1
|
Xia N, Gao F, Zhang J, Wang J, Huang Y. Overview on the Development of Electrochemical Immunosensors by the Signal Amplification of Enzyme- or Nanozyme-Based Catalysis Plus Redox Cycling. Molecules 2024; 29:2796. [PMID: 38930860 PMCID: PMC11206384 DOI: 10.3390/molecules29122796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Enzyme-linked electrochemical immunosensors have attracted considerable attention for the sensitive and selective detection of various targets in clinical diagnosis, food quality control, and environmental analysis. In order to improve the performances of conventional immunoassays, significant efforts have been made to couple enzyme-linked or nanozyme-based catalysis and redox cycling for signal amplification. The current review summarizes the recent advances in the development of enzyme- or nanozyme-based electrochemical immunosensors with redox cycling for signal amplification. The special features of redox cycling reactions and their synergistic functions in signal amplification are discussed. Additionally, the current challenges and future directions of enzyme- or nanozyme-based electrochemical immunosensors with redox cycling are addressed.
Collapse
Affiliation(s)
- Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiwen Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiaqiang Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yaliang Huang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
2
|
Wang B, He B, Xie L, Cao X, Liang Z, Wei M, Jin H, Ren W, Suo Z, Xu Y. A novel detection strategy for nitrofuran metabolite residues: Dual-mode competitive-type electrochemical immunosensor based on polyethyleneimine reduced graphene oxide/gold nanorods nanocomposite and silica-based multifunctional immunoprobe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158676. [PMID: 36096228 DOI: 10.1016/j.scitotenv.2022.158676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Excessive residues of semicarbazide (SEM) can accumulate in animals after the original drug has been abused, posing a risk to human health. Herein, based on multifunctional silica-initiated dual mode signal response, a novel competitive-type immunosensor was constructed for ultrasensitive detection of SEM. As a preliminary signal amplification platform for immunosensors, polyethyleneimine reduced graphene oxide composite gold nanorods (PEI-rGO/AuNRs) modified gold electrodes (AuE) provide a high specific surface area and high electrical conductivity. The thionine-aminated silica nanospheres-AuPt (thi-SiO2@AuPt) were synthesized by a racile coprecipitation method for enzyme immobilization and redox species loading. The multifunctional silica nanosphere conjugated with labeling antibodies (Ab2) was employed as an immunoprobe. The per unit concentration target of SEM can be determined by differential pulse voltammetry (DPV) to detect the thi loaded on the immunoprobe, which can also be determined by square wave voltammetry (SWV) to detect the current generated by the reaction system of H2O2 and hydroquinone (HQ) catalyzed by the immunoprobe with peroxidase. Under optimal conditions, the proposed immunosensor displayed a wide linear range from 1 μg-0.01 ng/mL and low detection limits (S/N = 3) of 0.488 pg/mL and 0.0157 ng/mL, respectively. Ultimately, the developed method exhibits excellent performance in practical applications, providing promising probabilities for SEM detection.
Collapse
Affiliation(s)
- Botao Wang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Lingling Xie
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Xiaoyu Cao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Zhengyong Liang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
3
|
Nasrollahpour H, Khalilzadeh B, Hasanzadeh M, Rahbarghazi R, Estrela P, Naseri A, Tasoglu S, Sillanpää M. Nanotechnology‐based electrochemical biosensors for monitoring breast cancer biomarkers. Med Res Rev 2022; 43:464-569. [PMID: 36464910 DOI: 10.1002/med.21931] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/01/2022] [Accepted: 11/04/2022] [Indexed: 12/07/2022]
Abstract
Breast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socioeconomic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types.
Collapse
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic and Electrical Engineering University of Bath Bath UK
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Savas Tasoglu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer Istanbul Turkey
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Environment and Labour Safety Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
4
|
Chang Y, Wang Y, Zhang J, Xing Y, Li G, Deng D, Liu L. Overview on the Design of Magnetically Assisted Electrochemical Biosensors. BIOSENSORS 2022; 12:bios12110954. [PMID: 36354462 PMCID: PMC9687741 DOI: 10.3390/bios12110954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 06/12/2023]
Abstract
Electrochemical biosensors generally require the immobilization of recognition elements or capture probes on the electrode surface. This may limit their practical applications due to the complex operation procedure and low repeatability and stability. Magnetically assisted biosensors show remarkable advantages in separation and pre-concentration of targets from complex biological samples. More importantly, magnetically assisted sensing systems show high throughput since the magnetic materials can be produced and preserved on a large scale. In this work, we summarized the design of electrochemical biosensors involving magnetic materials as the platforms for recognition reaction and target conversion. The recognition reactions usually include antigen-antibody, DNA hybridization, and aptamer-target interactions. By conjugating an electroactive probe to biomolecules attached to magnetic materials, the complexes can be accumulated near to an electrode surface with the aid of external magnet field, producing an easily measurable redox current. The redox current can be further enhanced by enzymes, nanomaterials, DNA assemblies, and thermal-cycle or isothermal amplification. In magnetically assisted assays, the magnetic substrates are removed by a magnet after the target conversion, and the signal can be monitored through stimuli-response release of signal reporters, enzymatic production of electroactive species, or target-induced generation of messenger DNA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lin Liu
- Correspondence: (D.D.); (L.L.)
