through Promotion of Cartilage Repair. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202400585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 07/07/2024]
Abstract
AbstractOsteoarthritis (OA) is a degenerative disease caused by a variety of factors with joint pain as the main symptom, including fibrosis, chapping, ulcers, and loss of cartilage. Traditional treatment can only delay the progression of OA, and classical delivery system have many side effects. In recent years, microspheres have shown great application prospects in the field of OA treatment. Microspheres can support cells, reproduce the natural tissue microenvironment in vitro and in vivo, and are an efficient delivery system for the release of drugs or biological agents, which can promote cell proliferation, migration, and differentiation. Thus, they have been widely used in cartilage repair and regeneration. In this review, preparation processes, basic materials, and functional characteristics of various microspheres commonly used in OA treatment are systematically reviewed. Then it is introduced surface modification strategies that can improve the biological properties of microspheres and discussed a series of applications of microsphere functionalized scaffolds in OA treatment. Finally, based on bibliometrics research, the research development, future potential, and possible research hotspots of microspheres in the field of OA therapy is systematically and dynamically evaluated. The comprehensive and systematic review will bring new understanding to the field of microsphere treatment of OA.
Collapse
Affiliation(s)
- Jianjing Lin
- Department of Sports Medicine and Rehabilitation Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
| | - Shicheng Jia
- Department of Sports Medicine and Rehabilitation Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
- Shantou University Medical College Shantou Guangdong 515041 P. R. China
| | - Fuyang Cao
- Department of Orthopedics Second Hospital of Shanxi Medical University Taiyuan Shanxi 030001 P. R. China
| | - Jingtao Huang
- Shantou University Medical College Shantou Guangdong 515041 P. R. China
| | - Jiayou Chen
- Department of Sports Medicine and Rehabilitation Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
- Shantou University Medical College Shantou Guangdong 515041 P. R. China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200025 P. R. China
| | - Peng Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
| | - Hui Zeng
- Shenzhen Second People's Hospital (First Affiliated Hospital of Shenzhen University) Shenzhen Guangdong 518035 China
| | - Xintao Zhang
- Department of Sports Medicine and Rehabilitation Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200025 P. R. China
| |
Collapse
|
11
|
Mustafov D, Siddiqui SS, Kukol A, Lambrou GI, Shagufta, Ahmad I, Braoudaki M. MicroRNA-Dependent Mechanisms Underlying the Function of a β-Amino Carbonyl Compound in Glioblastoma Cells. ACS OMEGA 2024; 9:31789-31802. [PMID: 39072119 PMCID: PMC11270567 DOI: 10.1021/acsomega.4c02991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024]
Abstract
Glioblastoma (GB) is an aggressive brain malignancy characterized by its invasive nature. Current treatment has limited effectiveness, resulting in poor patients' prognoses. β-Amino carbonyl (β-AC) compounds have gained attention due to their potential anticancerous properties. In vitro assays were performed to evaluate the effects of an in-house synthesized β-AC compound, named SHG-8, upon GB cells. Small RNA sequencing (sRNA-seq) and biocomputational analyses investigated the effects of SHG-8 upon the miRNome and its bioavailability within the human body. SHG-8 exhibited significant cytotoxicity and inhibition of cell migration and proliferation in U87MG and U251MG GB cells. GB cells treated with the compound released significant amounts of reactive oxygen species (ROS). Annexin V and acridine orange/ethidium bromide staining also demonstrated that the compound led to apoptosis. sRNA-seq revealed a shift in microRNA (miRNA) expression profiles upon SHG-8 treatment and significant upregulation of miR-3648 and downregulation of miR-7973. Real-time polymerase chain reaction (RT-qPCR) demonstrated a significant downregulation of CORO1C, an oncogene and a player in the Wnt/β-catenin pathway. In silico analysis indicated SHG-8's potential to cross the blood-brain barrier. We concluded that SHG-8's inhibitory effects on GB cells may involve the deregulation of various miRNAs and the inhibition of CORO1C.
Collapse
Affiliation(s)
- Denis Mustafov
- School
of Life and Medical Sciences, University
of Hertfordshire, Hatfield, AL10 9AB, United
Kingdom
- College
of Health, Medicine and Life Sciences, Brunel
University London, Uxbridge UB8 3PH, United
Kingdom
| | - Shoib S. Siddiqui
- School
of Life and Medical Sciences, University
of Hertfordshire, Hatfield, AL10 9AB, United
Kingdom
| | - Andreas Kukol
- School
of Life and Medical Sciences, University
of Hertfordshire, Hatfield, AL10 9AB, United
Kingdom
| | - George I. Lambrou
- Choremeio
Research Laboratory, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens,
Greece, Thivon and Levadeias
8, Goudi, 11527 Athens, Greece
- University
Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Thivon and Levadeias 8, 11527 Athens, Greece
| | - Shagufta
- Department
of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab
Emirates
| | - Irshad Ahmad
- Department
of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab
Emirates
| | - Maria Braoudaki
- School
of Life and Medical Sciences, University
of Hertfordshire, Hatfield, AL10 9AB, United
Kingdom
- University
Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Thivon and Levadeias 8, 11527 Athens, Greece
| |
Collapse
|
12
|
Kondengadan SM, Wang B. Quantitative Factors Introduced in the Feasibility Analysis of Reactive Oxygen Species (ROS)-Sensitive Triggers. Angew Chem Int Ed Engl 2024; 63:e202403880. [PMID: 38630918 PMCID: PMC11192588 DOI: 10.1002/anie.202403880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
Reactive oxygen species (ROS) are critical for cellular signaling. Various pathophysiological conditions are also associated with elevated levels of ROS. Hence, ROS-sensitive triggers have been extensively used for selective payload delivery. Such applications are predicated on two key functions: (1) a sufficient magnitude of concentration difference for the interested ROS between normal tissue/cells and intended sites and (2) appropriate reaction kinetics to ensure a sufficient level of selectivity for payload release. Further, ROS refers to a group of species with varying reactivity, which should not be viewed as a uniform group. In this review, we critically analyze data on the concentrations of different ROS species under various pathophysiological conditions and examine how reaction kinetics affect the success of ROS-sensitive linker chemistry. Further, we discuss different ROS linker chemistry in the context of their applications in drug delivery and imaging. This review brings new insights into research in ROS-triggered delivery, highlights factors to consider in maximizing the chance for success and discusses pitfalls to avoid.
