1
|
Ghosh S, Neupane R, Sahu DP, Teng J, Kong YL. The continuous actuation of liquid metal with a 3D-printed electrowetting device. MED-X 2025; 3:9. [PMID: 40177535 PMCID: PMC11958460 DOI: 10.1007/s44258-025-00052-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/29/2024] [Accepted: 01/05/2025] [Indexed: 04/05/2025]
Abstract
The ability of liquid metals (LMs) to recover from repeated stretching and deformation is a particularly attractive attribute for soft bioelectronics. In addition to their high electrical and thermal conductivity, LMs can be actuated, potentially enabling highly durable electro-mechanical and microfluidics systems for applications such as cooling, drug delivery, or reconfigurable electronics. In particular, continuous electrowetting (CEW) phenomena can actuate liquid metal at relatively low voltage and affordable power requirements for wearable systems (~ < 10 V, ~ 10 - 100 µW) by inducing a surface tension gradient across the LM. However, sustaining LM actuation remains challenging due to factors such as electrolyte depletion, polarity changes in multi-electrode systems, and limitations related to LM composition. Here, we demonstrate LM actuation in a circular conduit for prolonged durations of at least nine hours. We enabled sustained actuation by sequentially applying short, direct current (DC) pulses through a multi-electrode system based on the dynamics of LM actuation. As a proof of concept, we also demonstrated the ability of LM to transport electrically conducting, non-conducting, and magnetic materials within a microchannel and show the liquid metal actuation system can be potentially miniaturized to the size of a wearable device. We envision that with further miniaturization of the device architectures, our CEW platform can enable future integration of low-voltage electro-mechanical systems into a broad range of wearable form factors. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s44258-025-00052-8.
Collapse
Affiliation(s)
- Samannoy Ghosh
- Department of Mechanical Engineering, Rice University, Houston, TX 77005 USA
| | - Rajan Neupane
- Department of Mechanical Engineering, Rice University, Houston, TX 77005 USA
| | - Dwipak Prasad Sahu
- Department of Mechanical Engineering, Rice University, Houston, TX 77005 USA
| | - Jian Teng
- Department of Mechanical Engineering, Rice University, Houston, TX 77005 USA
| | - Yong Lin Kong
- Department of Mechanical Engineering, Rice University, Houston, TX 77005 USA
| |
Collapse
|
2
|
Li N, Yuan X, Li Y, Zhang G, Yang Q, Zhou Y, Guo M, Liu J. Bioinspired Liquid Metal Based Soft Humanoid Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404330. [PMID: 38723269 DOI: 10.1002/adma.202404330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Indexed: 08/29/2024]
Abstract
The pursuit of constructing humanoid robots to replicate the anatomical structures and capabilities of human beings has been a long-standing significant undertaking and especially garnered tremendous attention in recent years. However, despite the progress made over recent decades, humanoid robots have predominantly been confined to those rigid metallic structures, which however starkly contrast with the inherent flexibility observed in biological systems. To better innovate this area, the present work systematically explores the value and potential of liquid metals and their derivatives in facilitating a crucial transition towards soft humanoid robots. Through a comprehensive interpretation of bionics, an overview of liquid metals' multifaceted roles as essential components in constructing advanced humanoid robots-functioning as soft actuators, sensors, power sources, logical devices, circuit systems, and even transformable skeletal structures-is presented. It is conceived that the integration of these components with flexible structures, facilitated by the unique properties of liquid metals, can create unexpected versatile functionalities and behaviors to better fulfill human needs. Finally, a revolution in humanoid robots is envisioned, transitioning from metallic frameworks to hybrid soft-rigid structures resembling that of biological tissues. This study is expected to provide fundamental guidance for the coming research, thereby advancing the area.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Yuan
- School of Economics and Business Administration, Chongqing University, Chongqing, 400044, China
| | - Yuqing Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangcheng Zhang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianhong Yang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxin Zhou
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Guo
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jing Liu
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Shen Y, Jin D, Li T, Yang X, Ma X. Magnetically Responsive Gallium-Based Liquid Metal: Preparation, Property and Application. ACS NANO 2024. [PMID: 39073895 DOI: 10.1021/acsnano.4c07051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Magnetically responsive soft smart materials have garnered significant academic attention due to their flexibility, remote controllability, and reconfigurability. However, traditional soft materials used in the construction of these magnetically responsive systems typically exhibit low density and poor thermal and electrical conductivities. These limitations result in suboptimal performance in applications such as medical radiography, high-performance electronic devices, and thermal management. To address these challenges, magnetically responsive gallium-based liquid metals have emerged as promising alternatives. In this review, we summarize the methodologies for achieving magnetically responsive liquid metals, including the integration of magnetic agents into the liquid metal matrix and the utilization of induced Lorentz forces. We then provide a comprehensive discussion of the key physicochemical properties of these materials and the factors influencing them. Additionally, we explore the advanced and potential applications of magnetically responsive liquid metals. Finally, we discuss the current challenges in this field and present an outlook on future developments and research directions.