| |
Collapse
|
5
|
Shu Q, Zhu Y, Xiao Y, Chen K, Mai X, Zheng X, Yan X. A Novel Chemiluminescence Biosensor Based on Dual Aptamers Bound Nanoparticles with Multi-site Signal Amplification for Sensitive Detection of Carcinoembryonic Antigen. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Biswas S, Lan Q, Li C, Xia XH. Morphologically Flex Sm-MOF Based Electrochemical Immunosensor for Ultrasensitive Detection of a Colon Cancer Biomarker. Anal Chem 2022; 94:3013-3019. [PMID: 35119821 DOI: 10.1021/acs.analchem.1c05538] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite having the potential to synthesize stable metal-organic frameworks (MOFs), rare earth metal-based MOFs have not been exploited extensively. Owing to the high coordination numbers, the MOFs can generate a suitable coordination environment for various applications. Herein, samarium (Sm)-based MOFs were synthesized with three different organic linkers, namely, trimesic acid (TMA), meso-tetra(4-carboxyphenyl)porphine (TCPP), and 1,3,6,8-tetra(4-carboxylphenyl) pyrene(TBPy) by the solvothermal approach. The morphologies of Sm-TMA MOF, Sm-TCPP MOF, Sm-TBPy MOF were rod-shaped, cubic consisting of stacked 2D layers, and spherical made of small cubic structures, respectively. After the electrochemical properties of the synthesized MOFs were investigated, the MOFs were used to fabricate immunosensors for detection of carcinoembryonic antigen using a label-free signaling strategy. The immunosensors exhibited a wide linear detection range and a lower detection limit. The exhibited reproducibility and selectivity of the immunosensors were within the tolerable limits. The established label-free immunosensor has been successfully applied for detection of carcinoembryonic antigen in human serum samples, demonstrating that the rare earth metal-based MOFs are promising for construction of biosensors for medical diagnosis.
Collapse
Affiliation(s)
- Sudip Biswas
- State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Qingchun Lan
- Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Chaorui Li
- State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xing-Hua Xia
- State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Li H, Zhao H, Wang Z, Zhou F, Lan M. Facilely proposed PtCu-rGO bimetallic nanocomposites modified carbon fibers microelectrodes for detecting hydrogen peroxide released from living cells. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
8
|
Lu X, Xu J, Wang Y, Xue Y, Li J, Hu X, Yang Z. Nitrogen‐doped TiO
2
Nanocrystals for Highly Sensitive Electrochemical Immunoassay of Carcinoembryonic Antigen. ELECTROANAL 2021. [DOI: 10.1002/elan.202100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xin Lu
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 PR China
| | - Jia Xu
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 PR China
| | - Yulin Wang
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 PR China
| | - Yadong Xue
- Central Laboratory, Affiliated Jinhua Hospital Zhejiang University School of Medicine Jinhua 321000 China
| | - Juan Li
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 PR China
| | - Xiaoya Hu
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 PR China
| | - Zhanjun Yang
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 PR China
| |
Collapse
|
9
|
Electrochemical detection of CA125 using thionine and gold nanoparticles supported on heteroatom-doped graphene nanocomposites. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01966-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Recent Advances in Two-Dimensional Transition Metal Dichalcogenide Nanocomposites Biosensors for Virus Detection before and during COVID-19 Outbreak. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5070190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The deadly Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) outbreak has become one of the most challenging pandemics in the last century. Clinical diagnosis reports a high infection rate within a large population and a rapid mutation rate upon every individual infection. The polymerase chain reaction has been a powerful and gold standard molecular diagnostic technique over the past few decades and hence a promising tool to detect the SARS-CoV-2 nucleic acid sequences. However, it can be costly and involved in complicated processes with a high demand for on-site tests. This pandemic emphasizes the critical need for designing cost-effective and fast diagnosis strategies to prevent a potential viral source by ultrasensitive and selective biosensors. Two-dimensional (2D) transition metal dichalcogenide (TMD) nanocomposites have been developed with unique physical and chemical properties crucial for building up nucleic acid and protein biosensors. In this review, we cover various types of 2D TMD biosensors available for virus detection via the mechanisms of photoluminescence/optical, field-effect transistor, surface plasmon resonance, and electrochemical signals. We summarize the current state-of-the-art applications of 2D TMD nanocomposite systems for sensing proteins/nucleic acid from different types of lethal viruses. Finally, we identify and discuss the advantages and limitations of TMD-based nanocomposites biosensors for viral recognition.
Collapse
|
11
|
Ma X, Deng D, Xia N, Hao Y, Liu L. Electrochemical Immunosensors with PQQ-Decorated Carbon Nanotubes as Signal Labels for Electrocatalytic Oxidation of Tris(2-carboxyethyl)phosphine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1757. [PMID: 34361143 PMCID: PMC8308108 DOI: 10.3390/nano11071757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022]
Abstract
Nanocatalysts are a promising alternative to natural enzymes as the signal labels of electrochemical biosensors. However, the surface modification of nanocatalysts and sensor electrodes with recognition elements and blockers may form a barrier to direct electron transfer, thus limiting the application of nanocatalysts in electrochemical immunoassays. Electron mediators can accelerate the electron transfer between nanocatalysts and electrodes. Nevertheless, it is hard to simultaneously achieve fast electron exchange between nanocatalysts and redox mediators as well as substrates. This work presents a scheme for the design of electrochemical immunosensors with nanocatalysts as signal labels, in which pyrroloquinoline quinone (PQQ) is the redox-active center of the nanocatalyst. PQQ was decorated on the surface of carbon nanotubes to catalyze the electrochemical oxidation of tris(2-carboxyethyl)phosphine (TCEP) with ferrocenylmethanol (FcM) as the electron mediator. With prostate-specific antigen (PSA) as the model analyte, the detection limit of the sandwich-type immunosensor was found to be 5 pg/mL. The keys to success for this scheme are the slow chemical reaction between TCEP and ferricinum ions, and the high turnover frequency between ferricinum ions, PQQ. and TCEP. This work should be valuable for designing of novel nanolabels and nanocatalytic schemes for electrochemical biosensors.
Collapse
Affiliation(s)
- Xiaohua Ma
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China;
| | - Dehua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (D.D.); (N.X.)