Collapse
Affiliation(s)
- Shameer M. Kondengadan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
13
|
Wang Y, Deng T, Liu X, Fang X, Mo Y, Xie N, Nie G, Zhang B, Fan X. Smart Nanoplatforms Responding to the Tumor Microenvironment for Precise Drug Delivery in Cancer Therapy. Int J Nanomedicine 2024; 19:6253-6277. [PMID: 38911497 PMCID: PMC11193972 DOI: 10.2147/ijn.s459710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
The tumor microenvironment (TME) is a complex and dynamic entity, comprising stromal cells, immune cells, blood vessels and extracellular matrix, which is intimately associated with the occurrence and development of cancers, as well as their therapy. Utilizing the shared characteristics of tumors, such as an acidic environment, enzymes and hypoxia, researchers have developed a promising cancer therapy strategy known as responsive release of nano-loaded drugs, specifically targeted at tumor tissues or cells. In this comprehensive review, we provide an in-depth overview of the current fundamentals and state-of-the-art intelligent strategies of TME-responsive nanoplatforms, which include acidic pH, high GSH levels, high-level adenosine triphosphate, overexpressed enzymes, hypoxia and reductive environment. Additionally, we showcase the latest advancements in TME-responsive nanoparticles. In conclusion, we thoroughly examine the immediate challenges and prospects of TME-responsive nanopharmaceuticals, with the expectation that the progress of these targeted nanoformulations will enable the exploitation, overcoming or modulation of the TME, ultimately leading to significantly more effective cancer therapy.
Collapse
Affiliation(s)
- Yujie Wang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035, People’s Republic of China
| | - Tingting Deng
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035, People’s Republic of China
| | - Xi Liu
- Department of Nephrology, Shenzhen Longgang Central Hospital, Shenzhen, 518116, People’s Republic of China
| | - Xueyang Fang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035, People’s Republic of China
| | - Yongpan Mo
- Department of Breast Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035, People’s Republic of China
| | - Ni Xie
- The Bio-Bank of Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Guohui Nie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035, People’s Republic of China
| | - Bin Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035, People’s Republic of China
| | - Xiaoqin Fan
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035, People’s Republic of China
- The Bio-Bank of Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| |
Collapse
|
14
|
Chang R, Han B, Ben Mabrouk A, Hasegawa U. Controlled Dissociation of Polymeric Micelles in Response to Oxidative Stress. Biomacromolecules 2024; 25:1162-1170. [PMID: 38227946 DOI: 10.1021/acs.biomac.3c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Nanoparticle-based drug carriers that can respond to oxidative stress in tumor tissue have attracted attention for site-specific drug release. Taking advantage of the characteristic microenvironment in tumors, one of the attractive directions in drug delivery research is to design drug carriers that release drugs upon oxidation. A strategy to incorporate oxidation-sensitive thioether motifs such as thiomorpholine acrylamide (TMAM) to drug carriers has been often used to achieve oxidation-induced dissociation, thereby targeted drug release. However, those delivery systems often suffer from a slow dissociation rate due to the intrinsic hydrophobicity of the thioether structures. In this study, we aimed to enhance the dissociation rate of TMAM-based micelles upon oxidation. The random copolymers of N-isopropylacrylamide and TMAM (P(NIPAM/TMAM)) were designed as an oxidation-sensitive segment that showed a fast response to oxidative stress. We first synthesized P(NIPAM/TMAM) copolymers with different NIPAM:TMAM molar ratios. Those copolymers exhibited low critical solution temperatures (LCSTs) below 32 °C, which shifted to higher temperatures after oxidation. The changes in LCSTs depend on the NIPAM:TMAM molar ratios. At the NIPAM:TMAM molar ratio of 82:18, the LCSTs before and after oxidation were 17 and 54 °C, respectively. We then prepared micelles from the diblock copolymers of poly(N-acryloyl morpholine) (PAM) and P(NIPAM/TMAM). The micelles showed an accelerated dissociation rate upon oxidation compared to the micelles without NIPAM units. Furthermore, the doxorubicin (Dox)-loaded micelles showed enhanced relative toxicity in human colorectal cancer (HT29) cells over human umbilical vein endothelial cells (HUVECs). Our novel strategy to design an oxidation-sensitive micellar core comprising a P(NIPAM/TMAM) segment can be used as a chemotherapeutic delivery system that responds to an oxidative tumor microenvironment in an appropriate time scale.
Collapse
Affiliation(s)
- Roujia Chang
- Department of Materials Science and Engineering, The Pennsylvania State University, Steidle Building, University Park, Pennsylvania 16802, United States
| | - Binru Han
- Department of Materials Science and Engineering, The Pennsylvania State University, Steidle Building, University Park, Pennsylvania 16802, United States
| | - Amira Ben Mabrouk
- Department of Materials Science and Engineering, The Pennsylvania State University, Steidle Building, University Park, Pennsylvania 16802, United States
| | - Urara Hasegawa
- Department of Materials Science and Engineering, The Pennsylvania State University, Steidle Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
15
|
Chi T, Sang T, Wang Y, Ye Z. Cleavage and Noncleavage Chemistry in Reactive Oxygen Species (ROS)-Responsive Materials for Smart Drug Delivery. Bioconjug Chem 2024; 35:1-21. [PMID: 38118277 DOI: 10.1021/acs.bioconjchem.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The design and development of advanced drug delivery systems targeting reactive oxygen species (ROS) have gained significant interest in recent years for treating various diseases, including cancer, psychiatric diseases, cardiovascular diseases, neurological diseases, metabolic diseases, and chronic inflammations. Integrating specific chemical bonds capable of effectively responding to ROS and triggering drug release into the delivery system is crucial. In this Review, we discuss commonly used conjugation linkers (chemical bonds) and categorize them into two groups: cleavable linkers and noncleavable linkers. Our goal is to clarify their unique drug release mechanisms from a chemical perspective and provide practical organic synthesis approaches for their efficient production. We showcase numerous significant examples to demonstrate their synthesis routes and diverse applications. Ultimately, we strive to present a comprehensive overview of cleavage and noncleavage chemistry, offering insights into the development of smart drug delivery systems that respond to ROS.
Collapse
Affiliation(s)
- Teng Chi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ting Sang
- School of Stomatology of Nanchang University & Jiangxi Province Clinical Research Center for Oral Diseases & The Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Yanjing Wang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R. 999077, China
| |
Collapse
|
16
|
Zhang X, Wang J, Zhang Y, Yang Z, Gao J, Gu Z. Synthesizing biomaterials in living organisms. Chem Soc Rev 2023; 52:8126-8164. [PMID: 37921625 DOI: 10.1039/d2cs00999d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Living organisms fabricate biomacromolecules such as DNA, RNA, and proteins by the self-assembly process. The research on the mechanism of biomacromolecule formation also inspires the exploration of in vivo synthesized biomaterials. By elaborate design, artificial building blocks or precursors can self-assemble or polymerize into functional biomaterials within living organisms. In recent decades, these so-called in vivo synthesized biomaterials have achieved extensive applications in cell-fate manipulation, disease theranostics, bioanalysis, cellular surface engineering, and tissue regeneration. In this review, we classify strategies for in vivo synthesis into non-covalent, covalent, and genetic types. The development of these approaches is based on the chemical principles of supramolecular chemistry and synthetic chemistry, biological cues such as enzymes and microenvironments, and the means of synthetic biology. By summarizing the design principles in detail, some insights into the challenges and opportunities in this field are provided to enlighten further research.
