1
|
Pérez-Garibay MS, Lara-Rodríguez GÁ, Bucio E. Functionalization of Polyvinylpyrrolidone Films by Grafting Maleic Acid from PVP Gels for Loading Studies of Naringin and Silver Nanoparticles as Potential Wound Dressings. Gels 2025; 11:147. [PMID: 39996689 PMCID: PMC11855149 DOI: 10.3390/gels11020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
Wound healing is a complex process involving stages such as hemostasis, inflammation, proliferation, and remodeling. In this context, polymers are useful materials for wound treatment. This research used the Casting method to prepare films from 2% polyvinylpyrrolidone (PVP) gels. Subsequently, PVP films were grafted with maleic acid (MA) (PVP-g-PAM) to load naringin (NA) and silver nanoparticles (AgNPs) in order to obtain a material with pH responsiveness and antibacterial properties. The modified PVP-g-PAM films were prepared using gamma-ray irradiation through a pre-irradiation oxidative method at a dose rate of 13.7 kGy h-1, doses ranging from 10 to 25 kGy, and reaction times from 50 to 80 min in a bath of water, all samples at 50 °C, and a fixed monomer concentration of 15% (w/v) MA in THF. The conditions that yielded the highest percentage of grafting were 20 kGy and 60 min. NA was loaded at a fixed concentration of 5%. Data release showed that the films follow the Korsmeyer-Peppas kinetic model. Synthesis of AgNPs was performed by γ-ray irradiation-reduction (10 and 30 kGy), using PVP as a stabilizer. AgNPs showed in vitro effectiveness against E. coli and S. aureus. Films were characterized by FTIR-ATR, TGA, DSC, mechanical properties, swelling index, and contact angle. Further studies must be implemented; however, the results up now suggest that PVP-g-PAM loaded with NA and AgNPs can be useful as a potential wound dressing.
Collapse
Affiliation(s)
- Miguel S. Pérez-Garibay
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Gabriel Ángel Lara-Rodríguez
- Laboratorio Materiales Metálicos Avanzados, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Emilio Bucio
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City 04510, Mexico
| |
Collapse
|
2
|
da Silva Antunes JC, Sobral P, Branco V, Martins M. Uncovering layer by layer the risk of nanoplastics to the environment and human health. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:63-121. [PMID: 39670667 DOI: 10.1080/10937404.2024.2424156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Nanoplastics (NPs), defined as plastic particles with dimensions less than 100 nm, have emerged as a persistent environmental contaminant with potential risk to both environment and human health. Nanoplastics might translocate across biological barriers and accumulate in vital organs, leading to inflammatory responses, oxidative stress, and genotoxicity, already reported in several organisms. Disruptions to cellular functions, hormonal balance, and immune responses were also linked to NPs exposure in in vitro assays. Further, NPs have been found to adsorb other pollutants, such as persistent organic pollutants (POPs), and leach additives potentially amplifying their advere impacts, increasing the threat to organisms greater than NPs alone. However, NPs toxic effects remain largely unexplored, requiring further research to elucidate potential risks to human health, especially their accumulation, degradation, migration, interactions with the biological systems and long-term consequences of chronic exposure to these compounds. This review provides an overview of the current state-of-art regarding NPs interactions with environmental pollutants and with biological mechanisms and toxicity within cells.
Collapse
Affiliation(s)
- Joana Cepeda da Silva Antunes
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Paula Sobral
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Martins
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| |
Collapse
|
3
|
Rampazzo R, Vavasori A, Ronchin L, Riello P, Marchiori M, Saorin G, Beghetto V. Enhanced Antibacterial Activity of Vancomycin Loaded on Functionalized Polyketones. Polymers (Basel) 2024; 16:1890. [PMID: 39000745 PMCID: PMC11244503 DOI: 10.3390/polym16131890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
Today, polymeric drug delivery systems (DDS) appear as an interesting solution against bacterial resistance, having great advantages such as low toxicity, biocompatibility, and biodegradability. In this work, two polyketones (PK) have been post-functionalized with sodium taurinate (PKT) or potassium sulfanilate (PKSK) and employed as carriers for Vancomycin against bacterial infections. Modified PKs were easily prepared by the Paal-Knorr reaction and loaded with Vancomycin at a variable pH. All polymers were characterized by FT-IR, DSC, TGA, SEM, and elemental analysis. Antimicrobial activity was tested against Gram-positive Staphylococcus aureus ATCC 25923 and correlated to the different pHs used for its loading (between 2.3 and 8.8). In particular, the minimum inhibitory concentrations achieved with PKT and PKSK loaded with Vancomycin were similar, at 0.23 μg/mL and 0.24 μg/mL, respectively, i.e., six times lower than that with Vancomycin alone. The use of post-functionalized aliphatic polyketones has thus been demonstrated to be a promising way to obtain very efficient polymeric DDS.
Collapse
Affiliation(s)
- Rachele Rampazzo
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
- Department of Architecture and Industrial Design, University of Campania “Luigi Vanvitelli”, 81031 Aversa, Italy
| | - Andrea Vavasori
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
| | - Lucio Ronchin
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
| | - Pietro Riello
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
| | - Martina Marchiori
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
| | - Gloria Saorin
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
| | - Valentina Beghetto
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
- Crossing S.r.l., Viale della Repubblica 193/b, 31100 Treviso, Italy
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi (CIRCC), Via C. Ulpiani 27, 701268 Bari, Italy
| |
Collapse
|
4
|
Sun H, Li X, Liu Q, Sheng H, Zhu L. pH-responsive self-assembled nanoparticles for tumor-targeted drug delivery. J Drug Target 2024; 32:672-706. [PMID: 38682299 DOI: 10.1080/1061186x.2024.2349124] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Recent advances in the field of drug delivery have opened new avenues for the development of novel nanodrug delivery systems (NDDS) in cancer therapy. Self-assembled nanoparticles (SANPs) based on tumour microenvironment have great advantages in improving antitumor effect, and pH-responsive SANPs prepared by the combination of pH-responsive nanomaterials and self-assembly technology can effectively improve the efficacy and reduce the systemic toxicity of antitumor drugs. In this review, we describe the characteristics of self-assembly and its driving force, the mechanism of pH-responsive NDDS, and the nanomaterials for pH-responsive SANPs type. A series of pH-responsive SANPs for tumour-targeted drug delivery are discussed, with an emphasis on the relation between structural features and theranostic performance.
Collapse
Affiliation(s)
- Henglai Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyu Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Ye J, Ren Y, Dong Y, Fan D. Understanding the impact of nanoplastics on reproductive health: Exposure pathways, mechanisms, and implications. Toxicology 2024; 504:153792. [PMID: 38554767 DOI: 10.1016/j.tox.2024.153792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Microplastic pollution is a pressing global environmental concern with particular urgency surrounding the issue of nanoplastic particles. Plastic products exhibit a remarkable persistence in natural ecosystems, resisting easy degradation. Nanoplastics, characterized by their diminutive size, possess distinct properties when compared to their larger counterparts, which could potentially render them more ecologically detrimental. Microplastics themselves serve as carriers for toxic and hazardous substances, such as plastic additives, that enter and persist in the environmental cycle. Importantly, nanoplastics exhibit enhanced bioavailability upon entering the food chain. Notably, studies have demonstrated the adverse effects of nanoplastics on the reproductive function of aquatic organisms, and evidence of micro- and nanoplastics have emerged within human reproductive organs, including the placenta. However, a knowledge gap persists regarding the impacts of nanoplastics on the reproductive systems of mammals and, indeed, humans. This paper aims to elucidate the less frequently discussed sources and distribution of nanoplastics in the environment, along with the pathways of human exposure. We also emphasize the extent to which nanoplastics accumulate within the reproductive systems of organisms. Subsequently, we present an in-depth analysis of the effects of nanoplastics and their associated contaminants on mammalian and human reproductive health. The mechanisms through which nanoplastics contribute to reproductive disorders are comprehensively explored, highlighting their potential to disrupt endocrine levels in mammals and humans. Additionally, we scrutinize and discuss studies on biotoxicity of nanoplastics, offering insights into potential areas for future research.