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (D.D.); (N.X.)
| | - Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China;
| | - Lin Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China;
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (D.D.); (N.X.)
| |
Collapse
|
12
|
Ge XY, Feng YG, Cen SY, Wang AJ, Mei LP, Luo X, Feng JJ. A label-free electrochemical immnunosensor based on signal magnification of oxygen reduction reaction catalyzed by uniform PtCo nanodendrites for highly sensitive detection of carbohydrate antigen 15-3. Anal Chim Acta 2021; 1176:338750. [PMID: 34399893 DOI: 10.1016/j.aca.2021.338750] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 01/03/2023]
Abstract
Developing a highly sensitive immunoassay for tumor biomarkers is particularly important in bioanalysis and early disease diagnosis. In this work, a simple one-pot solvothermal method was developed for controllable synthesis of well-dispersed PtCo alloyed nanodendrites (PtCo NDs) by using l-carnosine as the co-structure-directing agent. The PtCo NDs had a large specific surface area and provided abundant active sites available for electrocatalytic oxygen reduction reaction (ORR). Based on the highly enhanced currents of the ORR, a novel label-free electrochemical immunosensor was fabricated for highly sensitive assay of carbohydrate antigen 15-3 (CA15-3). The sensor showed a wide linear range of 0.1-200 U mL-1 and a low limit of detection (LOD) down to 0.0114 U mL-1 (S/N = 3), in turn exploring its application to diluted human serum samples with satisfactory results. This study provides a feasible platform for monitoring other tumor markers in clinical diagnosis.
Collapse
Affiliation(s)
- Xin-Yue Ge
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yi-Ge Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shi-Yun Cen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Li-Ping Mei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Sciences, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
13
|
Highly sensitive electrochemical immunosensor for the simultaneous detection of multiple tumor markers for signal amplification. Talanta 2021; 226:122133. [DOI: 10.1016/j.talanta.2021.122133] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
|
14
|
Ding M, Zha L, Wang H, Liu J, Chen P, Zhao Y, Jiang L, Li Y, Ouyang R, Miao Y. A frogspawn-like Ag@C core–shell structure for an ultrasensitive label-free electrochemical immunosensing of carcinoembryonic antigen in blood plasma. RSC Adv 2021; 11:16339-16350. [PMID: 35479148 PMCID: PMC9030918 DOI: 10.1039/d1ra00910a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/18/2021] [Indexed: 12/31/2022] Open
Abstract
Novel frogspawn-like Ag@C nanoparticles were successfully used to fabricate an ultrasensitive electrochemical immunosensing platform toward CEA in human blood samples.
Collapse
Affiliation(s)
- Mengkui Ding
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Ling Zha
- Department of Laboratory Diagnosis
- Changhai Hospital
- Naval Medical University
- Shanghai 20043
- P. R. China
| | - Hui Wang
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Jinyao Liu
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Peiwu Chen
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Yuefeng Zhao
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Lan Jiang
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Yuhao Li
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Ruizhuo Ouyang
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Yuqing Miao
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| |
Collapse
|
15
|
Gajdosova V, Lorencova L, Kasak P, Tkac J. Electrochemical Nanobiosensors for Detection of Breast Cancer Biomarkers. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4022. [PMID: 32698389 PMCID: PMC7412172 DOI: 10.3390/s20144022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022]
Abstract
This comprehensive review paper describes recent advances made in the field of electrochemical nanobiosensors for the detection of breast cancer (BC) biomarkers such as specific genes, microRNA, proteins, circulating tumor cells, BC cell lines, and exosomes or exosome-derived biomarkers. Besides the description of key functional characteristics of electrochemical nanobiosensors, the reader can find basic statistic information about BC incidence and mortality, breast pathology, and current clinically used BC biomarkers. The final part of the review is focused on challenges that need to be addressed in order to apply electrochemical nanobiosensors in a clinical practice.
Collapse
Affiliation(s)
- Veronika Gajdosova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (V.G.); (L.L.)
| | - Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (V.G.); (L.L.)
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (V.G.); (L.L.)
| |
Collapse
|
16
|
Reddy KK, Bandal H, Satyanarayana M, Goud KY, Gobi KV, Jayaramudu T, Amalraj J, Kim H. Recent Trends in Electrochemical Sensors for Vital Biomedical Markers Using Hybrid Nanostructured Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902980. [PMID: 32670744 PMCID: PMC7341105 DOI: 10.1002/advs.201902980] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/12/2020] [Indexed: 05/09/2023]
Abstract
This work provides a succinct insight into the recent developments in electrochemical quantification of vital biomedical markers using hybrid metallic composite nanostructures. After a brief introduction to the biomarkers, five types of crucial biomarkers, which require timely and periodical monitoring, are shortlisted, namely, cancer, cardiac, inflammatory, diabetic and renal biomarkers. This review emphasizes the usage and advantages of hybrid nanostructured materials as the recognition matrices toward the detection of vital biomarkers. Different transduction methods (fluorescence, electrophoresis, chemiluminescence, electrochemiluminescence, surface plasmon resonance, surface-enhanced Raman spectroscopy) reported for the biomarkers are discussed comprehensively to present an overview of the current research works. Recent advancements in the electrochemical (amperometric, voltammetric, and impedimetric) sensor systems constructed with metal nanoparticle-derived hybrid composite nanostructures toward the selective detection of chosen vital biomarkers are specifically analyzed. It describes the challenges involved and the strategies reported for the development of selective, sensitive, and disposable electrochemical biosensors with the details of fabrication, functionalization, and applications of hybrid metallic composite nanostructures.