Collapse
Affiliation(s)
- Xiangyang Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Junxia Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
17
|
Liu C, Si J, Cao M, Zhao P, Dai Y, Xu H. Visualizing Chain Growth of Polytelluoxane via Polymerization Induced Emission. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304518. [PMID: 37715281 PMCID: PMC10625080 DOI: 10.1002/advs.202304518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/05/2023] [Indexed: 09/17/2023]
Abstract
Visualizing polymer chain growth is always a hot topic for tailoring structure-function properties in polymer chemistry. However, current characterization methods are limited in their ability to differentiate the degree of polymerization in real-time without isolating the samples from the reaction vessel, let alone to detect insoluble polymers. Herein, a reliable relationship is established between polymer chain growth and fluorescence properties through polymerization induced emission. (TPE-C2)2 -Te is used to realize in situ oxidative polymerization, leading to the aggregation of fluorophores. The relationship between polymerization degree of growing polytelluoxane (PTeO) and fluorescence intensity is constructed, enabling real-time monitoring of the polymerization reaction. More importantly, this novel method can be further applied to the observation of the polymerization process for growing insoluble polymer via surface polymerization. Therefore, the development of visualization technology will open a new avenue for visualizing polymer chain growth in real-time, regardless of polymer solubility.
Collapse
Affiliation(s)
- Chengfei Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of ChemistryTsinghua UniversityBeijing100084China
- Tsinghua‐Peking Joint Center for Life SciencesBeijing100084China
| | - Jinyan Si
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of ChemistryTsinghua UniversityBeijing100084China
| | - Muqing Cao
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of ChemistryTsinghua UniversityBeijing100084China
| | - Peng Zhao
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of ChemistryTsinghua UniversityBeijing100084China
| | - Yiheng Dai
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of ChemistryTsinghua UniversityBeijing100084China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
18
|
Luo T, Zhang Z, Xu J, Liu H, Cai L, Huang G, Wang C, Chen Y, Xia L, Ding X, Wang J, Li X. Atherosclerosis treatment with nanoagent: potential targets, stimulus signals and drug delivery mechanisms. Front Bioeng Biotechnol 2023; 11:1205751. [PMID: 37404681 PMCID: PMC10315585 DOI: 10.3389/fbioe.2023.1205751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/31/2023] [Indexed: 07/06/2023] Open
Abstract
Cardiovascular disease (CVDs) is the first killer of human health, and it caused up at least 31% of global deaths. Atherosclerosis is one of the main reasons caused CVDs. Oral drug therapy with statins and other lipid-regulating drugs is the conventional treatment strategies for atherosclerosis. However, conventional therapeutic strategies are constrained by low drug utilization and non-target organ injury problems. Micro-nano materials, including particles, liposomes, micelles and bubbles, have been developed as the revolutionized tools for CVDs detection and drug delivery, specifically atherosclerotic targeting treatment. Furthermore, the micro-nano materials also could be designed to intelligently and responsive targeting drug delivering, and then become a promising tool to achieve atherosclerosis precision treatment. This work reviewed the advances in atherosclerosis nanotherapy, including the materials carriers, target sites, responsive model and treatment results. These nanoagents precisely delivery the therapeutic agents to the target atherosclerosis sites, and intelligent and precise release of drugs, which could minimize the potential adverse effects and be more effective in atherosclerosis lesion.
Collapse
Affiliation(s)
- Ting Luo
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhen Zhang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Junbo Xu
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hanxiong Liu
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Lin Cai
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Gang Huang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Chunbin Wang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yingzhong Chen
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Long Xia
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xunshi Ding
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jin Wang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xin Li
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Liu C, Xianyu B, Dai Y, Pan S, Li T, Xu H. Intracellular Hyperbranched Polymerization for Circumventing Cancer Drug Resistance. ACS NANO 2023. [PMID: 37285408 DOI: 10.1021/acsnano.3c03512] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polymerization inside living cells provides chemists with a multitude of possibilities to modulate cell activities. Considering the advantages of hyperbranched polymers, such as a large surface area for target sites and multilevel branched structures for resistance to the efflux effect, we reported a hyperbranched polymerization in living cells based on the oxidative polymerization of organotellurides and intracellular redox environment. The intracellular hyperbranched polymerization was triggered by reactive oxygen species (ROS) in the intracellular redox microenvironment, effectively disrupting antioxidant systems in cells by an interaction between Te (+4) and selenoproteins, thus inducing selective apoptosis of cancer cells. Importantly, the obtained hyperbranched polymer aggregated into branched nanostructures in cells, which could effectively evade drug pumps and decrease drug efflux, ensuring the polymerization for persistent treatment. Finally, in vitro and in vivo studies confirmed that our strategy presented selective anticancer efficacy and well biosafety. This approach provides a way for intracellular polymerization with desirable biological applications to regulate cell activities.
Collapse
Affiliation(s)
- Chengfei Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Banruo Xianyu
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yiheng Dai
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shuojiong Pan
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, United States
| | - Huaping Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Jiang Q, Zhang S. Stimulus-Responsive Drug Delivery Nanoplatforms for Osteoarthritis Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206929. [PMID: 36905239 DOI: 10.1002/smll.202206929] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/16/2023] [Indexed: 06/08/2023]
Abstract
Osteoarthritis (OA) is one of the most prevalent age-related degenerative diseases. With an increasingly aging global population, greater numbers of OA patients are providing clear economic and societal burdens. Surgical and pharmacological treatments are the most common and conventional therapeutic strategies for OA, but often fall considerably short of desired or optimal outcomes. With the development of stimulus-responsive nanoplatforms has come the potential for improved therapeutic strategies for OA. Enhanced control, longer retention time, higher loading rates, and increased sensitivity are among the potential benefits. This review summarizes the advanced application of stimulus-responsive drug delivery nanoplatforms for OA, categorized by either those that depend on endogenous stimulus (reactive oxygen species, pH, enzyme, and temperature), or those that depend on exogenous stimulus (near-infrared ray, ultrasound, magnetic fields). The opportunities, restrictions, and limitations related to these various drug delivery systems, or their combinations, are discussed in areas such as multi-functionality, image guidance, and multi-stimulus response. The remaining constraints and potential solutions that are represented by the clinical application of stimulus-responsive drug delivery nanoplatforms are finally summarized.
Collapse
Affiliation(s)
- Qi Jiang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Shufang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
21
|
Ahmed YW, Tsai HC, Wu TY, Darge HF, Chen YS. Role of thermal and reactive oxygen species-responsive synthetic hydrogels in localized cancer treatment (bibliometric analysis and review). MATERIALS ADVANCES 2023; 4:6118-6151. [DOI: 10.1039/d3ma00341h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Cancer is a major pharmaceutical challenge that necessitates improved care.