Collapse
Affiliation(s)
- Yifeng Shen
- Sauvage Laboratory for Smart Materials, School of Integrated Circuits, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310058, China
| | - Dongdong Jin
- Sauvage Laboratory for Smart Materials, School of Integrated Circuits, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Tiefeng Li
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310058, China
| | - Xuxu Yang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310058, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Integrated Circuits, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
4
|
Agarwal R, Mohamad A. Gallium-based liquid metals as smart responsive materials: Morphological forms and stimuli characterization. Adv Colloid Interface Sci 2024; 329:103183. [PMID: 38788305 DOI: 10.1016/j.cis.2024.103183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/02/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Gallium-based liquid metals (GaLMs) have garnered monumental attention from the scientific community due to their diverse actuation characteristics. These metals possess remarkable characteristics, including high surface tension, excellent electrical and thermal conductivity, phase transformation behaviour, minimal viscosity and vapour pressure, lack of toxicity, and biocompatibility. In addition, GaLMs have melting points that are either lower or near room temperature, making them incredibly beneficial when compared to solid metals since they can be easily deformed. Thus, there has been significant progress in developing multifunctional devices using GaLMs, including bio-devices, flexible and self-healing circuits, and actuators. Despite numerous reports on these liquid metals (LMs), there is an urgent need for consolidated and coherent literature regarding their actuation principles linked to the targeted application. This will ensure that the reader gets the flavour of physics behind the actuation mechanism and how it can be utilized in diverse fields. Moreover, the actuation mechanism has been scattered in the literature, and thus, the primary motive of this review is to provide a one-stop solution for the actuation mechanism and the associated dynamics while directing the readers to specialized literature. Thus, addressing this issue, we thoroughly examine and present a detailed account of the actuation mechanisms of GaLMs while highlighting the science behind them. We also discuss the various morphologies of GaLMs and their crucial physical characteristics which decide their targeted application. Furthermore, we also delve into commonly held beliefs about GaLMs in the literature, such as their toxicity and antibacterial properties, to offer readers a more accurate understanding. Finally, we have explored several key unanswered aspects of the LM that should be explored in future research. The core strength of this review lies in its simplistic approach in offering a starting point for researchers venturing this innovative field, while we make use of existing literature to develop a comprehensive understanding.
Collapse
Affiliation(s)
- Rahul Agarwal
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| | - Abdulmajeed Mohamad
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
5
|
An J, Ha B, Namgung S, Lee BY. Enhancement of the Electroluminescence and Strain Properties of Dielectric Elastomeric Actuators Using Liquid Metal Reflectors. ACS OMEGA 2024; 9:3916-3922. [PMID: 38284019 PMCID: PMC10809230 DOI: 10.1021/acsomega.3c08246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
We report on the enhancement of the light-emitting and mechanical performance of multifunctional dielectric elastomeric actuators by combining liquid eutectic gallium indium metal with a stretchable and transparent hybrid electrode composed of silver nanowires (AgNWs) and carbon nanotubes (CNTs). The device shows improved optical properties, electrical conductivity, and stability for electroluminescent dielectric elastomer actuators compared with previous works. Combining single-walled CNTs (SWCNTs) with AgNWs impeded the chemical reaction between the liquid metal and AgNWs, resulting in a more stable operation of the device. The maximum luminance and maximum strain of the electroluminescent dielectric elastomer actuator increased by 50% (from 300 to 450 cd m-2) and 44% (from 85 to 122%), respectively.
Collapse
Affiliation(s)
- Jongyeop An
- Department
of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Beomgil Ha
- Department
of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seon Namgung
- Department
of Physics, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic
of Korea
| | - Byung Yang Lee
- Department
of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Shen Y, Jin D, Fu M, Liu S, Xu Z, Cao Q, Wang B, Li G, Chen W, Liu S, Ma X. Reactive wetting enabled anchoring of non-wettable iron oxide in liquid metal for miniature soft robot. Nat Commun 2023; 14:6276. [PMID: 37805612 PMCID: PMC10560245 DOI: 10.1038/s41467-023-41920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023] Open
Abstract
Magnetic liquid metal (LM) soft robots attract considerable attentions because of distinctive immiscibility, deformability and maneuverability. However, conventional LM composites relying on alloying between LM and metallic magnetic powders suffer from diminished magnetism over time and potential safety risk upon leakage of metallic components. Herein, we report a strategy to composite inert and biocompatible iron oxide (Fe3O4) magnetic nanoparticles into eutectic gallium indium LM via reactive wetting mechanism. To address the intrinsic interfacial non-wettability between Fe3O4 and LM, a silver intermediate layer was introduced to fuse with indium component into AgxIny intermetallic compounds, facilitating the anchoring of Fe3O4 nanoparticles inside LM with improved magnetic stability. Subsequently, a miniature soft robot was constructed to perform various controllable deformation and locomotion behaviors under actuation of external magnetic field. Finally, practical feasibility of applying LM soft robot in an ex vivo porcine stomach was validated under in-situ monitoring by endoscope and X-ray imaging.
Collapse
Affiliation(s)
- Yifeng Shen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Dongdong Jin
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Mingming Fu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Sanhu Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhiwu Xu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Qinghua Cao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Bo Wang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Guoqiang Li
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wenjun Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Shaoqin Liu
- Key Laboratory of Microsystems and Microstructures Manufacturing, School of Medicine and Health, Harbin Institute of Technology, Harbin, 150080, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China.