Collapse
Affiliation(s)
- Jingfan Ye
- Key Laboratory of Shale Gas and Geological Engineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yun Ren
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yanhui Dong
- Key Laboratory of Shale Gas and Geological Engineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Dongwei Fan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Spinal Disease Research, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
| |
Collapse
|
6
|
Aeindartehran L, Lefton JB, Burleson J, Unruh DK, Runčevski T. Soluble thiabendazolium salts with anthelminthic properties. Int J Pharm 2023; 647:123516. [PMID: 37863447 DOI: 10.1016/j.ijpharm.2023.123516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
Thiabendazole is an anthelmintic drug used to treat strongyloidiasis (threadworm), cutaneous and visceral larva migrans, trichinosis, and other parasites. The active pharmaceutical ingredient is typically administered orally as tablets that should be chewed before swallowing. Current formulations combine the active ingredient with excipients, including sodium saccharinate as a sweetener. Thiabendazole's low aqueous solubility hinders fast dissolution and absorption through the mucous membranes. We sought to reformulate this medicine to improve both solubility and palatability. We utilized the possibility of protonation of the azole nitrogen atom and selected four different hydrogen donors: saccharin, fumaric, maleic, and oxalic acids. Solvothermal synthesis resulted in salts with each co-former, whereas neat and liquid-assisted grinding enabled the synthesis of additional formulations. Product formation was observed by powder X-ray diffraction. To better understand the structural basis of the proton transfer, we solved the crystal structures of the salts with saccharin, maleic acid, and oxalic acid using single-crystal X-ray diffraction. The structure of the salt with fumaric acid was solved by powder X-ray diffraction. We further characterized the salts with vibrational spectroscopic and thermoanalytical methods. We report a broad tunability of the aqueous solubility of thiabendazole by salt formation. Reformulation with maleic acid provided a 60-fold increase in solubility, while saccharin and oxalic acid gave a modest improvement. Fumaric acid resulted in a solid with only slightly higher solubility. Furthermore, saccharin is a sweetener, while the acids taste sour. Therefore, the salts formed also result in an intrinsic improvement of palatability. These results can inform new strategies for oral and chewable tablet formulations for treating helminthic infections.
Collapse
Affiliation(s)
- Lida Aeindartehran
- Department of Chemistry, Southern Methodist University, Dallas, TX 75205, USA
| | - Jonathan B Lefton
- Department of Chemistry, Southern Methodist University, Dallas, TX 75205, USA
| | - Jewel Burleson
- Department of Chemistry, Southern Methodist University, Dallas, TX 75205, USA
| | - Daniel K Unruh
- MATFab Facility, The University of Iowa, Iowa City, IA 52242, USA
| | - Tomče Runčevski
- Department of Chemistry, Southern Methodist University, Dallas, TX 75205, USA.
| |
Collapse
|
7
|
Zhou L, Zhang W, Zhao C, Yang W. Self-Cross-Linkable Maleic Anhydride Terpolymer Coating with Inherent High Antimicrobial Activity and Low Cytotoxicity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47810-47821. [PMID: 37782773 DOI: 10.1021/acsami.3c11364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Developing coating materials with low cytotoxicity and high antimicrobial activity has been recognized as an effective way to prevent medical device-associated infections. In this study, a maleic anhydride terpolymer (PPTM) is synthesized and covalently attached to silicone rubber (SR) surface. The formed coating can be further cross-linked (SPM) through the self-condensation of pendent siloxane groups of terpolymer. No crack or delamination of SPM was observed after 500 cycles of bending and 7 day immersion in deionized water. The sliding friction force of a catheter was reduced by 50% after coating with SPM. The SPM coating without adding any extra antibacterial reagents can kill 99.99% of Staphylococcus aureus and Escherichia coli and also significantly reduce bacterial coverage, while the coating displayed no antimicrobial activity when maleic anhydride groups of SPM were aminated or hydrolyzed. The results of the repeated disinfection tests showed that the SR coated with SPM could maintain 87.3% bactericidal activity within 5 cycles. Furthermore, the SPM coating only imparted slight toxic effect (>85% viability) on L929 cells after 36 h of coculture, which is superior to the coating of aminated SPM conjugated with the antimicrobial peptide E6. The terpolymer containing maleic anhydride units have great potential as a flexible and durable coating against implant infections.
Collapse
Affiliation(s)
- Ling Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weihua Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changwen Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Wang J, Zhang T, Li X, Wu W, Xu H, Xu XM, Zhang T. DNA Nanobarrel-Based Drug Delivery for Paclitaxel and Doxorubicin. Chembiochem 2023; 24:e202300424. [PMID: 37470220 DOI: 10.1002/cbic.202300424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023]
Abstract
Co-delivery of anticancer drugs and target agents by endogenous materials is an inevitable approach towards targeted and synergistic therapy. Employing DNA base pair complementarities, DNA nanotechnology exploits a unique nanostructuring method and has demonstrated its capacity for nanoscale positioning and templated assembly. Moreover, the water solubility, biocompatibility, and modifiability render DNA structure suitable candidate for drug delivery applications. We here report single-stranded DNA tail conjugated antitumor drug paclitaxel (PTX), and the co-delivery of PTX, doxorubicin and targeting agent mucin 1 (MUC-1) aptamer on a DNA nanobarrel carrier. We investigated the effect of tail lengths on drug release efficiencies and dual drug codelivery-enabled cytotoxicity. Owing to the rapidly developing field of structural DNA nanotechnology, functional DNA-based drug delivery is promising to achieve clinical therapeutic applications.
Collapse
Affiliation(s)
- Jiaoyang Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Tianyu Zhang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Xueqiao Li
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Wenna Wu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Hui Xu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Xin-Ming Xu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Tao Zhang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| |
Collapse
|
9
|
Zhang X, Zhang M, Huang S, Ohtani K, Xu L, Guo Y. Engineered Polymeric Nanovector for Intracellular Peptide Delivery in Antitumor Therapy. Int J Nanomedicine 2023; 18:5343-5363. [PMID: 37746048 PMCID: PMC10517702 DOI: 10.2147/ijn.s427536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023] Open
Abstract
Objective This study aimed to deliver a polypeptide from the Bax-BH3 domain (BHP) through the synthesis of self-assembled amphiphile nanovectors (NVs) and to assess their potential for cancer therapeutic applications and biological safety in vitro and in vivo. These findings provide valuable options for cancer intervention and a novel approach for the rational design of therapeutics. Methods We studied the antitumor activity of BHP by preparing RGDfK-PHPMA-b-Poly (MMA-alt-(Rhob-MA)) (RPPMMRA) and encapsulating it in BHP-NV. We also performed a series of characterizations and property analyses of RPPMMRA, including its size, stability, and drug-carrying capacity. The biocompatibility of RPPMMRA was evaluated in terms of cytotoxicity and hemolytic effects. The pro-apoptotic capacity of BHP was evaluated in vitro using mitochondrial membrane potential, flow cytometry, and apoptosis visualization techniques. The potential therapeutic effects of BHP on tumors were explored using reverse molecular docking. We also investigated the in vivo proapoptotic effect of BHP-NV in a nude mouse tumor model. Results NVs were successfully prepared with hydrated particle sizes ranging from 189.6 nm to 256.6 nm, spherical overall, and were able to remain stable in different media for 72 h with drug loading up to 15.2%. The NVs were be successfully internalized within 6 h with good biocompatibility. Neither BHP nor NV showed significant toxicity when administered alone, however, BHP-NV demonstrated significant side effects in vitro and in vivo. The apoptosis rate increased significantly from 14.13% to 66.34%. Experiments in vivo showed that BHP-NV exhibited significant apoptotic and tumor-suppressive effects. Conclusion A targeted fluorescent NV with high drug delivery efficiency and sustained release protected the active center of BHP, constituting BHP-NV for targeted delivery. RPPMMRA demonstrated excellent biocompatibility, stability, and drug loading ability, whereas and BHP-NV demonstrated potent antitumor effects in vivo and in vitro.