Collapse
Affiliation(s)
- K. Koteshwara Reddy
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - Harshad Bandal
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
| | - Moru Satyanarayana
- Department of ChemistryNational Institute of Technology WarangalWarangalTelangana506004India
| | - Kotagiri Yugender Goud
- Department of ChemistryNational Institute of Technology WarangalWarangalTelangana506004India
| | | | - Tippabattini Jayaramudu
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - John Amalraj
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - Hern Kim
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
| |
Collapse
|
17
|
Moradkhani M, Farshchi F, Hasanzadeh M, Mokhtarzadeh A. A novel bioassay for the monitoring of carcinoembryonic antigen in human biofluid using polymeric interface and immunosensing method. J Mol Recognit 2020; 33:e2852. [PMID: 32303119 DOI: 10.1002/jmr.2852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/10/2020] [Accepted: 04/03/2020] [Indexed: 01/22/2023]
Abstract
Carcinoembryonic antigen (CEA) is a member of a family of cell surface glycoproteins. Recognition of CEA is needed to monitor the physiological status of the patient for treatment and also it is important to assess the severity of the disease. In this work, we reported a novel sandwich-type electrochemical immunosensor based on gold nanoparticles functionalized cysteamine-glutaraldehyde (AuNPs-CysA-GA) and it successfully designed to detection of the CEA biomarker in a human plasma sample. The AuNPs-CysA-GA provides a large surface area for the effective immobilization of CEA antibody, as well as it ascertains the bioactivity and stability of immobilized CEA antigens. Biotinylated-anti-CEA antibody (Ab1) was immobilized on the surface of glassy carbon electrode (GCE) modified AuNPs-CysA-GA. Also, secondary antibody (HRP-Ab2) was costed immobilized to complete the sandwich part of immunosensor. Field emission scanning electron microscope (FE-SEM and EDS), was employed to monitor the sensor fabrication procedure. The immunosensor was used for the detection of CEA using differential pulse voltammetry (DPVs) technique. The proposed interface led to enhancement of accessible surface area for immobilizing high amount of anti-CEA antibody, increasing electrical conductivity, boosting stability, and biocompatibility. Finally, the low limit of quantitation (LLOQ) of the proposed immunosensor was obtained as 7 ng/mL with the linear range of 0.001-5 μg/L. The proposed immunoassay was successfully applied for the monitoring of the CEA in unprocessed human plasma samples. Obtained results paved that the proposed bioassay can be used as a novel bioassay for the clinical diagnosis of cancer based on CEA monitoring.
Collapse
Affiliation(s)
- Mahbubeh Moradkhani
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Farshchi
- Nutrition Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology-Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Jia Y, Li Y, Zhang S, Wang P, Liu Q, Dong Y. Mulberry-like Au@PtPd porous nanorods composites as signal amplifiers for sensitive detection of CEA. Biosens Bioelectron 2020; 149:111842. [DOI: 10.1016/j.bios.2019.111842] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022]
|
19
|
Popescu RC, Andronescu E, Vasile BS. Recent Advances in Magnetite Nanoparticle Functionalization for Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1791. [PMID: 31888236 PMCID: PMC6956201 DOI: 10.3390/nano9121791] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Functionalization of nanomaterials can enhance and modulate their properties and behaviour, enabling characteristics suitable for medical applications. Magnetite (Fe3O4) nanoparticles are one of the most popular types of nanomaterials used in this field, and many technologies being already translated in clinical practice. This article makes a summary of the surface modification and functionalization approaches presented lately in the scientific literature for improving or modulating magnetite nanoparticles for their applications in nanomedicine.
Collapse
Affiliation(s)
- Roxana Cristina Popescu
- National Research Center for Micro and Nanomaterials, Department of Science and Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania; (R.C.P.); (E.A.)
- Department of Life and Environmental Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, 077125 Magurele, Romania
| | - Ecaterina Andronescu
- National Research Center for Micro and Nanomaterials, Department of Science and Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania; (R.C.P.); (E.A.)
| | - Bogdan Stefan Vasile
- National Research Center for Micro and Nanomaterials, Department of Science and Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania; (R.C.P.); (E.A.)
| |
Collapse
|
20
|
An immunomagnetic separation and bifunctional Au nanoparticle probe-based multiamplification electrochemical strategy. Bioelectrochemistry 2019; 129:278-285. [DOI: 10.1016/j.bioelechem.2019.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/31/2022]
|
21
|
Electrochemical immunosensor based on MoS2 NFs/Au@AgPt YNCs as signal amplification label for sensitive detection of CEA. Biosens Bioelectron 2019; 142:111580. [DOI: 10.1016/j.bios.2019.111580] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/27/2019] [Accepted: 08/08/2019] [Indexed: 11/18/2022]
|
22
|
Li W, Fan GC, Fan X, Zhang R, Wang L, Wang W, Luo X. Low fouling and ultrasensitive electrochemical immunosensors with dual assay methods based on Fe 3O 4 magnetic nanoparticles. J Mater Chem B 2019; 7:5842-5847. [PMID: 31506652 DOI: 10.1039/c9tb01492f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Low fouling electrochemical immunosensors with both "signal-off" and "signal-on" analytical methods were developed for the highly sensitive and efficient detection of cancer antigen 15-3 (CA 15-3) in human serum samples. The antifouling sensing interfaces were constructed by assembling multifunctional polyethylene glycol on gold electrodes, followed by covalent conjugation with CA 15-3 antibody. Pure antigens and Fe3O4@Ag will competitively bind to the immobilized antibody on the electrode. Fe3O4 magnetic nanoparticles attached to the working electrode and collected by a magnetic electrode were treated via electrochemical conversion to generate electroactive Prussian blue as a signal readout. Therefore, these two signals measured independently were complementary, and this design allowed one to choose the assay method according to real situations so as to ensure accuracy of the immunosensor. Moreover, owing to its good antifouling property, the immunosensor was capable of detecting CA 15-3 even in complex human serum samples, demonstrating potential application in quantitative analysis of real patient serum samples.