- Key Laboratory of Microsystems and Microstructures Manufacturing, School of Medicine and Health, Harbin Institute of Technology, Harbin, 150080, China.
| |
Collapse
|
7
|
Liu C, Li D, Huang J, Guo Z, Liu W. High-Performance Magnetic and Electric Control of Liquid Metal Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7495-7502. [PMID: 37196334 DOI: 10.1021/acs.langmuir.3c00888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In the present study, we propose a magnetically controlled and electrically controlled magnetic liquid metal (MLM) method to achieve high-performance multiple manipulation of droplets. The prepared MLM has good active and passive deformability. Under the action of the magnetic field, controllable transport, splitting, merging, and rotation are realized. In addition, controllable electric field manipulation in alkaline and acidic electrolytes is realized. This simple preparation method can be applied to the precise and rapid control of the magnetic field and electric field at the same time. Compared with other droplet manipulation methods, we realized droplet manipulation independent of special surfaces. It has the advantages of easy implementation, low cost, and high controllability. It shows great application potential in the fields of biochemical analysis, microfluidics, drug transportation in complex limited space, and intelligent soft robots.
Collapse
Affiliation(s)
- Cong Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
- School of Materials Engineering, Lanzhou Institute of Technology, Lanzhou 730050, People's Republic of China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
8
|
Hossain KZ, Monwar M, Khan MR. Reactive etching of gallium oxide on eutectic gallium indium (eGaIn) with chlorosilane vapor to induce differential wetting. SOFT MATTER 2023; 19:3199-3206. [PMID: 37073821 DOI: 10.1039/d3sm00258f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Differentially wettable surfaces are well sought after in energy, water, health care, separation science, self-cleaning, biology, and other lab-on-chip applications-however, most demonstrations of realizing differential wettability demand complex processes. Herein, we chemically etch gallium oxide (Ga2O3) from in-plane patterns (2D) of eutectic gallium indium (eGaIn) to demonstrate a differentially wettable interface using chlorosilane vapor. We produce 2D patterns of eGaIn on bare glass slides in native air using cotton swabs as paint brushes. Exposing the entire system to chlorosilane vapor induces chemical etching of the oxide layer, which recovers the high-surface energy of eGaIn, to produce nano-to-mm droplets on the pre-patterned area. We rinse the entire system with deionized (DI) water to achieve differentially wettable surfaces. Measurements of contact angles using a goniometer confirmed hydrophobic and hydrophilic interfaces. Scanning electron microscopy (SEM) images confirmed the distribution and energy dispersive spectra (EDS) exhibited the elemental compositions of the micro-to-nano droplets after silanization (silane treatment). Also, we demonstrated two proofs of concept, i.e., open-ended microfluidics and differential wettability on curved interfaces, to demonstrate the advanced applications of the current work. This straightforward approach using two soft materials (silane and eGaIn) to achieve differential wettability on laboratory-grade glass slides and other surfaces has future implications for nature-inspired self-cleaning surfaces in nanotechnologies, bioinspired and biomimetic open-channel microfluidics, coatings, and fluid-structure interactions.
Collapse
Affiliation(s)
- Kazi Zihan Hossain
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, USA.
| | - Momena Monwar
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, USA.
| | - M Rashed Khan
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, USA.
| |
Collapse
|
9
|
Ryu G, Park K, Kim H. Interfacial properties of liquid metal immersed in various liquids. J Colloid Interface Sci 2022; 621:285-294. [DOI: 10.1016/j.jcis.2022.04.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 11/15/2022]
|
10
|
Ni E, Lu K, Song L, Jiang Y, Li H. Regular Self-Actuation of Liquid Metal Nanodroplets in Radial Texture Gradient Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13654-13663. [PMID: 34747618 DOI: 10.1021/acs.langmuir.1c02249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid metal movement in microfluidic devices generally requires an external stimulus to achieve its motion, which results in many difficulties to precisely manipulate its motion at a nanoscale. Therefore, there is an attempt to control the motion of a liquid metal droplet without the input of an external force. In this paper, we report an approach to achieve the self-actuation of a gallium nanodroplet in radial texture gradients on substrates. The results have proved the validity of this method. It is suggested that there are four stages in the self-motion of the droplet and that the precursor film forming on the second stage plays a pivotal role in the motion. Furthermore, how the impact velocity affects the self-actuation of the nanodroplet on the gradient surface is also studied. We find that the moderate impacting velocity hinders the self-actuation of the gallium nanodroplet. This study is very helpful to regulate the self-actuation on patterned substrates and facilitate their applications in the fields of microfluidics devices, soft robots, and liquid sensors.