Collapse
Affiliation(s)
- Xi Zhang
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Mingming Zhang
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Sijun Huang
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Kiyoshi Ohtani
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan
| | - Li Xu
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Yi Guo
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| |
Collapse
|
10
|
Dube E, Okuthe GE. Plastics and Micro/Nano-Plastics (MNPs) in the Environment: Occurrence, Impact, and Toxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6667. [PMID: 37681807 PMCID: PMC10488176 DOI: 10.3390/ijerph20176667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
Plastics, due to their varied properties, find use in different sectors such as agriculture, packaging, pharmaceuticals, textiles, and construction, to mention a few. Excessive use of plastics results in a lot of plastic waste buildup. Poorly managed plastic waste (as shown by heaps of plastic waste on dumpsites, in free spaces, along roads, and in marine systems) and the plastic in landfills, are just a fraction of the plastic waste in the environment. A complete picture should include the micro and nano-plastics (MNPs) in the hydrosphere, biosphere, lithosphere, and atmosphere, as the current extreme weather conditions (which are effects of climate change), wear and tear, and other factors promote MNP formation. MNPs pose a threat to the environment more than their pristine counterparts. This review highlights the entry and occurrence of primary and secondary MNPs in the soil, water and air, together with their aging. Furthermore, the uptake and internalization, by plants, animals, and humans are discussed, together with their toxicity effects. Finally, the future perspective and conclusion are given. The material utilized in this work was acquired from published articles and the internet using keywords such as plastic waste, degradation, microplastic, aging, internalization, and toxicity.
Collapse
Affiliation(s)
- Edith Dube
- Department of Biological & Environmental Sciences, Walter Sisulu University, Mthatha 5117, South Africa;
| | | |
Collapse
|
11
|
Malinowska K, Sicińska P, Michałowicz J, Bukowska B. The effects of non-functionalized polystyrene nanoparticles of different diameters on the induction of apoptosis and mTOR level in human peripheral blood mononuclear cells. CHEMOSPHERE 2023; 335:139137. [PMID: 37285979 DOI: 10.1016/j.chemosphere.2023.139137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Particles of various types of plastics, including polystyrene nanoparticles (PS-NPs), have been determined in human blood, placenta, and lungs. These findings suggest a potential detrimental effect of PS-NPs on bloodstream cells. The purpose of this study was to assess the mechanism underlying PS-NPs-induced apoptosis in human peripheral blood mononuclear cells (PBMCs). Non-functionalized PS-NPs of three diameters: 29 nm, 44 nm, and 72 nm were studied used in this research. PBMCs were isolated from human leukocyte-platelet buffy coat and treated with PS-NPs at concentrations ranging from 0.001 to 200 μg/mL for 24 h. Apoptotic mechanism of action was evaluated by determining the level of cytosolic calcium ions, as well as mitochondrial transmembrane potential, and ATP levels. Furthermore, detection of caspase-8, -9, and -3 activation, as well as mTOR level was conducted. The presence of apoptotic PBMCs was confirmed by the method of double staining of the cells with propidium iodide and FITC-conjugated Annexin V. We found that all tested NPs increased calcium ion and depleted mitochondrial transmembrane potential levels. The tested NPs also activated caspase-9 and caspase-3, and the smallest NPs of 29 nm of diameter also activated caspase-8. The results clearly showed that apoptotic changes and an increase of mTOR level depended on the size of the tested NPs, while the smallest particles caused the greatest alterations. PS-NPs of 26 nm of diameter activated the extrinsic pathway (increased caspase-8 activity), as well as intrinsic (mitochondrial) pathway (increased caspase-9 activity, raised calcium ion level, and decreased transmembrane mitochondrial potential) of apoptosis. All PS-NPs increased mTOR level at the concentrations smaller than those that induced apoptosis and its level returned to control value when the process of apoptosis escalated.
Collapse
Affiliation(s)
- Kinga Malinowska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Paulina Sicińska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Jaromir Michałowicz
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Bożena Bukowska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, 141/143 Pomorska St., 90-236, Lodz, Poland.
| |
Collapse
|
12
|
Tumor vasculature VS tumor cell targeting: Understanding the latest trends in using functional nanoparticles for cancer treatment. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100136] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
13
|
Jung S, Jiang L, Zhao J, Shultz LD, Greiner DL, Bae M, Li X, Ordikhani F, Kuai R, Joseph J, Kasinath V, Elmaleh DR, Abdi R. Clathrin light chain-conjugated drug delivery for cancer. Bioeng Transl Med 2023; 8:e10273. [PMID: 36684105 PMCID: PMC9842032 DOI: 10.1002/btm2.10273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/25/2023] Open
Abstract
Targeted drug delivery systems hold the remarkable potential to improve the therapeutic index of anticancer medications markedly. Here, we report a targeted delivery platform for cancer treatment using clathrin light chain (CLC)-conjugated drugs. We conjugated CLC to paclitaxel (PTX) through a glutaric anhydride at high efficiency. Labeled CLCs localized to 4T1 tumors implanted in mice, and conjugation of PTX to CLC enhanced its delivery to these tumors. Treatment of three different mouse models of cancer-melanoma, breast cancer, and lung cancer-with CLC-PTX resulted in significant growth inhibition of both the primary tumor and metastatic lesions, as compared to treatment with free PTX. CLC-PTX treatment caused a marked increase in apoptosis of tumor cells and reduction of tumor angiogenesis. Our data suggested HSP70 as a binding partner for CLC. Our study demonstrates that CLC-based drug-conjugates constitute a novel drug delivery platform that can augment the effects of chemotherapeutics in treating a variety of cancers. Moreover, conjugation of therapeutics with CLC may be used as means by which drugs are delivered specifically to primary tumors and metastatic lesions, thereby prolonging the survival of cancer patients.
Collapse
Affiliation(s)
- Sungwook Jung
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Liwei Jiang
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Institute of Health and Medical TechnologyHefei Institutes of Physical Science, Chinese Academy of SciencesBostonHefeiChina
| | - Jing Zhao
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Dale L. Greiner
- Department of Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Munhyung Bae
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Xiaofei Li
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Farideh Ordikhani
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Rui Kuai
- Center for Nanomedicine and Division of Engineering in Medicine, Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - John Joseph
- Center for Nanomedicine and Division of Engineering in Medicine, Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Vivek Kasinath
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - David R. Elmaleh
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Reza Abdi
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
14
|
Awan UA, Naeem M, Saeed RF, Mumtaz S, Akhtar N. Smart Nanocarrier-Based Cancer Therapeutics. Cancer Treat Res 2023; 185:207-235. [PMID: 37306911 DOI: 10.1007/978-3-031-27156-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Considerable advances in the field of cancer have been made; however, these have not been translated into similar clinical progress which results in the high prevalence and increased cancer-related mortality rate worldwide. Available treatments have several challenges such as off-target side effects, non-specific long-term potential biodisruption, drug resistance, and overall inadequate response rates and high probability of recurrence. The limitations associated with independent cancer diagnosis and therapy can be minimized by an emerging interdisciplinary research field of nanotheranostics which include successful integration of diagnosis and therapy on a single agent using nanoparticles. This may offer a powerful tool in developing innovative strategies to enable "personalized medicine" for diagnosis and treatment of cancer. Nanoparticles have been proven to be powerful imaging tools or potent agents for cancer diagnosis, treatment, and prevention. The nanotheranostic provides minimally invasive in vivo visualization of drug biodistribution and accumulation at the target site with real-time monitoring of therapeutic outcome. This chapter intends to cover several important aspects and the advances in the field of nanoparticles-mediated cancer therapeutics including nanocarrier development, drug/gene delivery, intrinsically active nanoparticles, tumor microenvironment, and nanotoxicity. The chapter represents an overview of challenges associated with cancer treatment, rational for nanotechnology in cancer therapeutics, novel concepts of multifunctional nanomaterials for cancer therapy along with their classification and their clinical prospective in different cancers. A special focus is on the nanotechnology: regulatory perspective for drug development in cancer therapeutics. Obstacles hindering further development of nanomaterials-mediated cancer therapy are also discussed. In general, the objective of this chapter is to improve our perceptive in the design and development of nanotechnology for cancer therapeutics.