Collapse
Affiliation(s)
- Yohannis Wondwosen Ahmed
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
- Advanced Membrane Material Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, Republic of China
| | - Tsung-Yun Wu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
| | - Yu-Shuan Chen
- Bio Innovation Center, Buddhist Tzu Chi Medical Foundation, Taiwan, Republic of China
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
- Tzu Chi University of Science and Technology, Taiwan, Republic of China
| |
Collapse
|
22
|
He S, Wu L, Sun H, Wu D, Wang C, Ren X, Shao Q, York P, Tong J, Zhu J, Li Z, Zhang J. Antioxidant Biodegradable Covalent Cyclodextrin Frameworks as Particulate Carriers for Inhalation Therapy against Acute Lung Injury. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38421-38435. [PMID: 35948492 DOI: 10.1021/acsami.2c05220] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Drug therapies for acute lung injury (ALI) are far from satisfactory, primarily because drugs cannot specifically target the lungs. Direct delivery of drugs to the deep alveolar regions by inhalation administration is crucial for the treatment of ALI. However, conventional inhalable carriers such as lactose and mannitol are generally inactive. Therefore, the use of a novel pharmacologically active carrier for pulmonary delivery may produce synergetic effects in treating ALI. Considering the pathophysiological environment of ALI, which typically featured excessive reactive oxygen species (ROS) and acute inflammation, we synthesized a novel kind of biodegradable and ROS-sensitive cross-linked covalent cyclodextrin frameworks (OC-COF) with uniform inhalable particle size to treat ALI. OC-COF was devised to incorporate H2O2-scavenging peroxalate ester linkages, which could hydrolyze and eliminate ROS generated in inflammatory sites. Ligustrazine (LIG), an antioxidant and anti-inflammatory natural compound, was loaded into OC-COF and evaluated as a dry powder inhaler (LIG@OC-COF) in vitro and in vivo, showing favorable aerodynamic properties and prominent antioxidant and anti-inflammatory capacities for the synergistic effects of OC-COF and LIG. In ALI rats, inhalation of LIG@OC-COF with a one-fifth LIG dose significantly alleviated the inflammation, oxidant stress, and lung damage. Western blot analysis demonstrated that LIG@OC-COF protected the lungs by regulating the Nrf2/NF-κB signaling pathway. In summary, this study provides a novel ROS-responsive material as an inhalable particulate carrier for the improved treatment of ALI and other medical conditions.
Collapse
Affiliation(s)
- Siyu He
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongyu Sun
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Di Wu
- Anhui University of Chinese Medicine, Hefei 230012, China
| | - Caifen Wang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohong Ren
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qun Shao
- Institute of Pharmaceutical Innovation, University of Bradford, Bradford, West Yorkshire BD7 1DP, United Kingdom
| | - Peter York
- Institute of Pharmaceutical Innovation, University of Bradford, Bradford, West Yorkshire BD7 1DP, United Kingdom
| | - Jiabing Tong
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Jie Zhu
- Anhui University of Chinese Medicine, Hefei 230012, China
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Zegeng Li
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Jiwen Zhang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, No.2 Tiantan Xili, Beijing 100050, China
| |
Collapse
|
23
|
Sołtan M, Bartusik-Aebisher D, Aebisher D. The potential of oxygen and nitrogen species-regulating drug delivery systems in medicine. Front Bioeng Biotechnol 2022; 10:973080. [PMID: 36110312 PMCID: PMC9468659 DOI: 10.3389/fbioe.2022.973080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The focus of this review is to present most significant advances in biomaterials used for control of reactive oxygen/nitrogen species (ROS/RNS, RONS) in medicine. A summary of the main pathways of ROS production and the main pathways of RNS production are shown herein. Although the physiological and pathological roles of RONS have been known for at least 2decades, the potential of their control in management of disease went unappreciated. Recently, advances in the field of biochemical engineering and materials science have allowed for development of RONS-responsive biomaterials for biomedical applications, which aim to control and change levels of reactive species in tissue microenvironments. These materials utilize polymers, inorganic nanoparticles (NPs), or organic-inorganic hybrids. Thus, biomaterials like hydrogels have been developed to promote tissue regeneration by actively scavenging and reducing RONS levels. Their promising utility comes from thermo- and RONS-sensitivity, stability as a delivery-medium, ease for incorporation into other materials and facility for injection. Their particular attractiveness is attributed to drug release realized in targeted tissues and cells with elevated RONS levels, which leads to enhanced treatment outcomes and reduced adverse effects. The mechanism of their action depends on the functional groups employed and their response to oxidation, and may be based on solubility changes or cleavage of chemical bonds. When talking about antioxidants, one should also mention oxidative stress, which we call the imbalance between antioxidants and reactive oxygen species, which occurs due to a deficiency of endogenous antioxidants and a low supply of exogenous antioxidants. This study is a review of articles in English from the databases PubMed and Web of Science retrieved by applying the search terms “Oxygen Species, Nitrogen Species and biomaterials” from 1996 to 2021.
Collapse
Affiliation(s)
- Michał Sołtan
- English Division Science Club, Medical College of The University of Rzeszów, Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The University of Rzeszów, Rzeszów, Poland
- *Correspondence: Dorota Bartusik-Aebisher, ; David Aebisher,
| | - David Aebisher
- English Division Science Club, Medical College of The University of Rzeszów, Rzeszów, Poland
- Department of Biochemistry and General Chemistry, Medical College of The University of Rzeszów, Rzeszów, Poland
- *Correspondence: Dorota Bartusik-Aebisher, ; David Aebisher,
| |
Collapse
|
24
|
Singh R, Sharma A, Saji J, Umapathi A, Kumar S, Daima HK. Smart nanomaterials for cancer diagnosis and treatment. NANO CONVERGENCE 2022; 9:21. [PMID: 35569081 PMCID: PMC9108129 DOI: 10.1186/s40580-022-00313-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/26/2022] [Indexed: 05/14/2023]
Abstract
Innovations in nanomedicine has guided the improved outcomes for cancer diagnosis and therapy. However, frequent use of nanomaterials remains challenging due to specific limitations like non-targeted distribution causing low signal-to-noise ratio for diagnostics, complex fabrication, reduced-biocompatibility, decreased photostability, and systemic toxicity of nanomaterials within the body. Thus, better nanomaterial-systems with controlled physicochemical and biological properties, form the need of the hour. In this context, smart nanomaterials serve as promising solution, as they can be activated under specific exogenous or endogenous stimuli such as pH, temperature, enzymes, or a particular biological molecule. The properties of smart nanomaterials make them ideal candidates for various applications like biosensors, controlled drug release, and treatment of various diseases. Recently, smart nanomaterial-based cancer theranostic approaches have been developed, and they are displaying better selectivity and sensitivity with reduced side-effects in comparison to conventional methods. In cancer therapy, the smart nanomaterials-system only activates in response to tumor microenvironment (TME) and remains in deactivated state in normal cells, which further reduces the side-effects and systemic toxicities. Thus, the present review aims to describe the stimulus-based classification of smart nanomaterials, tumor microenvironment-responsive behaviour, and their up-to-date applications in cancer theranostics. Besides, present review addresses the development of various smart nanomaterials and their advantages for diagnosing and treating cancer. Here, we also discuss about the drug targeting and sustained drug release from nanocarriers, and different types of nanomaterials which have been engineered for this intent. Additionally, the present challenges and prospects of nanomaterials in effective cancer diagnosis and therapeutics have been discussed.