Collapse
Affiliation(s)
- Erli Ni
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Kaida Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Lin Song
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| |
Collapse
|
11
|
Wang S, Zhu Z, Ma C, Qiao R, Yang C, Xu RX, Si T. Generation of Nonspherical Liquid Metal Microparticles with Tunable Shapes Exhibiting an Electrostatic-Responsive Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16677-16687. [PMID: 33813828 DOI: 10.1021/acsami.1c01026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nonspherical liquid metal microparticles (NLMs) show extraordinary potential in various applications due to their multifunctional and structural advantages. To one-step-produce shaped NLMs with high efficiency, high controllability, and free of template, a facile microfluidic strategy named rotary flow shearing (RFS) is reported. A high-speed viscous shearing flow is provided by two counter-rotating rotors in the carrier fluid, inducing continuous pinch-off of liquid metal flowing from a capillary tube positioned in face of the slit between two rotors. The real-time oxidation realizes the rapid solidification of the pinching neck and the liquid metal surface during the RFS process, resulting in massive NLMs. Different from other microfluidic methods, the RFS enables tunable shapes of NLMs, especially for working materials at high viscosities. The collected NLMs exhibit special electrostatic-responsive performances including translation, rotation, reciprocation, and lining up under the manipulation of an external electric field. Such NLMs can be promisingly used for the construction of novel micromotors and soft electronics.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, China
| | - Zhiqiang Zhu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, China
| | - Canzhen Ma
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, China
| | - Ran Qiao
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chaoyu Yang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, China
| | - Ronald X Xu
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ting Si
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
12
|
Lin Y, Genzer J, Dickey MD. Attributes, Fabrication, and Applications of Gallium-Based Liquid Metal Particles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000192. [PMID: 32596120 PMCID: PMC7312306 DOI: 10.1002/advs.202000192] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/19/2020] [Indexed: 05/14/2023]
Abstract
This work discusses the attributes, fabrication methods, and applications of gallium-based liquid metal particles. Gallium-based liquid metals combine metallic and fluidic properties at room temperature. Unlike mercury, which is toxic and has a finite vapor pressure, gallium possesses low toxicity and effectively zero vapor pressure at room temperature, which makes it amenable to many applications. A variety of fabrication methods produce liquid metal particles with variable sizes, ranging from nm to mm (which is the upper limit set by the capillary length). The liquid nature of gallium enables fabrication methods-such as microfluidics and sonication-that are not possible with solid materials. Gallium-based liquid metal particles possess several notable attributes, including a metal-metal oxide (liquid-solid) core-shell structure as well as the ability to self-heal, merge, and change shape. They also have unusual phase behavior that depends on the size of the particles. The particles have no known commercial applications, but they show promise for drug delivery, soft electronics, microfluidics, catalysis, batteries, energy harvesting, and composites. Existing challenges and future opportunities are discussed herein.
Collapse
Affiliation(s)
- Yiliang Lin
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695‐7905USA
| | - Jan Genzer
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695‐7905USA
| | - Michael D. Dickey
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695‐7905USA
| |
Collapse
|
13
|
Zhu L, Wang B, Handschuh-Wang S, Zhou X. Liquid Metal-Based Soft Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903841. [PMID: 31573755 DOI: 10.1002/smll.201903841] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Motivated by the increasing demand of wearable and soft electronics, liquid metal (LM)-based microfluidics has been subjected to tremendous development in the past decade, especially in electronics, robotics, and related fields, due to the unique advantages of LMs that combines the conductivity and deformability all-in-one. LMs can be integrated as the core component into microfluidic systems in the form of either droplets/marbles or composites embedded by polymer materials with isotropic and anisotropic distribution. The LM microfluidic systems are found to have broad applications in deformable antennas, soft diodes, biomedical sensing chips, transient circuits, mechanically adaptive materials, etc. Herein, the recent progress in the development of LM-based microfluidics and their potential applications are summarized. The current challenges toward industrial applications and future research orientation of this field are also summarized and discussed.
Collapse
Affiliation(s)
- Lifei Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
- Guangdong Laboratory of ArtificialIntelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518055, P. R. China
| | - Ben Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
- Guangdong Laboratory of ArtificialIntelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518055, P. R. China
| |
Collapse
|
14
|
Liu M, Wang Y, Kuai Y, Cong J, Xu Y, Piao HG, Pan L, Liu Y. Magnetically Powered Shape-Transformable Liquid Metal Micromotors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1905446. [PMID: 31782900 DOI: 10.1002/smll.201905446] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Shape-transformable liquid metal (LM) micromachines have attracted the attention of the scientific community over the past 5 years, but the inconvenience of transfer routes and the use of corrosive fuels have limited their potential applications. In this work, a shape-transformable LM micromotor that is fabricated by a simple, versatile ice-assisted transfer printing method is demonstrated, in which an ice layer is employed as a "sacrificial" substrate that can enable the direct transfer of LM micromotors to arbitrary target substrates conveniently. The resulting LM microswimmers display efficient propulsion of over 60 µm s-1 (≈3 bodylength s-1 ) under elliptically polarized magnetic fields, comparable to that of the common magnetic micro/nanomotors with rigid bodies. Moreover, these LM micromotors can undergo dramatic morphological transformation in an aqueous environment under the irradiation of an alternating magnetic field. The ability to transform the shape and efficiently propel LM microswimmers holds great promise for chemical sensing, controlled cargo transport, materials science, and even artificial intelligence in ways that are not possible with rigid-bodies microrobots.