Collapse
Affiliation(s)
- Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Rida Fatima Saeed
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Sara Mumtaz
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
15
|
Mandal D, Kushwaha K, Gupta J. Emerging nano-strategies against tumour microenvironment (TME): a review. OPENNANO 2023. [DOI: 10.1016/j.onano.2022.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Qu M, Chen H, Lai H, Liu X, Wang D, Zhang X. Exposure to nanopolystyrene and its 4 chemically modified derivatives at predicted environmental concentrations causes differently regulatory mechanisms in nematode Caenorhabditis elegans. CHEMOSPHERE 2022; 305:135498. [PMID: 35777546 DOI: 10.1016/j.chemosphere.2022.135498] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Nanoplastics represented by nanopolystyrene (NPS) and its chemically modified derivatives are environmentally ecotoxicological hotpots in recent years, but their toxicity and underlying mechanisms have not been fully identified. Here we employed Caenorhabditis elegans as an animal model to systematically compare the toxicity between nanopolystyrene and its 4 chemically modified derivatives (PS-PEG, PS-COOH, PS-SOOOH and PS-NH2) at predicted environmental concentrations. Our study demonstrated that compared with PS exposed group, PS-NH2 exposure (15 μg/L) caused a significant decline in lifespan by suppressed DAF-16/insulin signaling and shortened body length by inhibiting DBL-1/TGF β signaling. Different from PS-NH2 exposed group, PS-SOOOH exposure (15 μg/L) could not cause changes in lifespan, but shortened body length by inhibiting DBL-1/TGF β signaling. In addition, PS-COOH, PS-SOOOH or PS-NH2 exposure (1 μg/L or 15 μg/L) caused more serious toxicity in reducing locomotion behavior and causing gut barrier deficit. Hence the rank order in toxicity of PS-NH2>PS-SOOOH>PS-COOH>PS>PS-PEG was identified. Furthermore, we also presented evidence to support the contention that the observed toxic effects on nematodes were linked to oxide stress and activation of anti-oxidative molecules for reversing the adverse effects induced by nanopolystyrene and its 4 chemically modified derivatives. Our data highlighted nanoplastics may be charge-dependently toxic to environmental organisms, and the screened low toxic modification may support polystyrene nanoparticles continued application for daily consumer goods and biomedicine.
Collapse
Affiliation(s)
- Man Qu
- School of Nursing & School of Public Health, Yangzhou University, Yangzhou, 225000, China.
| | - He Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230000, China
| | - Hanpeng Lai
- School of Nursing & School of Public Health, Yangzhou University, Yangzhou, 225000, China
| | - Xing Liu
- School of Nursing & School of Public Health, Yangzhou University, Yangzhou, 225000, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Xing Zhang
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, 210009, China
| |
Collapse
|
17
|
Nanoplastics and Human Health: Hazard Identification and Biointerface. NANOMATERIALS 2022; 12:nano12081298. [PMID: 35458006 PMCID: PMC9026096 DOI: 10.3390/nano12081298] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022]
Abstract
Nanoplastics are associated with several risks to the ecology and toxicity to humans. Nanoplastics are synthetic polymers with dimensions ranging from 1 nm to 1 μm. They are directly released to the environment or secondarily derived from plastic disintegration in the environment. Nanoplastics are widely detected in environmental samples and the food chain; therefore, their potentially toxic effects have been widely explored. In the present review, an overview of another two potential sources of nanoplastics, exposure routes to illustrate hazard identification of nanoplastics, cell internalization, and effects on intracellular target organelles are presented. In addition, challenges on the study of nanoplastics and future research areas are summarized. This paper also summarizes some approaches to eliminate or minimize the levels of nanoplastics to ensure environmental safety and improve human health.
Collapse
|
18
|
Ibarra LE, Camorani S, Agnello L, Pedone E, Pirone L, Chesta CA, Palacios RE, Fedele M, Cerchia L. Selective Photo-Assisted Eradication of Triple-Negative Breast Cancer Cells through Aptamer Decoration of Doped Conjugated Polymer Nanoparticles. Pharmaceutics 2022; 14:626. [PMID: 35336001 PMCID: PMC8955042 DOI: 10.3390/pharmaceutics14030626] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Photodynamic therapy (PDT) may be an excellent alternative in the treatment of breast cancer, mainly for the most aggressive type with limited targeted therapies such as triple-negative breast cancer (TNBC). We recently generated conjugated polymer nanoparticles (CPNs) as efficient photosensitizers for the photo-eradication of different cancer cells. With the aim of improving the selectivity of PDT with CPNs, the nanoparticle surface conjugation with unique 2'-Fluoropyrimidines-RNA-aptamers that act as effective recognition elements for functional surface signatures of TNBC cells was proposed and designed. A coupling reaction with carbodiimide was used to covalently bind NH2-modified aptamers with CPNs synthetized with two polystyrene-based polymer donors of COOH groups for the amide reaction. The selectivity of recognition for TNBC membrane receptors and PDT efficacy were assayed in TNBC cells and compared with non-TNBC cells by flow cytometry and cell viability assays. Furthermore, in vitro PDT efficacy was assayed in different TNBC cells with significant improvement results using CL4, sTN29 and sTN58 aptamers compared to unconjugated CPNs and SCR non-specific aptamer. In a chemoresistance TNBC cell model, sTN58 was the candidate for improving labelling and PDT efficacy with CPNs. We proposed sTN58, sTN29 and CL4 aptamers as valuable tools for selective TNBC targeting, cell internalization and therapeutic improvements for CPNs in PDT protocols.
Collapse
Affiliation(s)
- Luis Exequiel Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto y CONICET, Río Cuarto X5800BIA, Argentina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto X5800BIA, Argentina
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.C.); (L.A.); (M.F.)
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.C.); (L.A.); (M.F.)
| | - Lisa Agnello
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.C.); (L.A.); (M.F.)
| | - Emilia Pedone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), 80145 Naples, Italy; (E.P.); (L.P.)
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), 80145 Naples, Italy; (E.P.); (L.P.)
| | - Carlos Alberto Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rio Cuarto y CONICET, Río Cuarto X5800BIA, Argentina; (C.A.C.); (R.E.P.)
- Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto X5800BIA, Argentina
| | - Rodrigo Emiliano Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rio Cuarto y CONICET, Río Cuarto X5800BIA, Argentina; (C.A.C.); (R.E.P.)
- Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto X5800BIA, Argentina
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.C.); (L.A.); (M.F.)