Collapse
Affiliation(s)
- Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Ayush Sharma
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Joel Saji
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Akhela Umapathi
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Hemant Kumar Daima
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India.
| |
Collapse
|
25
|
Lu Z, Zhang J, Yin W, Guo C, Lang M. Preparation of AIE Functional Single-chain Polymer Nanoparticles and Its Application in H 2 O 2 Detection through Intermolecular Heavy-atom Effect. Macromol Rapid Commun 2022; 43:e2200156. [PMID: 35482976 DOI: 10.1002/marc.202200156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/21/2022] [Indexed: 11/06/2022]
Abstract
Single-chain polymer nanoparticles (SCNPs) are soft matter constructed by intrachain crosslink, with promising prospects in detection and catalysis. Herein, the fluorescent core (SCNPs) with aggregation-induced emission (AIE) was prepared, applying for H2 O2 detection through intermolecular heavy-atom effect. In detail, the SCNPs precursors were synthesized by ring-opening copolymerization. Then the SCNPs were prepared by intramolecularly cross-linking via olefin metathesis. Imitating the structure of AIE dots, SCNPs were encapsulated by H2 O2 -responsive polymers. Probably due to the stable secondary structure of SCNPs, the obtained micelles show stable fluorescence performance. Furthermore, as the heavy-atom, tellurium was introduced into the carriers to construct the heavy-atom effect. In this micelle-based system, the SCNPs act as the fluorescent core, and the stimuli-responsive polymer acts as the carrier and the fluorescent switch. The hydrophilicity of the tellurium-containing segment is affected by the concentration of H2 O2 , resulting in a change in the distance from the SCNPs, which ultimately leads to a change in the fluorescence intensity. And tellurium is particularly sensitive to H2 O2 , which can detect low concentrations of H2 O2 . The SCNPs were merged with AIE materials, hoping to explore new probe design. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhimin Lu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Junyong Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wang Yin
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Changfa Guo
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Meidong Lang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
26
|
Sun J, Li H, Gu X, Tang BZ. Photoactivatable Biomedical Materials Based on Luminogens with Aggregation-Induced Emission (AIE) Characteristics. Adv Healthc Mater 2021; 10:e2101177. [PMID: 34637607 DOI: 10.1002/adhm.202101177] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/21/2021] [Indexed: 12/17/2022]
Abstract
Fluorescence probes with aggregation-induced emission (AIE) property are fascinating and vital in biological fields due to their bright fluorescence in the solid state. In contrast, traditional AIE materials are obscured by the off-target effects and lack of spatial and temporal control. Photoactivatable materials with AIE characteristics, whose physicochemical behaviors can be remotely activated by light, provide great potential in biochemical information acquisition with high spatial and temporal resolution. By using AIE-featured photoactivatable fluorescence probes, accurate analysis of the targets of interest is possible. For example, where, when, and to what extent a process is started or stopped by manipulating the non-invasive light accurately. Thus, many researchers are enthusiastic about developing AIE-featured photoactivatable materials and mainly focus on developing novel molecules by rational molecular structure design, and exploring advanced applications by appropriate molecular functionalization. In this review, the recent achievements of photoactivatable materials with AIE characteristics from the aspects involving inherent mechanism of photoactivity, molecular design strategy, and the corresponding applications in biological fields, are summarized. The biological applications are highlighted and discussed, including photoactivatable bioimaging, diagnosis, and photo-controlled therapy. Finally, the challenges and prospects of the AIE-featured photoactivatable materials are also outlined and discussed.
Collapse
Affiliation(s)
- Jiangman Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering School of Science and Engineering The Chinese University of Hong Kong (Shenzhen) Shenzhen 518172 China
| |
Collapse
|
27
|
Yang Y, Wu H, Liu B, Liu Z. Tumor microenvironment-responsive dynamic inorganic nanoassemblies for cancer imaging and treatment. Adv Drug Deliv Rev 2021; 179:114004. [PMID: 34662672 DOI: 10.1016/j.addr.2021.114004] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023]
Abstract
Dynamic inorganic nanoassemblies (DINAs) have emerged as smart nanomedicine platforms with promising potential for bioimaging and targeted drug delivery. In this review, we keep abreast of the advances in development of tumor microenvironment (TME)-responsive DINAs to meet the challenges associated with precise cancer therapy. TME-responsive DINAs are designed to achieve precise switches of structures/functions in response to TME-specific stimuli including reactive oxygen species (ROS), reduced pH and hypoxia, so as to enhance the tumor accumulation of nanoassemblies, overcome the biological barriers during intratumoral penentration of therapeutics, and achieve tumor-specific imaging and therapy. This progress report will summarize various types of recently reported smart DINAs for TME-responsive tumor imaging and therapy. Their future development towards potential clinical translation will also be discussed.
Collapse
|
28
|
Mehrparvar S, Scheller ZN, Wölper C, Haberhauer G. Design of Azobenzene beyond Simple On-Off Behavior. J Am Chem Soc 2021; 143:19856-19864. [PMID: 34793158 DOI: 10.1021/jacs.1c09090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Azobenzenes are without a doubt the most widely used light-induced switching units, and there is a plethora of application examples ranging from supramolecular chemistry to material science and biological chemistry. Here, we present a smart azobenzene, in which the photoswitching capability of the azobenzene moiety can be reversibly switched on and off using a second unit (redox switch). This second switching unit is based on the variation of the strength of a chalcogen bond between the azo group and a Te-Ph unit in ortho position to the azo group. This allows the selective switching of only one azobenzene unit in the presence of other azobenzene switches. The entire double-switch is a very simple, small system that can also be easily synthesized. As a result, this double-switch can be used as a smarter replacement for the established azobenzene system in the future. For example, in contrast to the latter this double-switch could be employed to store state information analogous to a flip-flop in digital electronic systems.