Collapse
Affiliation(s)
- Wenshi Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Gao-Chao Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Xiaojian Fan
- Department of Breast Surgery, The Eighth People's Hospital of Qingdao, Qingdao 266100, P. R. China
| | - Ruiqiao Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China. and Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Lei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Wei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| |
Collapse
|
23
|
Su S, Sun Q, Wan L, Gu X, Zhu D, Zhou Y, Chao J, Wang L. Ultrasensitive analysis of carcinoembryonic antigen based on MoS2-based electrochemical immunosensor with triple signal amplification. Biosens Bioelectron 2019; 140:111353. [DOI: 10.1016/j.bios.2019.111353] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/18/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022]
|
24
|
Pastucha M, Farka Z, Lacina K, Mikušová Z, Skládal P. Magnetic nanoparticles for smart electrochemical immunoassays: a review on recent developments. Mikrochim Acta 2019; 186:312. [PMID: 31037494 DOI: 10.1007/s00604-019-3410-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
Abstract
This review (with 129 refs) summarizes the progress in electrochemical immunoassays combined with magnetic particles that was made in the past 5 years. The specifity of antibodies linked to electrochemical transduction (by amperometry, voltammetry, impedimetry or electrochemiluminescence) gains further attractive features by introducing magnetic nanoparticles (MNPs). This enables fairly easy preconcentration of analytes, minimizes matrix effects, and introduces an appropriate label. Following an introduction into the fundamentals of electrochemical immunoassays and on nanomaterials for respective uses, a large chapter addresses method for magnetic capture and preconcentration of analytes. A next chapter discusses commonly used labels such as dots, enzymes, metal and metal oxide nanoparticles and combined clusters. The large field of hybrid nanomaterials for use in such immunoassays is discussed next, with a focus on MNPs composites with various kinds of graphene variants, polydopamine, noble metal nanoparticles or nanotubes. Typical applications address clinical markers (mainly blood and urine parameters), diagnosis of cancer (markers and cells), detection of pathogens (with subsections on viruses and bacteria), and environmental and food contaminants as toxic agents and pesticides. A concluding section summarizes the present status, current challenges, and highlights future trends. Graphical abstract Magnetic nanoparticles (MNP) with antibodies (Ab) capture and preconcentrate analyte from sample (a) and afterwards become magnetically (b) or immunospecifically (c) bound at an electrode. Signal either increases due to the presence of alabel (b) or decreases as the redox probe is blocked (c).
Collapse
Affiliation(s)
- Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Zdeněk Farka
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Karel Lacina
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Zuzana Mikušová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
25
|
Gao Z, Li Y, Zhang C, Zhang S, Jia Y, Li F, Ding H, Li X, Chen Z, Wei Q. AuCu xO-Embedded Mesoporous CeO 2 Nanocomposites as a Signal Probe for Electrochemical Sensitive Detection of Amyloid-Beta Protein. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12335-12341. [PMID: 30855126 DOI: 10.1021/acsami.9b01445] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A sandwich-type electrochemical immunosensor for detecting amyloid-beta protein was fabricated based on Au NP-functionalized reduced graphene oxide (Au@rGO) as an effective sensing platform and AuCu xO-embedded mesoporous CeO2 (AuCu xO@m-CeO2) nanocomposites as the catalytic matrix. The AuCu xO@m-CeO2 composites were obtained by adjusting the amount of m-CeO2 in the reaction to expose enormous active sites. Also, AuCu xO@m-CeO2 was applied as a matrix to immobilize antibodies by forming bridged bonds between m-CeO2 and carboxyl functional groups of antibodies without additional agents. Furthermore, AuCu xO with prominent catalytic activities dramatically improved the performance of the fabricated immunosensor. Also, the morphology, structure, and electronic state of the surface were characterized by SEM, XRD, TEM, and XPS. In addition, the immunosensor demonstrated a wide linear range of 100 fg mL-1 to 10 ng mL-1. This study may provide a way for sensitively detecting various biomarkers.
Collapse
Affiliation(s)
- Zengqiang Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P. R. China
| | | | | | | | | | - Faying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P. R. China
| | - Hui Ding
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P. R. China
| | | | | | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P. R. China
| |
Collapse
|
26
|
Li F, Feng J, Gao Z, Shi L, Wu D, Du B, Wei Q. Facile Synthesis of Cu 2O@TiO 2-PtCu Nanocomposites as a Signal Amplification Strategy for the Insulin Detection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8945-8953. [PMID: 30758174 DOI: 10.1021/acsami.9b01779] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Novel ultrasensitive sandwich-type electrochemical immunosensor was proposed for the quantitative detection of insulin, a representative biomarker for diabetes. To this end, molybdenum disulfide nanosheet-loaded gold nanoparticles (MoS2/Au NPs) were used as substrates to modify bare glassy carbon electrodes. MoS2/Au NPs not only present superior biocompatible and large specific surface area to enhance the loading capacity of primary antibody (Ab1) but also present good electrical conductivity to accelerate electron transfer rate. Moreover, the amino-functionalized cuprous oxide decorated with titanium dioxide octahedral composites (Cu2O@TiO2-NH2) were prepared to load dendritic platinum-copper nanoparticles (PtCu NPs) to realize signal amplification strategy. The resultant nanocomposites (cuprous oxide decorated with titanium dioxide octahedral loaded dendritic platinum-copper nanoparticles) demonstrate uniform octahedral morphology and size, which effectively increases the catalytically active sites and specific surface area to load the secondary antibody (Ab2), even increases conductivity. Most importantly, the resultant nanocomposites possess superior electrocatalytic activity for hydrogen peroxide (H2O2) reduction, which present the signal amplification strategy. Under the optimal conditions, the proposed immunosensor exhibited a linear relationship between logarithm of insulin antigen concentration and amperometric response within a broad range from 0.1 pg/mL to 100 ng/mL and a limit detection of 0.024 pg/mL. Meanwhile, the immunosensor was employed to detect insulin in human serum with satisfactory results. Furthermore, it also presents good reproducibility, selectivity, and stability, which exhibits broad application prospects in biometric analysis.