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.C.); (L.A.); (M.F.)
| |
Collapse
|
19
|
Bawa R, Deswal N, Negi S, Dalela M, Kumar A, Kumar R. Pyranopyrazole based Schiff base for rapid colorimetric detection of arginine in aqueous and real samples. RSC Adv 2022; 12:11942-11952. [PMID: 35481068 PMCID: PMC9017462 DOI: 10.1039/d2ra00091a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
A novel pyranopyrazole-based Schiff base PPS has been synthesized via a condensation reaction between aldehyde and hydrazide derivatives of pyranopyrazole.
Collapse
Affiliation(s)
- Rashim Bawa
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Nidhi Deswal
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Swati Negi
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Manu Dalela
- Stem Cell Facility (Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Amit Kumar
- Department of Chemistry, Dyal Singh College, University of Delhi, Delhi, 110003, India
| | - Rakesh Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
20
|
Md S, Alhakamy NA, Karim S, Gabr GA, Iqubal MK, Murshid SSA. Signaling Pathway Inhibitors, miRNA, and Nanocarrier-Based Pharmacotherapeutics for the Treatment of Lung Cancer: A Review. Pharmaceutics 2021; 13:2120. [PMID: 34959401 PMCID: PMC8708027 DOI: 10.3390/pharmaceutics13122120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is one of the most commonly diagnosed cancers and is responsible for a large number of deaths worldwide. The pathogenic mechanism of lung cancer is complex and multifactorial in origin. Thus, various signaling pathways as targets for therapy are being examined, and many new drugs are in the pipeline. However, both conventional and target-based drugs have been reported to present significant adverse effects, and both types of drugs can affect the clinical outcome in addition to patient quality of life. Recently, miRNA has been identified as a promising target for lung cancer treatment. Therefore, miRNA mimics, oncomiRs, or miRNA suppressors have been developed and studied for possible anticancer effects. However, these miRNAs also suffer from the limitations of low stability, biodegradation, thermal instability, and other issues. Thus, nanocarrier-based drug delivery for the chemotherapeutic drug delivery in addition to miRNA-based systems have been developed so that existing limitations can be resolved, and enhanced therapeutic outcomes can be achieved. Thus, this review discusses lung cancer's molecular mechanism, currently approved drugs, and their adverse effects. We also discuss miRNA biosynthesis and pathogenetic role, highlight pre-clinical and clinical evidence for use of miRNA in cancer therapy, and discussed limitations of this therapy. Furthermore, nanocarrier-based drug delivery systems to deliver chemotherapeutic drugs and miRNAs are described in detail. In brief, the present review describes the mechanism and up-to-date possible therapeutic approaches for lung cancer treatment and emphasizes future prospects to bring these novel approaches from bench to bedside.
Collapse
Affiliation(s)
- Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shahid Karim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Satam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia;
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
- Sentiss Research Centre, Product Development Department, Sentiss Pharma Pvt Ltd., Gurugram 122001, India
| | - Samar S. A. Murshid
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
21
|
Sugumar K, Vignesh G, Arunachalam (Retired) S. A Comparative Study on Interactions of Ternary Copper(II) Complexes and Their Analogues Anchored Polymer (BPEI) with Serum Albumins. ChemistrySelect 2021. [DOI: 10.1002/slct.202100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kannan Sugumar
- School of Chemistry Bharathidasan University Tiruchirappalli 620024 India
- Department of Chemistry Bishop Heber College (Autonomous) Tiruchirappalli 620017 India
| | - Gopalsamy Vignesh
- Department of Chemistry Einstein College of Arts and Science Tirunelveli 627012 India
| | | |
Collapse
|
22
|
Ackun-Farmmer MA, Soto CA, Lesch ML, Byun D, Yang L, Calvi LM, Benoit DSW, Frisch BJ. Reduction of leukemic burden via bone-targeted nanoparticle delivery of an inhibitor of C-chemokine (C-C motif) ligand 3 (CCL3) signaling. FASEB J 2021; 35:e21402. [PMID: 33724567 PMCID: PMC8594422 DOI: 10.1096/fj.202000938rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
Leukemias are challenging diseases to treat due, in part, to interactions between leukemia cells and the bone marrow microenvironment (BMME) that contribute significantly to disease progression. Studies have shown that leukemic cells secrete C-chemokine (C-C motif) ligand 3 (CCL3), to disrupt the BMME resulting in loss of hematopoiesis and support of leukemic cell survival and proliferation. In this study, a murine model of blast crisis chronic myelogenous leukemia (bcCML) that expresses the translocation products BCR/ABL and Nup98/HoxA9 was used to determine the role of CCL3 in BMME regulation. Leukemic cells derived from CCL3-/- mice were shown to minimally engraft in a normal BMME, thereby demonstrating that CCL3 signaling was necessary to recapitulate bcCML disease. Further analysis showed disruption in hematopoiesis within the BMME in the bcCML model. To rescue the altered BMME, therapeutic inhibition of CCL3 signaling was investigated using bone-targeted nanoparticles (NP) to deliver Maraviroc, an inhibitor of C-C chemokine receptor type 5 (CCR5), a CCL3 receptor. NP-mediated Maraviroc delivery partially restored the BMME, significantly reduced leukemic burden, and improved survival. Overall, our results demonstrate that inhibiting CCL3 via CCR5 antagonism is a potential therapeutic approach to restore normal hematopoiesis as well as reduce leukemic burden within the BMME.
Collapse
Affiliation(s)
- Marian A. Ackun-Farmmer
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Celia A. Soto
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY, USA
| | - Maggie L. Lesch
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY, USA
| | - Daniel Byun
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Lila Yang
- New York Institute of Technology College of Osteopathic Medicine, New York, NY, USA
| | - Laura M. Calvi
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine Endocrine Division, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Materials Science Program, University of Rochester, Rochester, NY, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
| | - Benjamin J. Frisch
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| |
Collapse
|
23
|
Spanedda MV, Bourel-Bonnet L. Cyclic Anhydrides as Powerful Tools for Bioconjugation and Smart Delivery. Bioconjug Chem 2021; 32:482-496. [PMID: 33662203 DOI: 10.1021/acs.bioconjchem.1c00023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclic anhydrides are potent tools for bioconjugation; therefore, they are broadly used in the functionalization of biomolecules and carriers. The pH-dependent stability and reactivity, as well as the physical properties, can be tuned by the structure of the cyclic anhydride used; thus, their application in smart delivery systems has become very important. This review intends to cover the last updates in the use of cyclic anhydrides as pH-sensitive linkers, their differences in reactivity, and the latest applications found in bioconjugation chemistry or chemical biology, and when possible, in drug delivery.
Collapse
Affiliation(s)
- Maria Vittoria Spanedda
- Laboratoire de Conception et Application de Molécules Bioactives, 3Bio team, ITI InnoVec, UMR 7199 - CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401 Illkirch Cedex, France
| | - Line Bourel-Bonnet
- Laboratoire de Conception et Application de Molécules Bioactives, 3Bio team, ITI InnoVec, UMR 7199 - CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401 Illkirch Cedex, France
| |
Collapse
|
24
|
Li M, Niu B, Guo X, Rao C, Li W. Hyaluronic acid-amorphous calcium phosphate nanoparticles for drug delivery and anticancer. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1860982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Min Li
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, PR China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Baolong Niu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, PR China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, PR China
| | - Xia Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, PR China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Chaohui Rao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, PR China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Wenfeng Li
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, PR China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| |
Collapse
|
25
|
Fathi M, Abdolahinia ED, Barar J, Omidi Y. Smart stimuli-responsive biopolymeric nanomedicines for targeted therapy of solid tumors. Nanomedicine (Lond) 2020; 15:2171-2200. [DOI: 10.2217/nnm-2020-0146] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Solid tumors form a permissive microenvironment with irregular features, including high pressured tumor interstitial fluid with acidic pH, co-adaptation of cancer cells with other cells like the immune system cells, abnormal metabolism and anomalous overexpression of various pieces of molecular machinery. The functional expressions of several oncomarkers in different solid tumors have led to the development of targeted drug-delivery systems (DDSs). As a new class of DDSs, stimuli-responsive nanomedicines (SRNMs) have been developed using advanced nanobiomaterials such as biopolymers that show excellent biocompatibility with low inherent immunogenicity. In this review, we aim to overview different types of SRNMs, present deep insights into the stimuli-responsive biopolymers and discuss the most up-to-date progress in the design and development of SRNMs used as advanced DDSs for targeted therapy of cancer.