Collapse
Affiliation(s)
- Min Liu
- Hubei Engineering Research Center of Weak Magnetic-Field Detection and College of Science, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Yongxin Wang
- Hubei Engineering Research Center of Weak Magnetic-Field Detection and College of Science, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Yanbing Kuai
- Hubei Engineering Research Center of Weak Magnetic-Field Detection and College of Science, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Jiawei Cong
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yunli Xu
- Hubei Engineering Research Center of Weak Magnetic-Field Detection and College of Science, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Hong-Guang Piao
- Hubei Engineering Research Center of Weak Magnetic-Field Detection and College of Science, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Liqing Pan
- Hubei Engineering Research Center of Weak Magnetic-Field Detection and College of Science, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Yiman Liu
- Hubei Engineering Research Center of Weak Magnetic-Field Detection and College of Science, China Three Gorges University, Yichang, Hubei, 443002, China
| |
Collapse
|
15
|
Kim S, Oh J, Jeong D, Bae J. Direct Wiring of Eutectic Gallium-Indium to a Metal Electrode for Soft Sensor Systems. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20557-20565. [PMID: 31066540 DOI: 10.1021/acsami.9b05363] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
For wider applications of liquid metal-based stretchable electronics, electrical interface has remained a crucial issue due to its fragile electromechanical stability and complex fabrication steps. In this study, a direct writing-based technique is introduced to form the writing paths of conductive liquid metal (eutectic gallium-indium, eGaIn) and electrical connections to off-the-shelf metal electrodes in a single process. Specifically, by extending eGaIn wires written on a silicone substrate, the eGaIn wires were physically connected to five different metal electrodes, of which stability as an electrical connection was investigated. Among the five different surface materials, the metal electrode finished by electroless nickel immersion gold (ENIG) was reproducible and had low contact resistance without time-dependent variation. In our experiments, it was verified that the electrode part made by an ENIG-finished flexible flat cable (FFC) was mechanically (strain, ≤100%; pressure, ≤600 kPa) and thermally (temperature, ≤180 °C) durable. By modifying the trajectories of eGaIn wires, soft sensor systems composed of 10 sensing units were fabricated and tested to measure finger joint angles and ground reaction forces, respectively. The proposed method enables eGaIn-based soft sensors or circuits to be connected to typical electronic components through FFCs or weldable surfaces, using only off-the-shelf materials without additional mechanical or chemical treatments.
Collapse
Affiliation(s)
- Suin Kim
- Department of Mechanical Engineering , UNIST , Ulsan 44919 , Korea
| | - Jihye Oh
- Department of Mechanical Engineering , UNIST , Ulsan 44919 , Korea
| | - Dahee Jeong
- Department of Mechanical Engineering , UNIST , Ulsan 44919 , Korea
| | - Joonbum Bae
- Department of Mechanical Engineering , UNIST , Ulsan 44919 , Korea
| |
Collapse
|
16
|
Rotation of Liquid Metal Droplets Solely Driven by the Action of Magnetic Fields. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The self-rotation of liquid metal droplets (LMDs) has garnered potential for numerous applications, such as chip cooling, fluid mixture, and robotics. However, the controllable self-rotation of LMDs utilizing magnetic fields is still underexplored. Here, we report a novel method to induce self-rotation of LMDs solely utilizing a rotating magnetic field. This is achieved by rotating a pair of permanent magnets around a LMD located at the magnetic field center. The LMD experiences Lorenz force generated by the relative motion between the droplet and the permanent magnets and can be rotated. Remarkably, unlike the actuation induced by electrochemistry, the rotational motion of the droplet induced by magnetic fields avoids the generation of gas bubbles and behaves smoothly and steadily. We investigate the main parameters that affect the self-rotational behaviors of LMDs and validate the theory of this approach. We further demonstrate the ability of accelerating cooling and a mixer enabled by the self-rotation of a LMD. We believe that the presented technique can be conveniently adapted by other systems after necessary modifications and enables new progress in microfluidics, microelectromechanical (MEMS) applications, and micro robotics.
Collapse
|
17
|
Chen S, Liu J. Spontaneous Dispersion and Large-Scale Deformation of Gallium-Based Liquid Metal Induced by Ferric Ions. J Phys Chem B 2019; 123:2439-2447. [PMID: 30777756 DOI: 10.1021/acs.jpcb.8b12115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A gallium-based liquid metal (LM) exhibits the largest interfacial tension among all the room-temperature liquids, which gives it strong deformability and promises its role in the field of soft machines. Paradoxically, such a material always remains nearly spherical in solution because of large interfacial tension, which in turn hinders the construction of LM-based soft machines. Consequently, it is of significant theoretical and practical value to regulate the interfacial tension of a LM in order to carry out richer deformation. In this study, spontaneous dispersion and large-scale deformation of a bulk LM were disclosed to be induced by ferric ions. It was found that the bulk LM immersed in the FeCl3 solution can spontaneously disperse into a large amount of droplets. In addition, the dispersed LM droplets could move and deform by increasing the concentration of the solution or adding acids. The mechanisms behind the untraditional phenomena lie in the nonuniform interfacial tension over the entire surface of the LM, which is associated with the space-time distribution of the FeCl3 solution. Further, directional locomotion and periodic oscillation occur because of the nonuniform interfacial tension, which leads to the autonomous dispersion and deformation of the LM. Overall, the unique redox reactions between the LM and the FeCl3 solution play an essential role in ensuring the continuity of deformation. The present spontaneous dispersion and deformation capability of the LM signify a paradigm shift and open up new possibilities for the development of chemistry-enabled soft machines in the future.