Collapse
Affiliation(s)
- Saber Mehrparvar
- Institut für Organische Chemie, Universität Duisburg-Essen, Universitätsstr. 7, D-45117 Essen, Germany
| | - Zoe Nonie Scheller
- Institut für Organische Chemie, Universität Duisburg-Essen, Universitätsstr. 7, D-45117 Essen, Germany
| | - Christoph Wölper
- Institut für Organische Chemie, Universität Duisburg-Essen, Universitätsstr. 7, D-45117 Essen, Germany
| | - Gebhard Haberhauer
- Institut für Organische Chemie, Universität Duisburg-Essen, Universitätsstr. 7, D-45117 Essen, Germany
| |
Collapse
|
29
|
Liu Y, Zheng M, Jiao M, Yan C, Xu S, Du Q, Morsch M, Yin J, Shi B. Polymeric nanoparticle mediated inhibition of miR-21 with enhanced miR-124 expression for combinatorial glioblastoma therapy. Biomaterials 2021; 276:121036. [PMID: 34329919 DOI: 10.1016/j.biomaterials.2021.121036] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most common and fatal form of malignant brain tumor. Despite intensive effort, there is still no effective GBM treatment. Therefore, novel and more effective GBM therapeutic approaches are highly desired. In this study, we combined polymeric nanotechnology with microRNA (miRNA) regulation technology to develop a targeted polymeric nanoparticle to co-deliver anti-miR-21 and miR-124 into the brain to effectively treat GBM. The polymeric nanoparticle decorated with Angiopep-2 peptide not only can encapsulate miRNA via triple-interaction (electrostatic, hydrogen bond and hydrophobic bonding) to protect miRNA against enzyme degradation in the blood, but also is capable of crossing blood brain barrier (BBB) and allowing targeted delivery of miRNAs to GBM tissue due to the dual-targeting function of Angiopep-2. Moreover, the co-delivered anti-miR-21 and miR-124 simultaneously regulated the mutant RAS/PI3K/PTEN/AKT signaling pathway in tumor cells, consequently achieving combinatorial GBM therapy. This combinatorial effect was confirmed by our results showing that these miRNA nanomedicines can effectively reduce tumor cell proliferation, migration and invasion as well as reducing tumor angiogenesis. Consequently, effective suppression of tumor growth and significantly improved medium survival time are observed when these miRNA nanomedicines were assessed in an orthotopic GBM xenograft model. This work indicated that our new polymeric nanoparticles successfully mediate inhibition of miR-21 and miR-124 supplementation to significantly reduce tumorigenesis, and may have strong potential in GBM therapy.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Meng Zheng
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Mingzhu Jiao
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Chengnan Yan
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Sen Xu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Qiuli Du
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Marco Morsch
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Jinlong Yin
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China; Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
30
|
Dai Y, Li T, Zhang Z, Tan Y, Pan S, Zhang L, Xu H. Oxidative Polymerization in Living Cells. J Am Chem Soc 2021; 143:10709-10717. [PMID: 34161724 DOI: 10.1021/jacs.1c04821] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Intracellular polymerization is an emerging technique that can potentially modulate cell behavior, but remains challenging because of the complexity of the cellular environment. Herein, taking advantage of the chemical properties of organotellurides and the intracellular redox environment, we develop a novel oxidative polymerization reaction that can be conducted in cells without external stimuli. We demonstrate that this polymerization reaction is triggered by the intracellular reactive oxygen species (ROS), thus selectively proceeding in cancer cells and inducing apoptosis via a unique self-amplification mechanism. The polymerization products are shown to disrupt intracellular antioxidant systems through interacting with selenoproteins, leading to greater oxidative stress that would further the oxidative polymerization and eventually activate ROS-related apoptosis pathways. The selective anticancer efficacy and biosafety of our strategy are proven both in vitro and in vivo. Ultimately, this study enables a new possibility for chemists to manipulate cellular proliferation and apoptosis through artificial chemical reactions.
Collapse
Affiliation(s)
- Yiheng Dai
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Zhiheng Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yizheng Tan
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shuojiong Pan
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Luo Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
31
|
Abstract
Stimuli-responsive materials that exhibit a mechanical response to specific biological conditions are of considerable interest for responsive, implantable medical devices. Herein, we report the synthesis, processing and characterization of oxidation-responsive liquid crystal elastomers that demonstrate programmable shape changes in response to reactive oxygen species. Direct ink writing (DIW) is used to fabricate Liquid Crystal Elastomers (LCEs) with programmed molecular orientation and anisotropic mechanical properties. LCE structures were immersed in different media (oxidative, basic and saline) at body temperature to measure in vitro degradation. Oxidation-sensitive hydrophobic thioether linkages transition to hydrophilic sulfoxide and sulfone groups. The introduction of these polar moieties brings about anisotropic swelling of the polymer network in an aqueous environment, inducing complex shape changes. 3D-printed uniaxial strips exhibit 8% contraction along the nematic director and 16% orthogonal expansion in oxidative media, while printed LCEs azimuthally deform into cones 19 times their original thickness. Ultimately, these LCEs degrade completely. In contrast, LCEs subjected to basic and saline solutions showed no apparent response. These oxidation-responsive LCEs with programmable shape changes may enable a wide range of applications in target specific drug delivery systems and other diagnostic and therapeutic tools.
Collapse
|
32
|
Gao F, Xiong Z. Reactive Oxygen Species Responsive Polymers for Drug Delivery Systems. Front Chem 2021; 9:649048. [PMID: 33968898 PMCID: PMC8103170 DOI: 10.3389/fchem.2021.649048] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/25/2021] [Indexed: 01/10/2023] Open
Abstract
Reactive oxygen species (ROS) play an essential role in regulating various physiological functions of living organisms; however, as the concentration of ROS increases in the area of a lesion, this may undermine cellular homeostasis, leading to a series of diseases. Using cell-product species as triggers for targeted regulation of polymer structures and activity represents a promising approach for the treatment. ROS-responsive polymer carriers allow the targeted delivery of drugs, reduce toxicity and side effects on normal cells, and control the release of drugs, which are all advantages compared with traditional small-molecule chemotherapy agents. These formulations have attracted great interest due to their potential applications in biomedicine. In this review, recent progresses on ROS responsive polymer carriers are summarized, with a focus on the chemical mechanism of ROS-responsive polymers and the design of molecular structures for targeted drug delivery and controlled drug release. Meanwhile, we discuss the challenges and future prospects of its applications.
Collapse
Affiliation(s)
- Fengxiang Gao
- University of Science and Technology of China, Hefei, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry CAS, Chinese Academy of Sciences, Changchun, China
| | - Zhengrong Xiong
- University of Science and Technology of China, Hefei, China
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry CAS, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
33
|
Wang C, Ding S, Wang S, Shi Z, Pandey NK, Chudal L, Wang L, Zhang Z, Wen Y, Yao H, Lin L, Chen W, Xiong L. Endogenous tumor microenvironment-responsive multifunctional nanoplatforms for precision cancer theranostics. Coord Chem Rev 2021; 426:213529. [DOI: 10.1016/j.ccr.2020.213529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Redox responsive paclitaxel dimer for programmed drug release and selectively killing cancer cells. J Colloid Interface Sci 2020; 580:785-793. [DOI: 10.1016/j.jcis.2020.07.086] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022]
|
35
|
Li D, Zhang R, Liu G, Kang Y, Wu J. Redox-Responsive Self-Assembled Nanoparticles for Cancer Therapy. Adv Healthc Mater 2020; 9:e2000605. [PMID: 32893506 DOI: 10.1002/adhm.202000605] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/16/2020] [Indexed: 12/21/2022]
Abstract
Chemotherapy, combined with other treatments, is widely applied in the clinical treatment of cancer. However, deficiencies inherited from the traditional route of administration limit its successful application. With the development of nanotechnology, a series of smart nanodelivery systems have been developed to utilize the unique tumor environment (pH changes, different enzymes, and redox potential gradients) and exogenous stimuli (thermal changes, magnetic fields, and light) to improve the curative effect of anticancer drugs. In this review, endogenous and exogenous stimuli are briefly introduced. Among these stimuli, various redox-sensitive linkages are primarily described in detail, and their application with self-assembled nanoparticles is recounted. Finally, the application of redox-responsive self-assembled nanoparticles in cancer therapy is summarized.