Collapse
Affiliation(s)
- Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
26
|
Tanaka M, Miyake H, Oka S, Maeda S, Iwasaki K, Mukai T. Effects of charged lipids on the physicochemical and biological properties of lipid–styrene maleic acid copolymer discoidal particles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183209. [DOI: 10.1016/j.bbamem.2020.183209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/08/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022]
|
27
|
Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z. Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach. ACS NANO 2020; 14:3075-3095. [PMID: 32078303 PMCID: PMC7098057 DOI: 10.1021/acsnano.9b08142] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/20/2020] [Indexed: 05/18/2023]
Abstract
Numerous studies have engineered nanoparticles with different physicochemical properties to enhance the delivery efficiency to solid tumors, yet the mean and median delivery efficiencies are only 1.48% and 0.70% of the injected dose (%ID), respectively, according to a study using a nonphysiologically based modeling approach based on published data from 2005 to 2015. In this study, we used physiologically based pharmacokinetic (PBPK) models to analyze 376 data sets covering a wide range of nanomedicines published from 2005 to 2018 and found mean and median delivery efficiencies at the last sampling time point of 2.23% and 0.76%ID, respectively. Also, the mean and median delivery efficiencies were 2.24% and 0.76%ID at 24 h and were decreased to 1.23% and 0.35%ID at 168 h, respectively, after intravenous administration. While these delivery efficiencies appear to be higher than previous findings, they are still quite low and represent a critical barrier in the clinical translation of nanomedicines. We explored the potential causes of this poor delivery efficiency using the more mechanistic PBPK perspective applied to a subset of gold nanoparticles and found that low delivery efficiency was associated with low distribution and permeability coefficients at the tumor site (P < 0.01). We also demonstrate how PBPK modeling and simulation can be used as an effective tool to investigate tumor delivery efficiency of nanomedicines.
Collapse
Affiliation(s)
- Yi-Hsien Cheng
- Institute
of Computational Comparative Medicine (ICCM), Department of Anatomy
and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
- Nanotechnology
Innovation Center of Kansas State (NICKS), Department of Anatomy and
Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Chunla He
- Institute
of Computational Comparative Medicine (ICCM), Department of Anatomy
and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Jim E. Riviere
- Institute
of Computational Comparative Medicine (ICCM), Department of Anatomy
and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
- 1Data
Consortium, Kansas State University, Manhattan, Kansas 66506, United States
| | - Nancy A. Monteiro-Riviere
- Nanotechnology
Innovation Center of Kansas State (NICKS), Department of Anatomy and
Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Zhoumeng Lin
- Institute
of Computational Comparative Medicine (ICCM), Department of Anatomy
and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
- Nanotechnology
Innovation Center of Kansas State (NICKS), Department of Anatomy and
Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
28
|
Qu M, Zhao Y, Zhao Y, Rui Q, Kong Y, Wang D. Identification of long non-coding RNAs in response to nanopolystyrene in Caenorhabditis elegans after long-term and low-dose exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113137. [PMID: 31541829 DOI: 10.1016/j.envpol.2019.113137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
The potential adverse effects of nanoplastics, such as nanopolystyrene, have received the great attention recently. However, the molecular response of organisms to nanoplastics is still largely unknown. In this study, we employed Caenorhabditis elegans as an animal model to investigate the long non-coding RNAs (lncRNAs) in response to long-term exposure to low-dose nanopolystyrene (100 nm). Based on Hiseq 2000 sequencing and qRT-PCR confirmation, we identified 36 lncRNAs (21 down-regulated lncRNAs and 15 up-regulated lncRNAs) in response to nanopolystyrene (1 μg/L). Using intestinal reactive oxygen species (ROS) production and locomotion behavior as endpoints, we found that RNAi knockdown of linc-2, linc-9, or linc-61 induced a susceptibility to nanopolystyrene toxicity, and RNAi knockdown of linc-18 or linc-50 induced a resistance to nanopolystyrene toxicity. Meanwhile, nanopolystyrene (1 μg/L) increased expressions of linc-2, linc-9, linc-18, and linc-61 and decreased linc-50 expression, suggesting that these 5 lncRNAs mediated two different responses to nanopolystyrene exposure. Bioinformatical analysis implied that these 5 lncRNAs were associated with multiple biological processes and signaling pathways. Our results demonstrated the crucial roles of lncRNAs in response to long-term exposure to low-dose nanopolystyrene in organisms.
Collapse
Affiliation(s)
- Man Qu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Yunli Zhao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Yingyue Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Kong
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
29
|
Morales-Cruz M, Delgado Y, Castillo B, Figueroa CM, Molina AM, Torres A, Milián M, Griebenow K. Smart Targeting To Improve Cancer Therapeutics. Drug Des Devel Ther 2019; 13:3753-3772. [PMID: 31802849 PMCID: PMC6826196 DOI: 10.2147/dddt.s219489] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second largest cause of death worldwide with the number of new cancer cases predicted to grow significantly in the next decades. Biotechnology and medicine can and should work hand-in-hand to improve cancer diagnosis and treatment efficacy. However, success has been frequently limited, in particular when treating late-stage solid tumors. There still is the need to develop smart and synergistic therapeutic approaches to achieve the synthesis of strong and effective drugs and delivery systems. Much interest has been paid to the development of smart drug delivery systems (drug-loaded particles) that utilize passive targeting, active targeting, and/or stimulus responsiveness strategies. This review will summarize some main ideas about the effect of each strategy and how the combination of some or all of them has shown to be effective. After a brief introduction of current cancer therapies and their limitations, we describe the biological barriers that nanoparticles need to overcome, followed by presenting different types of drug delivery systems to improve drug accumulation in tumors. Then, we describe cancer cell membrane targets that increase cellular drug uptake through active targeting mechanisms. Stimulus-responsive targeting is also discussed by looking at the intra- and extracellular conditions for specific drug release. We include a significant amount of information summarized in tables and figures on nanoparticle-based therapeutics, PEGylated drugs, different ligands for the design of active-targeted systems, and targeting of different organs. We also discuss some still prevailing fundamental limitations of these approaches, eg, by occlusion of targeting ligands.