Collapse
Affiliation(s)
- Sen Chen
- Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , China.,School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jing Liu
- Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , China.,School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , China.,Department of Biomedical Engineering, School of Medicine , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
18
|
Shu J, Tang SY, Feng Z, Li W, Li X, Zhang S. Unconventional locomotion of liquid metal droplets driven by magnetic fields. SOFT MATTER 2018; 14:7113-7118. [PMID: 30182111 DOI: 10.1039/c8sm01281d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The locomotion of liquid metal droplets enables enormous potential for realizing various applications in microelectromechanical systems (MEMSs), biomimetics, and microfluidics. However, current techniques for actuating liquid metal droplets are either associated with intense electrochemical reactions or require modification of their physical properties by coating/mixing them with other materials. These methods either generate gas bubbles or compromise the stability and liquidity of the liquid metal. Here, we introduce an innovative method for controlling the locomotion of liquid metal droplets using Lorentz force induced by magnetic fields. Remarkably, utilizing a magnetic field to induce actuation avoids the generation of gas bubbles in comparison to the method of forming a surface tension gradient on the liquid metal using electrochemistry. In addition, the use of Lorentz force avoids the need of mixing liquid metals with ferromagnetic materials, which may compromise the liquidity of liquid metals. Most importantly, we discover that the existence of a slip layer for liquid metal droplets distinguishes their actuation behaviors from solid metallic spheres. We investigate the parameters affecting the actuation behavior of liquid metal droplets and explore the science behind its operation. We further conducted a series of proof-of-concept experiments to verify the controllability of our method for actuating liquid metal droplets. As such, we believe that the presented technique represents a significant advance in comparison to reported actuation methods for liquid metals, and possesses the potential to be readily adapted by other systems to advance the fields of MEMS actuation and soft robotics.
Collapse
Affiliation(s)
- Jian Shu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China.
| | | | | | | | | | | |
Collapse
|
19
|
Liu S, Sweatman K, McDonald S, Nogita K. Ga-Based Alloys in Microelectronic Interconnects: A Review. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1384. [PMID: 30096828 PMCID: PMC6119961 DOI: 10.3390/ma11081384] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/25/2018] [Accepted: 08/06/2018] [Indexed: 11/16/2022]
Abstract
Gallium (Ga) and some of its alloys have a range of properties that make them an attractive option for microelectronic interconnects, including low melting point, non-toxicity, and the ability to wet without fluxing most materials-including oxides-found in microelectronics. Some of these properties result from their ability to form stable high melting temperature solid solutions and intermetallic compounds with other metals, such as copper, nickel, and aluminium. Ga and Ga-based alloys have already received significant attention in the scientific literature given their potential for use in the liquid state. Their potential for enabling the miniaturisation and deformability of microelectronic devices has also been demonstrated. The low process temperatures, made possible by their low melting points, produce significant energy savings. However, there are still some issues that need to be addressed before their potential can be fully realised. Characterising Ga and Ga-based alloys, and their reactions with materials commonly used in the microelectronic industry, are thus a priority for the electronics industry. This review provides a summary of research related to the applications and characterisation of Ga-based alloys. If the potential of Ga-based alloys for low temperature bonding in microelectronics manufacturing is to be realised, more work needs to be done on their interactions with the wide range of substrate materials now being used in electronic circuitry.
Collapse
Affiliation(s)
- Shiqian Liu
- Nihon Superior Centre for the Manufacture of Electronic Materials (NS CMEM), School of Mechanical and Mining Engineering, The University of Queensland, Brisbane 4072, QLD, Australia.
| | - Keith Sweatman
- Nihon Superior Co., Ltd, Suita City, Osaka 564-0063, Japan.
| | - Stuart McDonald
- Nihon Superior Centre for the Manufacture of Electronic Materials (NS CMEM), School of Mechanical and Mining Engineering, The University of Queensland, Brisbane 4072, QLD, Australia.
| | - Kazuhiro Nogita
- Nihon Superior Centre for the Manufacture of Electronic Materials (NS CMEM), School of Mechanical and Mining Engineering, The University of Queensland, Brisbane 4072, QLD, Australia.
| |
Collapse
|
20
|
Chen S, Yang X, Cui Y, Liu J. Self-Growing and Serpentine Locomotion of Liquid Metal Induced by Copper Ions. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22889-22895. [PMID: 29932328 DOI: 10.1021/acsami.8b07649] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The realization of serpentine locomotion has been a core goal pursued. Here, a straightforward approach was discovered to generate the serpentine locomotion based on a brand-new phenomenon observed on liquid metal (Ga67In21Sn12). The dynamic process that liquid metal can automatically produce and move like tremendous slim snakes was revealed and the underlying mechanisms were clarified and interpreted. It was found that the self-growing serpentine locomotion of liquid metal is driven by the localized surface pressure difference related to the unbalanced surface tension. The present work offers new insight and forms in developing future autonomous soft systems and bionic multifunctional robots.
Collapse
Affiliation(s)
- Sen Chen
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiaohu Yang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yuntao Cui
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Jing Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
- Department of Biomedical Engineering, School of Medicine , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
21
|
Daeneke T, Khoshmanesh K, Mahmood N, de Castro IA, Esrafilzadeh D, Barrow SJ, Dickey MD, Kalantar-Zadeh K. Liquid metals: fundamentals and applications in chemistry. Chem Soc Rev 2018; 47:4073-4111. [PMID: 29611563 DOI: 10.1039/c7cs00043j] [Citation(s) in RCA: 412] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Post-transition elements, together with zinc-group metals and their alloys belong to an emerging class of materials with fascinating characteristics originating from their simultaneous metallic and liquid natures. These metals and alloys are characterised by having low melting points (i.e. between room temperature and 300 °C), making their liquid state accessible to practical applications in various fields of physical chemistry and synthesis. These materials can offer extraordinary capabilities in the synthesis of new materials, catalysis and can also enable novel applications including microfluidics, flexible electronics and drug delivery. However, surprisingly liquid metals have been somewhat neglected by the wider research community. In this review, we provide a comprehensive overview of the fundamentals underlying liquid metal research, including liquid metal synthesis, surface functionalisation and liquid metal enabled chemistry. Furthermore, we discuss phenomena that warrant further investigations in relevant fields and outline how liquid metals can contribute to exciting future applications.