Collapse
Affiliation(s)
- Dandan Li
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
- The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen 518107 P. R. China
| | - Ruhe Zhang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Guiting Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Yang Kang
- The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen 518107 P. R. China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| |
Collapse
|
36
|
Chen H, Wen K, Chen J, Xing W, Wu X, Shi Q, Peng A, Huang H. Ultra-stable tellurium-doped carbon quantum dots for cell protection and near-infrared photodynamic application. Sci Bull (Beijing) 2020; 65:1580-1586. [PMID: 36738076 DOI: 10.1016/j.scib.2020.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
It is important to regulate the concentration of reactive oxygen species (ROS) in cells since they play important roles in metabolism. Thus, developing nanoreagents to control the ROS is critical. Herein, tellurium-doped carbon quantum dots (Te-CDs) were developed by a simple and efficient hydrothermal method, which can scavenge H2O2 to protect cells under ambient condition, but generate ·OH under 808 nm irradiation as photodynamic application. This contribution presented a kind of novel CDs with dual-functions, which can potentially regulate ROS under different conditions.
Collapse
Affiliation(s)
- Hao Chen
- Center of Materials Science and Opto-electronic Technology, College of Materials Science and Opto-electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaikai Wen
- Center of Materials Science and Opto-electronic Technology, College of Materials Science and Opto-electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingya Chen
- Center of Materials Science and Opto-electronic Technology, College of Materials Science and Opto-electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Wang Xing
- Center of Materials Science and Opto-electronic Technology, College of Materials Science and Opto-electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxi Wu
- Center of Materials Science and Opto-electronic Technology, College of Materials Science and Opto-electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinqin Shi
- Center of Materials Science and Opto-electronic Technology, College of Materials Science and Opto-electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Aidong Peng
- Center of Materials Science and Opto-electronic Technology, College of Materials Science and Opto-electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hui Huang
- Center of Materials Science and Opto-electronic Technology, College of Materials Science and Opto-electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
37
|
Liu J, Li Y, Chen S, Lin Y, Lai H, Chen B, Chen T. Biomedical Application of Reactive Oxygen Species-Responsive Nanocarriers in Cancer, Inflammation, and Neurodegenerative Diseases. Front Chem 2020; 8:838. [PMID: 33062637 PMCID: PMC7530259 DOI: 10.3389/fchem.2020.00838] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
Numerous pathological conditions, including cancer, inflammatory diseases, and neurodegenerative diseases, are accompanied by overproduction of reactive oxygen species (ROS). This makes ROS vital flagging molecules in disease pathology. ROS-responsive drug delivery platforms have been developed. Nanotechnology has been broadly applied in the field of biomedicine leading to the progress of ROS-responsive nanoparticles. In this review, we focused on the production and physiological/pathophysiological impact of ROS. Particular emphasis is put on the mechanisms and effects of abnormal ROS levels on oxidative stress diseases, including cancer, inflammatory disease, and neurodegenerative diseases. Finally, we summarized the potential biomedical applications of ROS-responsive nanocarriers in these oxidative stress diseases. We provide insights that will help in the designing of new ROS-responsive nanocarriers for various applications.
Collapse
Affiliation(s)
- Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongjin Li
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Song Chen
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongpeng Lin
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoqiang Lai
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Bolai Chen
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, China
| |
Collapse
|
38
|
Cheng R, Li G, Fan L, Jiang J, Zhao Y. Therapeutic iminoboronate-based polymersomes with a Cu(ii)-mediated Fenton reaction-enhanced ROS-response. Chem Commun (Camb) 2020; 56:12246-12249. [PMID: 32929426 DOI: 10.1039/d0cc03607b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Reactive oxygen species (ROS)-responsive prodrug nanoplatforms may not work efficiently due to insufficient ROS concentrations, so therapeutic polymersomes of a metallisable triamine-centered iminoboronate-functionalized amphiphilic starlike prodrug (N3-(OEG-IBCAPE)4) are prepared to show a Cu(ii)-mediated Fenton reaction-enhanced ROS response.
Collapse
Affiliation(s)
- Ruidong Cheng
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, P. R. China.
| | | | | | | | | |
Collapse
|
39
|
|
40
|
He Q, Chen J, Yan J, Cai S, Xiong H, Liu Y, Peng D, Mo M, Liu Z. Tumor microenvironment responsive drug delivery systems. Asian J Pharm Sci 2020; 15:416-448. [PMID: 32952667 PMCID: PMC7486519 DOI: 10.1016/j.ajps.2019.08.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
Conventional tumor-targeted drug delivery systems (DDSs) face challenges, such as unsatisfied systemic circulation, low targeting efficiency, poor tumoral penetration, and uncontrolled drug release. Recently, tumor cellular molecules-triggered DDSs have aroused great interests in addressing such dilemmas. With the introduction of several additional functionalities, the properties of these smart DDSs including size, surface charge and ligand exposure can response to different tumor microenvironments for a more efficient tumor targeting, and eventually achieve desired drug release for an optimized therapeutic efficiency. This review highlights the recent research progresses on smart tumor environment responsive drug delivery systems for targeted drug delivery. Dynamic targeting strategies and functional moieties sensitive to a variety of tumor cellular stimuli, including pH, glutathione, adenosine-triphosphate, reactive oxygen species, enzyme and inflammatory factors are summarized. Special emphasis of this review is placed on their responsive mechanisms, drug loading models, drawbacks and merits. Several typical multi-stimuli responsive DDSs are listed. And the main challenges and potential future development are discussed.
Collapse
Affiliation(s)
- Qunye He
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Jun Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Jianhua Yan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Shundong Cai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Hongjie Xiong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yanfei Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Dongming Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Miao Mo
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhenbao Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
41
|
Oddone N, Boury F, Garcion E, Grabrucker AM, Martinez MC, Da Ros F, Janaszewska A, Forni F, Vandelli MA, Tosi G, Ruozi B, Duskey JT. Synthesis, Characterization, and In Vitro Studies of an Reactive Oxygen Species (ROS)-Responsive Methoxy Polyethylene Glycol-Thioketal-Melphalan Prodrug for Glioblastoma Treatment. Front Pharmacol 2020; 11:574. [PMID: 32425795 PMCID: PMC7212708 DOI: 10.3389/fphar.2020.00574] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary tumor of the brain and averages a life expectancy in diagnosed patients of only 15 months. Hence, more effective therapies against this malignancy are urgently needed. Several diseases, including cancer, are featured by high levels of reactive oxygen species (ROS), which are possible GBM hallmarks to target or benefit from. Therefore, the covalent linkage of drugs to ROS-responsive molecules can be exploited aiming for a selective drug release within relevant pathological environments. In this work, we designed a new ROS-responsive prodrug by using Melphalan (MPH) covalently coupled with methoxy polyethylene glycol (mPEG) through a ROS-cleavable group thioketal (TK), demonstrating the capacity to self-assembly into nanosized micelles. Full chemical-physical characterization was conducted on the polymeric-prodrug and proper controls, along with in vitro cytotoxicity assayed on different GBM cell lines and “healthy” astrocyte cells confirming the absence of any cytotoxicity of the prodrug on healthy cells (i.e. astrocytes). These results were compared with the non-ROS responsive counterpart, underlining the anti-tumoral activity of ROS-responsive compared to the non-ROS-responsive prodrug on GBM cells expressing high levels of ROS. On the other hand, the combination treatment with this ROS-responsive prodrug and X-ray irradiation on human GBM cells resulted in an increase of the antitumoral effect, and this might be connected to radiotherapy. Hence, these results represent a starting point for a rationale design of innovative and tailored ROS-responsive prodrugs to be used in GBM therapy and in combination with radiotherapy.