Collapse
Affiliation(s)
- Faying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
- Centre for Energy, Materials and Telecommunications , Institut National de la Recherche Scientifique , 1650 Boulevard Lionel-Boulet , Varennes , Québec J3X 1S2 , Canada
| | - Jinhui Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
| | - Zengqiang Gao
- School of Chemistry and Chemical Engineering , Shandong University of Technology , Zibo 255049 , P.R. China
| | - Li Shi
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
- Centre for Energy, Materials and Telecommunications , Institut National de la Recherche Scientifique , 1650 Boulevard Lionel-Boulet , Varennes , Québec J3X 1S2 , Canada
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
| | - Bin Du
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
| |
Collapse
|
27
|
Zhou X, Yang CT, Xu Q, Lou Z, Xu Z, Thierry B, Gu N. Gold Nanoparticle Probe-Assisted Antigen-Counting Chip Using SEM. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6769-6776. [PMID: 30676729 DOI: 10.1021/acsami.8b19055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Currently, it remains challenging to count protein-biomarker molecules present in a small droplet of biological samples. Herein, we propose a gold nanoparticle (GNP) probe-assisted sandwich-counting strategy that relies on a GNP probe, an antibody-functionalized chip to "count" antigen molecules using a scanning electron microscope. Both standard carcinoembryonic antigen (CEA) and two real CEA-related tumor samples (tumor tissues and serum) were assayed to demonstrate the proof-of-concept of the counting strategy. Results show that our method is excellently correlative with enzyme-linked immuno-sorbent assay (ELISA) that is widely used in clinics for antigen or antibody detection and the limit of detection of our enumeration strategy reaches down to 0.045 ng/mL, which is ∼40 times more sensitive than the conventional ELISA. Therefore, our GNP probe-assisted sandwich-counting strategy has the potential to be used for quantification of protein biomarkers at ultralow concentrations in early tumor specimens and detection of target proteins in much diluted concentrations.
Collapse
Affiliation(s)
- Xin Zhou
- Institute of Comparative Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China , Yangzhou University , Yangzhou 225009 , China
| | - Chih-Tsung Yang
- Future Industries Institute and ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, Mawson Lakes Campus , University of South Australia , South Australia 5095 , Australia
| | - Qiaoshu Xu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210009 , China
| | - Zhichao Lou
- College of Materials Science and Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Zhengfeng Xu
- Center of Medical Genetics , Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University , Nanjing 210029 , China
| | - Benjamin Thierry
- Future Industries Institute and ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, Mawson Lakes Campus , University of South Australia , South Australia 5095 , Australia
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210009 , China
| |
Collapse
|
28
|
Zhang C, Zhang S, Jia Y, Li Y, Wang P, Liu Q, Xu Z, Li X, Dong Y. Sandwich-type electrochemical immunosensor for sensitive detection of CEA based on the enhanced effects of Ag NPs@CS spaced Hemin/rGO. Biosens Bioelectron 2019; 126:785-791. [DOI: 10.1016/j.bios.2018.11.039] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
|
29
|
Gao F, Zhou F, Chen S, Yao Y, Wu J, Yin D, Geng D, Wang P. Proximity hybridization triggered rolling-circle amplification for sensitive electrochemical homogeneous immunoassay. Analyst 2018; 142:4308-4316. [PMID: 29053159 DOI: 10.1039/c7an01434a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new homogeneous electrochemical immunoassay strategy was developed for ultrasensitive detection of carcinoembryonic antigen (CEA) based on target-induced proximity hybridization coupled with rolling circle amplification (RCA). The immobilization-free detection of CEA was realized by the use of an uncharged peptide nucleic acid (PNA) probe labeled with ferrocene (Fc) as the electroactive indicator on a negatively charged indium tin oxide (ITO) electrode. In the presence of a target protein and two DNA-labeled antibodies, the proximate complex formed in homogeneous solution could unfold the molecular beacon, and a part of the unfolded molecular beacon as a primer hybridized with the RCA template to initiate the RCA process. Subsequently, the detection probe modified Fc (Fc-PNAs) hybridized with the long amplified DNA products. The consumption of freely diffusible Fc-PNAs (neutrally charged) resulted in a significant reduction of the Fc signal due to the fact that long amplified DNA/Fc-PNA products were electrostatically repelled from the ITO electrode surface. The reduction of the electrochemical signal (signal-off) could indirectly provide the CEA concentration. Under the optimal conditions, CEA detection was implemented in a wide range from 1 pg mL-1 to 10 ng mL-1, with a low detection limit of 0.49 pg mL-1. The proposed strategy exhibited advantages of good selectivity, high sensitivity, acceptable accuracy, and favorable versatility of analytes. Moreover, the practical application value of the system was confirmed by the assay of CEA in human serums with satisfactory results.
Collapse
Affiliation(s)
- Fenglei Gao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
SWCNTs@GQDs composites as nanocarriers for enzyme-free dual-signal amplification electrochemical immunoassay of cancer biomarker. Anal Chim Acta 2018; 1042:44-51. [DOI: 10.1016/j.aca.2018.08.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/28/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022]
|
31
|
Ultrasensitive electrochemical immunosensor of carcinoembryonic antigen based on gold-label silver-stain signal amplification. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.11.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Efficient synthesis of imine from alcohols and amines over different crystal structure MnOX catalysts. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Based on ZnSe quantum dots labeling and single particle mode ICP-MS coupled with sandwich magnetic immunoassay for the detection of carcinoembryonic antigen in human serum. Anal Chim Acta 2018; 1028:22-31. [DOI: 10.1016/j.aca.2018.04.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 11/19/2022]
|
34
|
Zhang D, Li W, Ma Z. Improved sandwich-format electrochemical immunosensor based on “smart” SiO2@polydopamine nanocarrier. Biosens Bioelectron 2018; 109:171-176. [DOI: 10.1016/j.bios.2018.03.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/20/2018] [Accepted: 03/12/2018] [Indexed: 11/30/2022]
|
35
|
Li X, Li J, Zhu C, Zhang X, Chen J. A new electrochemical immunoassay for prion protein based on hybridization chain reaction with hemin/G-quadruplex DNAzyme. Talanta 2018; 182:292-298. [PMID: 29501155 DOI: 10.1016/j.talanta.2018.01.089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 11/29/2022]
Abstract
In this work, a new electrochemical immunosensor was developed for prion protein assay based on hybridization chain reaction (HCR) with hemin/G-quadruplex DNAzyme for signal amplification. In this amplification system, the hemin/G-quadruplex DNAzyme simultaneously mimicked the biocatalytic functions for H2O2 reduction and L-cysteine oxidation. In the presence of L-cysteine, the hemin/G-quadruplex catalyzed the oxidation of L-cysteine to L-cystine. At the same time, H2O2 was produced under the oxygen condition. Then, the hemin/G-quadruplex could quickly catalyze the reduction of H2O2, mimicking the catalytic performance of horseradish peroxidase (HRP). Under the optimal conditions, the immunosensor showed a wide linear response range from 0.5 pg/mL to 100 ng/mL with the low detection limit of 0.38 pg/mL (3σ). By changing the specific antibody, this strategy could be easily extended to detect the infectious isoform of prion (PrPSc) and other proteins. Based on its good analytical performance, the developed method shows great potential applications in diagnosis of prion diseases at presymptomatic stage and bioanalysis.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Junjing Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Caixia Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
36
|
C-dots assisted synthesis of gold nanoparticles as labels to catalyze copper deposition for ultrasensitive electrochemical sensing of proteins. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9204-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Chen M, Yeasmin Khusbu F, Ma C, Wu K, Zhao H, Chen H, Wang K. A sensitive detection method of carcinoembryonic antigen based on dsDNA-templated copper nanoparticles. NEW J CHEM 2018. [DOI: 10.1039/c8nj02774a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A label-free fluorescence assay has been developed for the detection of carcinoembryonic antigen based on dsDNA-templated copper nanoparticles.