Collapse
Affiliation(s)
- T Daeneke
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, Australia.
| | - K Khoshmanesh
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, Australia.
| | - N Mahmood
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, Australia.
| | - I A de Castro
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, Australia.
| | - D Esrafilzadeh
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, Australia.
| | - S J Barrow
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, Australia.
| | - M D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, USA
| | - K Kalantar-Zadeh
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, Australia.
| |
Collapse
|
22
|
Yan S, Li Y, Zhao Q, Yuan D, Yun G, Zhang J, Wen W, Tang SY, Li W. Liquid metal-based amalgamation-assisted lithography for fabrication of complex channels with diverse structures and configurations. LAB ON A CHIP 2018; 18:785-792. [PMID: 29424381 DOI: 10.1039/c8lc00047f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Numerous lab-on-a-chip applications benefit from channels with complex structures and configurations in the areas of tissue engineering and clinical diagnostics. The current fabrication approaches require time-consuming, complicated processes and bulky, expensive facilities. In this work, we propose a novel method for the fabrication of complex channels with the assistance of amalgamation of liquid metal with copper tape. This new technique enables the rapid fabrication of liquid metal molds with various dimensions and diverse structures. Two proof-of-concept experiments were conducted to verify the utilization of this method. First, the channel replicated from the liquid metal mold is used to enhance the mixing performance of liquids flowing through the channel. Second, a channel with a semicircular cross-section is fabricated to achieve 3D focusing in a simple way. This proposed technique can be readily used for fabricating complex channels for a wide range of applications.
Collapse
Affiliation(s)
- Sheng Yan
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhu JY, Thurgood P, Nguyen N, Ghorbani K, Khoshmanesh K. Customised spatiotemporal temperature gradients created by a liquid metal enabled vortex generator. LAB ON A CHIP 2017; 17:3862-3873. [PMID: 29034403 DOI: 10.1039/c7lc00898h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Generating customised temperature gradients in miniaturised flow-free liquid chambers is challenging due to the dominance of diffusion. Inducing internal flows in the form of vortices is an effective strategy for overcoming the limitations of diffusion in such environments. Vortices can be produced by applying pressure, temperature and electric potential gradients via miniaturised actuators. However, the difficulties associated with the fabrication, integration, maintenance and operation of such actuators hinder their utility. Here, we utilise liquid metal enabled pumps to induce vortices inside a miniaturised liquid chamber. The configuration and rotational velocity of these vortices can be controlled by tuning the polarity and frequency of the energising electrical signal. This allows creation of customised spatial temperature gradients inside the chamber. The absence of conventional moving elements in the pumps facilitates the rapid reconfiguration of vortices. This enables quick transition from one temperature profile to another, and creates customised spatiotemporal temperature gradients. This allows temperature oscillation from 35 to 62 °C at the hot spot, and from 25 to 27 °C at the centre of the vortex within 15 seconds. Our liquid metal enabled vortex generator can be fabricated, integrated and operated easily, and offers opportunities for studying thermo-responsive materials and biological samples.
Collapse
Affiliation(s)
- Jiu Yang Zhu
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| | | | | | | | | |
Collapse
|
24
|
Kazem N, Hellebrekers T, Majidi C. Soft Multifunctional Composites and Emulsions with Liquid Metals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605985. [PMID: 28425667 DOI: 10.1002/adma.201605985] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/19/2017] [Indexed: 06/07/2023]
Abstract
Binary mixtures of liquid metal (LM) or low-melting-point alloy (LMPA) in an elastomeric or fluidic carrier medium can exhibit unique combinations of electrical, thermal, and mechanical properties. This emerging class of soft multifunctional composites have potential applications in wearable computing, bio-inspired robotics, and shape-programmable architectures. The dispersion phase can range from dilute droplets to connected networks that support electrical conductivity. In contrast to deterministically patterned LM microfluidics, LMPA- and LM-embedded elastomer (LMEE) composites are statistically homogenous and exhibit effective bulk properties. Eutectic Ga-In (EGaIn) and Ga-In-Sn (Galinstan) alloys are typically used due to their high conductivity, low viscosity, negligible nontoxicity, and ability to wet to nonmetallic materials. Because they are liquid-phase, these alloys can alter the electrical and thermal properties of the composite while preserving the mechanics of the surrounding medium. For composites with LMPA inclusions (e.g., Field's metal, Pb-based solder), mechanical rigidity can be actively tuned with external heating or electrical activation. This progress report, reviews recent experimental and theoretical studies of this emerging class of soft material architectures and identifies current technical challenges and opportunities for further advancement.