Collapse
Affiliation(s)
- Moraima Morales-Cruz
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| | - Yamixa Delgado
- Department of Biochemistry & Pharmacology, San Juan Bautista School of Medicine, Caguas, PR, USA
| | - Betzaida Castillo
- Department of Chemistry, University of Puerto Rico, Humacao Campus, Humacao, PR, USA
| | - Cindy M Figueroa
- Department of Math and Sciences, Polytechnic University of Puerto Rico, San Juan, PR, USA
| | - Anna M Molina
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| | - Anamaris Torres
- Department of Biochemistry & Pharmacology, San Juan Bautista School of Medicine, Caguas, PR, USA
| | - Melissa Milián
- Department of Biochemistry & Pharmacology, San Juan Bautista School of Medicine, Caguas, PR, USA
| | - Kai Griebenow
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| |
Collapse
|
30
|
Xiong H, Wu Y, Jiang Z, Zhou J, Yang M, Yao J. pH-activatable polymeric nanodrugs enhanced tumor chemo/antiangiogenic combination therapy through improving targeting drug release. J Colloid Interface Sci 2019; 536:135-148. [PMID: 30366179 DOI: 10.1016/j.jcis.2018.10.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/26/2018] [Accepted: 10/15/2018] [Indexed: 01/07/2023]
Abstract
It was widely accepted that polymeric nanodrugs held superiority in enhancing antitumor efficacy, reducing side effect and achieving better long-term prognosis. However, there still existed disputes that whether their therapeutic efficiency was closely related to insure effective release of hydrophobic drug located in their hydrophobic core in tumor site. In order to investigate this controversy, we constructed two polymeric nanodrugs (pH-activatable sLMWH-UOA and non-sensitive LMWH-UOA) with low molecular weight heparin (LMWH) and ursolic acid (UOA) for chemo-and anti-angiogenic combination therapy in hepatocellular carcinoma. The degradation ratio of pH-activatable sLMWH-UOA increased by 33% compared with non-sensitive LMWH-UOA in in vitro degradation study. Besides, confocal microscopy captured that sLMWH-UOA could effectively release drug in acidic microenvironment of lysosome while LMWH-UOA nearly could not. More importantly, in contrast with LMWH-UOA, sLMWH-UOA presented pH-dependent cytotoxicity, indicating that promoting drug release played a key role in enhancing the cytotoxicity of polymeric nanodrugs. Additionally, in vivo pharmacodynamic evaluation showed that although non-sensitive LMWH-UOA had benefited from enhanced tumor targeting drug delivery ability to achieve absolute advantage over free drug combination therapy in antitumor combination therapy, sLMWH-UOA could acquire further optimized combined therapeutic effect with better drug release in tumor. All above, application of tumor-triggered chemical bonds to construct polymeric nanodrugs held vast prospect for improving the therapeutic efficiency for tumor cells.
Collapse
Affiliation(s)
- Hui Xiong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yuanyuan Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Zhijie Jiang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Min Yang
- Jiangsu Institute of Nuclear Medicine, Molecular Imaging Center, Jiangsu Institute of Nuclear Medicine, 20 Qianrong Rd, Wuxi 214063, China.
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
31
|
Kutova OM, Guryev EL, Sokolova EA, Alzeibak R, Balalaeva IV. Targeted Delivery to Tumors: Multidirectional Strategies to Improve Treatment Efficiency. Cancers (Basel) 2019; 11:E68. [PMID: 30634580 PMCID: PMC6356537 DOI: 10.3390/cancers11010068] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
Malignant tumors are characterized by structural and molecular peculiarities providing a possibility to directionally deliver antitumor drugs with minimal impact on healthy tissues and reduced side effects. Newly formed blood vessels in malignant lesions exhibit chaotic growth, disordered structure, irregular shape and diameter, protrusions, and blind ends, resulting in immature vasculature; the newly formed lymphatic vessels also have aberrant structure. Structural features of the tumor vasculature determine relatively easy penetration of large molecules as well as nanometer-sized particles through a blood⁻tissue barrier and their accumulation in a tumor tissue. Also, malignant cells have altered molecular profile due to significant changes in tumor cell metabolism at every level from the genome to metabolome. Recently, the tumor interaction with cells of immune system becomes the focus of particular attention, that among others findings resulted in extensive study of cells with preferential tropism to tumor. In this review we summarize the information on the diversity of currently existing approaches to targeted drug delivery to tumor, including (i) passive targeting based on the specific features of tumor vasculature, (ii) active targeting which implies a specific binding of the antitumor agent with its molecular target, and (iii) cell-mediated tumor targeting.
Collapse
Affiliation(s)
- Olga M Kutova
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Evgenii L Guryev
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Evgeniya A Sokolova
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Razan Alzeibak
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Irina V Balalaeva
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
- The Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya str., Moscow 119991, Russia.
| |
Collapse
|
32
|
Fernandes C, Suares D, Yergeri MC. Tumor Microenvironment Targeted Nanotherapy. Front Pharmacol 2018; 9:1230. [PMID: 30429787 PMCID: PMC6220447 DOI: 10.3389/fphar.2018.01230] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Recent developments in nanotechnology have brought new approaches to cancer diagnosis and therapy. While enhanced permeability and retention effect promotes nano-chemotherapeutics extravasation, the abnormal tumor vasculature, high interstitial pressure and dense stroma structure limit homogeneous intratumoral distribution of nano-chemotherapeutics and compromise their imaging and therapeutic effect. Moreover, heterogeneous distribution of nano-chemotherapeutics in non-tumor-stroma cells damages the non-tumor cells, and interferes with tumor-stroma crosstalk. This can lead not only to inhibition of tumor progression, but can also paradoxically induce acquired resistance and facilitate tumor cell proliferation and metastasis. Overall, the tumor microenvironment plays a vital role in regulating nano-chemotherapeutics distribution and their biological effects. In this review, the barriers in tumor microenvironment, its consequential effects on nano-chemotherapeutics, considerations to improve nano-chemotherapeutics delivery and combinatory strategies to overcome acquired resistance induced by tumor microenvironment have been summarized. The various strategies viz., nanotechnology based approach as well as ligand-mediated, redox-responsive, and enzyme-mediated based combinatorial nanoapproaches have been discussed in this review.
Collapse
Affiliation(s)
| | | | - Mayur C Yergeri
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies - NMIMS, Mumbai, India
| |
Collapse
|
33
|
Zhang D, Zhang J, Li Q, Tian H, Zhang N, Li Z, Luan Y. pH- and Enzyme-Sensitive IR820-Paclitaxel Conjugate Self-Assembled Nanovehicles for Near-Infrared Fluorescence Imaging-Guided Chemo-Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30092-30102. [PMID: 30118198 DOI: 10.1021/acsami.8b09098] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The short lifetime and easy quick elimination of the near-infrared (NIR) dye new indocyanine green (IR820) in the body restrict its practical application as a photothermal agent in cancer therapy. Meanwhile, the drawback of poor water solubility of the chemotherapeutic drug paclitaxel (PTX) largely restricts its clinical applications. Herein, we, for the first time, combined IR820 and PTX in an "all-in-one" fluorescence imaging-guided chemo-photothermal therapy (PTT) platform by a rational design of a novel pH- and enzyme-sensitive IR820-PTX conjugate assembly. Specifically, the IR820-PTX conjugate nanoparticles exhibit an extremely high therapeutic agent content (IR820 and PTX, 95.7%). Besides the good stability in bloodstream, the IR820-PTX nanoparticles can target tumors for high accumulation via the enhanced permeation and retention effect. Particularly, our IR820-PTX nanoparticles simultaneously solve the obstacles of PTX poor solubility and the short lifetime of IR820 for cancer therapy. The simultaneous release of the free drug and dye can efficiently kill tumor cells by the combination of PTT and chemotherapy via NIR irradiation. Furthermore, the combined therapy can be imaging-guided by measuring the NIR fluorescence imaging resulting from the IR820 component. Therefore, our rationally designed pH- and enzyme-sensitive IR820-PTX conjugate nanoparticles provide an alternative "all-in-one" option for an efficient combinational dual-therapy and imaging.