Collapse
Affiliation(s)
- Mingjian Chen
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| | | | - Changbei Ma
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| | - Kefeng Wu
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| | - Han Zhao
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| | - Hanchun Chen
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410081
- China
| |
Collapse
|
38
|
Huang X, Deng X, Qi W, Wu D. A metal–organic framework nanomaterial as an ideal loading platform for ultrasensitive electrochemiluminescence immunoassays. NEW J CHEM 2018. [DOI: 10.1039/c8nj02038h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An ultrasensitive sandwich-type electrochemiluminescent (ECL) immunosensor suitable for identifying carcinoembryonic antigens (CEAs) was developed, using a metal–organic framework nanomaterial (AuNP@NPCGO) as an ideal loading platform and RuSiO2NPs as ECL signaling units.
Collapse
Affiliation(s)
- Xiaomei Huang
- Department of Chemistry and Chemical Engineering
- Sichuan University of Arts and Science
- Dazhou
- P. R. China
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education
| | - Xiang Deng
- Department of Chemistry and Chemical Engineering
- Sichuan University of Arts and Science
- Dazhou
- P. R. China
| | - Wenjing Qi
- Chongqing Key Laboratory of Green Synthesis and Applications
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- P. R. China
| | - Di Wu
- Chongqing Key Laboratory of Green Synthesis and Applications
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- P. R. China
| |
Collapse
|
39
|
Yang ZH, Ren S, Zhuo Y, Yuan R, Chai YQ. Cu/Mn Double-Doped CeO 2 Nanocomposites as Signal Tags and Signal Amplifiers for Sensitive Electrochemical Detection of Procalcitonin. Anal Chem 2017; 89:13349-13356. [PMID: 29211446 DOI: 10.1021/acs.analchem.7b03502] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nanomaterials themselves as redox probes and nanocatalysts have many advantages for electrochemical biosensors. However, most nanomaterials with excellent catalytic activity cannot be directly used as redox probe to construct electrochemical biosensor because the redox signal of these nanomaterials can only be obtained in strong acid or alkali solution at high positive or negative potential, which greatly limits their applications in biologic assay. In this study, Cu/Mn double-doped CeO2 nanocomposite (CuMn-CeO2) was synthesized to use as signal tags and signal amplifiers for the construction of electrochemical immunosensor for sensitive assay of procalcitonin (PCT). Herein, CuMn-CeO2 not only possesses excellent catalytic activity toward H2O2 for signal amplification, but also can be directly used as redox probe for electrochemical signal readout achieved in neutral mild buffer solution at low positive potential. Importantly, since doping Cu, Mn into CeO2 lattice structure can generate extra oxygen vacancies, the redox and catalytic performance of obtained CuMn-CeO2 was much better than that of pure CeO2, which improves the performance of proposed immunosensor. Furthermore, CuMn-CeO2 can be implemented as a matrix for immobilizing amounts of secondary antibody anti-PCT by forming ester-like bridging between carboxylic groups of Ab2 and CeO2 without extra chemical modifications, which greatly simplifies the preparative steps. The prepared immunosensor exhibited a wide linear range of 0.1 pg mL-1 to 36.0 ng mL-1 with a low detection limit of 0.03 pg mL-1. This study implements nanomaterial themselves as redox probes and signal amplifiers and paves a new way for constructing electrochemical immunosensor.
Collapse
Affiliation(s)
- Zhe-Han Yang
- Key Laboratory of Luminescence and Real-Time Analytic Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China.,Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University , Chongqing, 400067, China
| | - Shirong Ren
- Key Laboratory of Luminescence and Real-Time Analytic Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China
| | - Ying Zhuo
- Key Laboratory of Luminescence and Real-Time Analytic Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescence and Real-Time Analytic Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence and Real-Time Analytic Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China
| |
Collapse
|
40
|
Li F, Li Y, Feng J, Gao Z, Lv H, Ren X, Wei Q. Facile synthesis of MoS 2@Cu 2O-Pt nanohybrid as enzyme-mimetic label for the detection of the Hepatitis B surface antigen. Biosens Bioelectron 2017; 100:512-518. [PMID: 28982091 DOI: 10.1016/j.bios.2017.09.048] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/05/2017] [Accepted: 09/27/2017] [Indexed: 12/17/2022]
Abstract
An ultrasensitive sandwich-type electrochemical immunosensor was proposed for quantitative detection of hepatitis B surface antigen, which is a representative biomarker of the Hepatitis B virus. First, the porous graphene oxide/Au composites with good conductive ability were employed to accelerate the electron transfer on the electrode interface. Furthermore, the amino functionalized molybdenum disulfide @ cuprous oxide hybrid with coral morphology was prepared to combine platinum nanoparticles for achieving signal amplification strategy. The resulting nanocomposites (molybdenum disulfide @ cuprous oxide - platinum) demonstrated uniform coral morphology, which effectively improved the specific surface area available for loading the secondary antibody and the number of catalytically active sites, even also increased the electrical conductivity. Based on these advantages, this composite system yielded a superior electrocatalytic current response toward the reduction of hydrogen peroxide. In addition, porous graphene oxide/Au composites were used to modify the glassy carbon electrode, thereby presenting a large surface area and becoming biocompatible, for improving the loading capacity of the primary antibody. Under optimal conditions, we obtained a linear relationship between current signal and hepatitis B surface antigen concentration in the broad range from 0.5pg/mL to 200ng/mL, with a detection limit of 0.15pg/mL (signal-to-noise ratio of 3). These values are promising towards clinical applications.