Collapse
Affiliation(s)
- Navid Kazem
- Integrated Soft Materials Lab, Carnegie Mellon University Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Tess Hellebrekers
- Integrated Soft Materials Lab, Carnegie Mellon University Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Carmel Majidi
- Integrated Soft Materials Lab, Carnegie Mellon University Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
25
|
Hines L, Petersen K, Lum GZ, Sitti M. Soft Actuators for Small-Scale Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603483. [PMID: 28032926 DOI: 10.1002/adma.201603483] [Citation(s) in RCA: 529] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/05/2016] [Indexed: 05/17/2023]
Abstract
This review comprises a detailed survey of ongoing methodologies for soft actuators, highlighting approaches suitable for nanometer- to centimeter-scale robotic applications. Soft robots present a special design challenge in that their actuation and sensing mechanisms are often highly integrated with the robot body and overall functionality. When less than a centimeter, they belong to an even more special subcategory of robots or devices, in that they often lack on-board power, sensing, computation, and control. Soft, active materials are particularly well suited for this task, with a wide range of stimulants and a number of impressive examples, demonstrating large deformations, high motion complexities, and varied multifunctionality. Recent research includes both the development of new materials and composites, as well as novel implementations leveraging the unique properties of soft materials.
Collapse
Affiliation(s)
- Lindsey Hines
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
| | | | - Guo Zhan Lum
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
| | - Metin Sitti
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
- Max Planck ETH Center for Learning Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
- Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA
| |
Collapse
|
26
|
Wang J, Zheng B, Xiao J, Liu X, Ji H, Du J, Guo Y, Xiao D. Self-driven mercury motor via redox reaction in acid solution. RSC Adv 2017. [DOI: 10.1039/c7ra04574c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The phenomenon of self-driven motion of mercury drop was found for the first time in NaIO4/H2SO4 solution, which is based on the electrons transfer from aluminum to mercury by redox reaction.
Collapse
Affiliation(s)
- Jiali Wang
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | | | - Jinlan Xiao
- College of Chemical Engineering
- Sichuan University
- Chengdu 610064
- China
| | - Xiaoling Liu
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Hongyun Ji
- College of Chemical Engineering
- Sichuan University
- Chengdu 610064
- China
| | - Juan Du
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Yong Guo
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Dan Xiao
- College of Chemistry
- Sichuan University
- Chengdu
- China
- College of Chemical Engineering
| |
Collapse
|
27
|
Ionic imbalance induced self-propulsion of liquid metals. Nat Commun 2016; 7:12402. [PMID: 27488954 PMCID: PMC4976217 DOI: 10.1038/ncomms12402] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/29/2016] [Indexed: 12/19/2022] Open
Abstract
Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.
Collapse
|
28
|
Chrimes AF, Berean KJ, Mitchell A, Rosengarten G, Kalantar-zadeh K. Controlled Electrochemical Deformation of Liquid-Phase Gallium. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3833-3839. [PMID: 26820807 DOI: 10.1021/acsami.5b10625] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Pure gallium is a soft metal with a low temperature melting point of 29.8 °C. This low melting temperature can potentially be employed for creating optical components with changeable configurations on demand by manipulating gallium in its liquid state. Gallium is a smooth and highly reflective metal that can be readily maneuvered using electric fields. These features allow gallium to be used as a reconfigurable optical reflector. This work demonstrates the use of gallium for creating reconfigurable optical reflectors manipulated through the use of electric fields when gallium is in a liquid state. The use of gallium allows the formed structures to be frozen and preserved as long as the temperature of the metal remains below its melting temperature. The lens can be readily reshaped by raising the temperature above the melting point and reapplying an electric field to produce a different curvature of the gallium reflector.
Collapse
Affiliation(s)
- Adam F Chrimes
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich , Zürich 8093, Switzerland
- School of Engineering, RMIT University , Melbourne, Victoria 3000, Australia
| | - Kyle J Berean
- School of Engineering, RMIT University , Melbourne, Victoria 3000, Australia
| | - Arnan Mitchell
- School of Engineering, RMIT University , Melbourne, Victoria 3000, Australia
| | - Gary Rosengarten
- School of Engineering, RMIT University , Melbourne, Victoria 3000, Australia
| | | |
Collapse
|
29
|
Zhu JY, Tang SY, Khoshmanesh K, Ghorbani K. An Integrated Liquid Cooling System Based on Galinstan Liquid Metal Droplets. ACS APPLIED MATERIALS & INTERFACES 2016; 8:2173-80. [PMID: 26716607 DOI: 10.1021/acsami.5b10769] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The continued miniaturization of electronic components demands integrated liquid cooling systems with minimized external connections and fabrication costs that can be implanted very close to localized hot spots. This might be challenging for existing liquid cooling systems because most of them rely on external pumps, connecting tubes, and microfabricated heat sinks. Here, we demonstrate an integrated liquid cooling system by utilizing a small droplet of liquid metal Galinstan, which is placed over the hot spot. Energizing the liquid metal droplet with a square wave signal creates a surface tension gradient across the droplet, which induces Marangoni flow over the surface of droplet. This produces a high flow rate of coolant medium through the cooling channel, enabling a "soft" pump. At the same time, the high thermal conductivity of liquid metal extends the heat transfer surface and facilitates the dissipation of heat, enabling a "soft" heat sink. This facilitates the rapid cooling of localized hot spots, as demonstrated in our experiments. Our technology facilitates customized liquid cooling systems with simple fabrication and assembling processes, with no moving parts that can achieve high flow rates with low power consumption.
Collapse
Affiliation(s)
- Jiu Yang Zhu
- School of Engineering, RMIT University , Melbourne, Victoria 3001, Australia
| | - Shi-Yang Tang
- School of Engineering, RMIT University , Melbourne, Victoria 3001, Australia
| | | | - Kamran Ghorbani
- School of Engineering, RMIT University , Melbourne, Victoria 3001, Australia
| |
Collapse
|