Collapse
Affiliation(s)
- Natalia Oddone
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Frank Boury
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Emmanuel Garcion
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Andreas M Grabrucker
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland.,Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| | | | - Federica Da Ros
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Flavio Forni
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Angela Vandelli
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Tosi
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Barbara Ruozi
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jason T Duskey
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Umberto Veronesi Foundation, Milano, Italy
| |
Collapse
|
42
|
Pang Z, Zhou J, Sun C. Ditelluride-Bridged PEG-PCL Copolymer as Folic Acid-Targeted and Redox-Responsive Nanoparticles for Enhanced Cancer Therapy. Front Chem 2020; 8:156. [PMID: 32181244 PMCID: PMC7059598 DOI: 10.3389/fchem.2020.00156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 02/20/2020] [Indexed: 01/04/2023] Open
Abstract
The development of the nanosized delivery systems with targeting navigation and efficient cargo release for cancer therapy has attracted great attention in recent years. Herein, a folic acid (FA) modified PEGylated polycaprolactone containing ditelluride linkage was synthesized through a facile coupling reaction. The hydrophobic doxorubicin (DOX) can be encapsulated into the polymeric micelles, and such nanoparticles (F-TeNPDOX) exhibited redox-responsive drug release under abundant glutathione (GSH) condition due to the degradation of ditelluride bonds. In addition, flow cytometric analyses showed that the FA ligands on F-TeNPDOX could facilitate their cellular uptake in 4T1 breast cancer cells. Therefore, F-TeNPDOX led to the promoted drug accumulation and enhanced growth inhibition on 4T1 tumor in vivo. The obtained results suggest F-TeNPDOX excellent potential as nanocarriers for anticancer drug delivery.
Collapse
Affiliation(s)
- Zekun Pang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiayan Zhou
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunyang Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
43
|
An Z, Yan J, Zhang Y, Pei R. Applications of nanomaterials for scavenging reactive oxygen species in the treatment of central nervous system diseases. J Mater Chem B 2020; 8:8748-8767. [DOI: 10.1039/d0tb01380c] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nanomaterials with excellent ROS-scavenging ability and biodistribution are considered as promising candidates in alleviating oxidative stress and restoring redox balance in CNS diseases, further facilitating the function recovery of the CNS.
Collapse
Affiliation(s)
- Zhen An
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Jincong Yan
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Ye Zhang
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|
44
|
Fan Z, Xu H. Recent Progress in the Biological Applications of Reactive Oxygen Species-Responsive Polymers. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1641515] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhiyuan Fan
- Department of Chemistry, Tsinghua University, Key Lab of Organic Optoelectronics and Molecular Engineering, Beijing, P. R. China
| | - Huaping Xu
- Department of Chemistry, Tsinghua University, Key Lab of Organic Optoelectronics and Molecular Engineering, Beijing, P. R. China
| |
Collapse
|
45
|
Affiliation(s)
- Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
46
|
Zhang Y, Zhang H, Mao Z, Gao C. ROS-Responsive Nanoparticles for Suppressing the Cytotoxicity and Immunogenicity Caused by PM2.5 Particulates. Biomacromolecules 2019; 20:1777-1788. [DOI: 10.1021/acs.biomac.9b00174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yixian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haolan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
47
|
Peng J, Yang Q, Shi K, Xiao Y, Wei X, Qian Z. Intratumoral fate of functional nanoparticles in response to microenvironment factor: Implications on cancer diagnosis and therapy. Adv Drug Deliv Rev 2019; 143:37-67. [PMID: 31276708 DOI: 10.1016/j.addr.2019.06.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/04/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023]
Abstract
The extraordinary growth and progression of tumor require enormous nutrient and energy. Unregulated behaviors of cancer cell progressing and persistently change of tumor microenvironment (TME) which acts as the soil for cancer growth and metastasis are the ubiquitous features. The tumor microenvironment exhibits some unique features which differ with the normal tissues. While the nanoparticles get through the blood vessel leakage, they encounter immediately and interact directly with these microenvironment factors. These factors may inhibit the diffusion of nanoparticles from penetrating through the tumor, or induce the dissociation of nanoparticles. Different nanoparticles encountered with different intratumoral microenvironment factors end up in different way. Therefore, in this review, we first briefly introduced the formations, distributions, features of some intratumoral microenvironment, and their effects on the tumor progression. They include extracellular matrix (ECM), matrix metalloproteinases (MMPs), acidic/hypoxia environment, redox environment, and tumor associated macrophages (TAMs). We then exemplified how these factors interact with nanoparticles and emphasized the potentials and challenges of nanoparticle-based strategies facing in enhancing intratumoral penetration and tumor microenvironment remodeling. We hope to give a simple understanding of the interaction between these microenvironment factors and the nanoparticles, thus, favors the designing and constructing of more ideal functional nanoparticles.
Collapse
|
48
|
An ultrasensitive electrochemical sensor based on cotton carbon fiber composites for the determination of superoxide anion release from cells. Mikrochim Acta 2019; 186:198. [PMID: 30796529 DOI: 10.1007/s00604-019-3304-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/03/2019] [Indexed: 01/06/2023]
Abstract
A sensor is described for determination of superoxide anion (O2˙-). The electrode consists of nitrogen-doped cotton carbon fiber (NCFs) modified with silver nanoparticles (AgNPs) which have excellent catalytic capability. The resulting sensor, best operated at working potentials around -0.5 V (vs. SCE), can detect O2˙- over an extraordinarily wide range that covers 10 orders of magnitude, and the detection limit is 2.32 ± 0.07 fM. The electrode enables the release of O2˙- from living cells under normal or under oxidative stress conditions to be determined. The ability to scavenge the superoxide anions of antioxidants was also investigated. In the authors' perception, the method represents a viable tool for studying diseases related to oxidative stress. Graphical abstract Schematic presentation of the construction of an electrochemical sensor based on Nitrogen-doped cotton carbon fiber and silver nanoparticles. It can be used for the direct detection of superoxide anions released from Glioma cells (U87) under normal or under oxidative stress conditions.
Collapse
|
49
|
Hao A, Xue H, Jia J. Geometries, stabilities, and magnetic properties of Co2Bn (n = 1–10) clusters. J Mol Model 2019; 25:27. [DOI: 10.1007/s00894-018-3906-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/12/2018] [Indexed: 11/30/2022]
|
50
|
Yao Y, Zhang H, Wang Z, Ding J, Wang S, Huang B, Ke S, Gao C. Reactive oxygen species (ROS)-responsive biomaterials mediate tissue microenvironments and tissue regeneration. J Mater Chem B 2019; 7:5019-5037. [DOI: 10.1039/c9tb00847k] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ROS-responsive biomaterials alleviate the oxidative stress in tissue microenvironments, promoting tissue regeneration and disease therapy.
Collapse
Affiliation(s)
- Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Haolan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhaoyi Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jie Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Shuqin Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Baiqiang Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Shifeng Ke
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|