Collapse
Affiliation(s)
- Faying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yueyun Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Jinhui Feng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Zengqiang Gao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Hui Lv
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
41
|
Farka Z, Juřík T, Kovář D, Trnková L, Skládal P. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem Rev 2017; 117:9973-10042. [DOI: 10.1021/acs.chemrev.7b00037] [Citation(s) in RCA: 404] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zdeněk Farka
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Juřík
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Kovář
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Libuše Trnková
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
42
|
Li Y, Zhang Y, Li F, Feng J, Li M, Chen L, Dong Y. Ultrasensitive electrochemical immunosensor for quantitative detection of SCCA using Co 3 O 4 @CeO 2 -Au@Pt nanocomposite as enzyme-mimetic labels. Biosens Bioelectron 2017; 92:33-39. [DOI: 10.1016/j.bios.2017.01.065] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/21/2017] [Accepted: 01/30/2017] [Indexed: 12/19/2022]
|
43
|
Proximity hybridization-regulated catalytic DNA hairpin assembly for electrochemical immunoassay based on in situ DNA template-synthesized Pd nanoparticles. Anal Chim Acta 2017; 969:8-17. [DOI: 10.1016/j.aca.2017.03.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/24/2017] [Accepted: 03/17/2017] [Indexed: 11/19/2022]
|
44
|
Wang X, Sun D, Tong Y, Zhong Y, Chen Z. A voltammetric aptamer-based thrombin biosensor exploiting signal amplification via synergetic catalysis by DNAzyme and enzyme decorated AuPd nanoparticles on a poly(o-phenylenediamine) support. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2160-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Ultrasensitive amperometric immunosensor for PSA detection based on Cu2O@CeO2-Au nanocomposites as integrated triple signal amplification strategy. Biosens Bioelectron 2017; 87:630-637. [DOI: 10.1016/j.bios.2016.09.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 11/23/2022]
|
46
|
Affiliation(s)
- Wei Wen
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Xu Yan
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Chengzhou Zhu
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States.,Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan, Hubei 430079, P.R. China
| | - Yuehe Lin
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| |
Collapse
|
47
|
Liu S, Zhou J, Li H, Yin C, Lai G. Electrochemical Signal Tracing by Glucose Oxidase and Ferrocene Dually Functionalized Gold Nanoprobe for Ultrasensitive Immunoassay. ELECTROANAL 2016. [DOI: 10.1002/elan.201600188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shun Liu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology; Institute for Advanced Materials; Department of Chemistry; Hubei Normal University; Huangshi 435002 PR China
| | - Juan Zhou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology; Institute for Advanced Materials; Department of Chemistry; Hubei Normal University; Huangshi 435002 PR China
| | - Huan Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology; Institute for Advanced Materials; Department of Chemistry; Hubei Normal University; Huangshi 435002 PR China
| | - Cuiying Yin
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology; Institute for Advanced Materials; Department of Chemistry; Hubei Normal University; Huangshi 435002 PR China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology; Institute for Advanced Materials; Department of Chemistry; Hubei Normal University; Huangshi 435002 PR China
| |
Collapse
|
48
|
Cheng H, Xu L, Zhang H, Yu A, Lai G. Enzymatically catalytic signal tracing by a glucose oxidase and ferrocene dually functionalized nanoporous gold nanoprobe for ultrasensitive electrochemical measurement of a tumor biomarker. Analyst 2016; 141:4381-7. [PMID: 27186605 DOI: 10.1039/c6an00651e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A nanoporous gold nanosphere (pAu NS) was synthesized to load high-content glucose oxidase (GOx) and ferrocene (Fc) for the successful preparation of a new gold nanoprobe. After the specific recognition of the tumor biomarker of carcinoembryonic antigen (CEA) at a gold electrode based aptasensor, this GOx and Fc dually functionalized pAu NS nanoprobe was further used for sandwich immunoreaction and signal tracing. Based on the Fc-mediated GOx-catalytic reaction, the gold nanoprobes quantitatively captured onto the electrode surface produced a sensitive electrochemical signal corresponding to the protein recognition events, which led to the development of a new biosensing method for CEA measurement. Both the high loading of GOx and Fc on the pAu NS nanocarrier and the enzymatically catalytic reaction of the nanoprobe greatly amplify the electrochemical signal; meanwhile, the immobilization of the Fc mediator on this enzyme nanoprobe and the highly specific aptamer recognition drastically decrease the background current, resulting in the achievement of ultrahigh sensitivity of the method. Under optimum conditions, this method shows an excellent analytical performance including a wide linear relationship of five-order of magnitude and a low detection limit down to 0.45 pg mL(-1). Thus this pAu NS based gold nanoprobe and the proposed immunoassay method provide great potential for practical applications.
Collapse
Affiliation(s)
- Hui Cheng
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China.
| | | | | | | | | |
Collapse
|
49
|
Mu Z, Jiao L, Wei Q, Li H. Ternary Pt@Pd@Ru nanodendrite-decorated graphene oxide for sensitive electrochemical immunoassy of CEA. RSC Adv 2016. [DOI: 10.1039/c6ra07328j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nobel metal nanoparticles have attracted intense attentions in biological immunoassay due to the inhereted good catalytic activity.
Collapse
Affiliation(s)
- Zonggang Mu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Lei Jiao
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - He Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|