Collapse
Affiliation(s)
- Di Zhang
- School of Pharmaceutical Science, Key Laboratory of Chemical Biology (Ministry of Education) , Shandong University , 44 West Wenhua Road , Jinan , Shandong Province 250012 , China
| | - Jing Zhang
- School of Pharmaceutical Science, Key Laboratory of Chemical Biology (Ministry of Education) , Shandong University , 44 West Wenhua Road , Jinan , Shandong Province 250012 , China
| | - Qian Li
- School of Pharmaceutical Science, Key Laboratory of Chemical Biology (Ministry of Education) , Shandong University , 44 West Wenhua Road , Jinan , Shandong Province 250012 , China
| | - Hailong Tian
- School of Pharmaceutical Science, Key Laboratory of Chemical Biology (Ministry of Education) , Shandong University , 44 West Wenhua Road , Jinan , Shandong Province 250012 , China
| | - Na Zhang
- School of Pharmaceutical Science, Key Laboratory of Chemical Biology (Ministry of Education) , Shandong University , 44 West Wenhua Road , Jinan , Shandong Province 250012 , China
| | - Zhonghao Li
- Key Laboratory of Colloid & Interface Chemistry, Ministry of Education , Shandong University , Jinan , Shandong Province 250100 China
| | - Yuxia Luan
- School of Pharmaceutical Science, Key Laboratory of Chemical Biology (Ministry of Education) , Shandong University , 44 West Wenhua Road , Jinan , Shandong Province 250012 , China
| |
Collapse
|
34
|
Guo X, Zhuang Q, Ji T, Zhang Y, Li C, Wang Y, Li H, Jia H, Liu Y, Du L. Multi-functionalized chitosan nanoparticles for enhanced chemotherapy in lung cancer. Carbohydr Polym 2018; 195:311-320. [DOI: 10.1016/j.carbpol.2018.04.087] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 01/28/2023]
|
35
|
Albert M, Clifford A, Zhitomirsky I, Rubel O. Adsorption of Maleic Acid Monomer on the Surface of Hydroxyapatite and TiO 2: A Pathway toward Biomaterial Composites. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24382-24391. [PMID: 29961326 DOI: 10.1021/acsami.8b05128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Poly(styrene- alt-maleic acid) adsorption on hydroxyapatite and TiO2 (rutile) was studied using experimental techniques and complemented by ab initio simulations of adsorption of a maleic acid segment as a subunit of the copolymer. Ab initio calculations suggest that the maleic acid segment forms a strong covalent bonding to the TiO2 and hydroxyapatite surfaces. If compared to vacuum, the presence of a solvent significantly reduces the adsorption strength as the polarity of the solvent increases. The results of first-principles calculations are confirmed by the experimental measurements. We found that the adsorbed poly(styrene- alt-maleic acid) allowed efficient dispersion of rutile and formation of films by the electrophoretic deposition. Moreover, rutile can be codispersed and codeposited with hydroxyapatite to form composite films. The coatings showed an enhanced corrosion protection of metallic implants in simulated body fluid solutions, which opens new avenues for the synthesis, dispersion, and colloidal processing of advanced composite materials for biomedical applications.
Collapse
Affiliation(s)
- Mitchell Albert
- Department of Materials Science and Engineering , McMaster University , 1280 Main Street West , Hamilton , Ontario L8S 4L8 , Canada
| | - Amanda Clifford
- Department of Materials Science and Engineering , McMaster University , 1280 Main Street West , Hamilton , Ontario L8S 4L8 , Canada
| | - Igor Zhitomirsky
- Department of Materials Science and Engineering , McMaster University , 1280 Main Street West , Hamilton , Ontario L8S 4L8 , Canada
| | - Oleg Rubel
- Department of Materials Science and Engineering , McMaster University , 1280 Main Street West , Hamilton , Ontario L8S 4L8 , Canada
| |
Collapse
|
36
|
Abstract
Incorporating labile bonds inside polymer backbone and side chains yields interesting polymer materials that are responsive to change of environmental stimuli. Drugs can be conjugated to various polymers through different conjugation linkages and spacers. One of the key factors influencing the release profile of conjugated drugs is the hydrolytic stability of the conjugated linkage. Generally, the hydrolysis of acid-labile linkages, including acetal, imine, hydrazone, and to some extent β-thiopropionate, are relatively fast and the conjugated drug can be completely released in the range of several hours to a few days. The cleavage of ester linkages are usually slow, which is beneficial for continuous and prolonged release. Another key structural factor is the water solubility of polymer-drug conjugates. Generally, the release rate from highly water-soluble prodrugs is fast. In prodrugs with large hydrophobic segments, the hydrophobic drugs are usually located in the hydrophobic core of micelles and nanoparticles, which limits the access to the water, hence lowering significantly the hydrolysis rate. Finally, self-immolative polymers are also an intriguing new class of materials. New synthetic pathways are needed to overcome the fact that much of the small molecules produced upon degradation are not active molecules useful for biomedical applications.
Collapse
Affiliation(s)
- Farzad Seidi
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Rayong 21210 , Thailand
| | - Ratchapol Jenjob
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Rayong 21210 , Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Rayong 21210 , Thailand
| |
Collapse
|
37
|
Zhao G, Long L, Zhang L, Peng M, Cui T, Wen X, Zhou X, Sun L, Che L. Smart pH-sensitive nanoassemblies with cleavable PEGylation for tumor targeted drug delivery. Sci Rep 2017; 7:3383. [PMID: 28611459 PMCID: PMC5469818 DOI: 10.1038/s41598-017-03111-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/24/2017] [Indexed: 12/30/2022] Open
Abstract
A new acidly sensitive PEGylated polyethylenimine linked by Schiff base (PEG-s-PEI) was designed to render pH-sensitive PEGylation nanoassemblies through multiple interactions with indomethacin and docetaxel (DTX). DTX nanoassemblies driven by PEG-s-PEI thus formulated exhibited an excellent pH-sensitivity PEGylation cleavage performance at extracellular pH of tumor microenvironment, compared to normal tissues, thereby long circulated in blood but were highly phagocytosed by tumor cells. Consequently, this smart pH-sensitive PEGylation cleavage provided an efficient strategy to target tumor microenvironment, in turn afforded superior therapeutic outcome in anti-tumor activity.
Collapse
Affiliation(s)
- Guanren Zhao
- Department of Pharmacy, Hospital 309 of PLA, Beijing, 100091, China
| | - Ling Long
- Department of oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Lina Zhang
- Department of Pharmacy, Hospital 309 of PLA, Beijing, 100091, China
| | - Mingli Peng
- Department of Pharmacy, Hospital 309 of PLA, Beijing, 100091, China
| | - Ting Cui
- Department of Pharmacy, Hospital 309 of PLA, Beijing, 100091, China
| | - Xiaoxun Wen
- Department of Pharmacy, Hospital 309 of PLA, Beijing, 100091, China
| | - Xing Zhou
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| | - Lijun Sun
- Department of Pharmacy, Hospital 309 of PLA, Beijing, 100091, China.
| | - Ling Che
- Department of Pharmacy, Hospital 309 of PLA, Beijing, 100091, China.
| |
Collapse
|
38
|
Pei Q, Hu X, Liu S, Li Y, Xie Z, Jing X. Paclitaxel dimers assembling nanomedicines for treatment of cervix carcinoma. J Control Release 2017; 254:23-33. [DOI: 10.1016/j.jconrel.2017.03.391] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/01/2017] [Accepted: 03/26/2017] [Indexed: 12/11/2022]
|
39
|
Ling L, Du Y, Ismail M, He R, Hou Y, Fu Z, Zhang Y, Yao C, Li X. Self-assembled liposomes of dual paclitaxel-phospholipid prodrug for anticancer therapy. Int J Pharm 2017; 526:11-22. [PMID: 28412448 DOI: 10.1016/j.ijpharm.2017.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/22/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
In this report, a newly liposomal formulation of paclitaxel (PTX) based on dual paclitaxel succinate glycerophosphorylcholine (Di-PTX-GPC) prodrug was developed. The Di-PTX-GPC prodrug was synthesized by conjugating PTX with GPC through esterification under N,N'-carbonyldiimidazole (CDI) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) catalytic system. Di-PTX-GPC liposomes were prepared by thin film method and characterized by dynamic light scattering (DLS) and transmission electron microscope (TEM). The results indicated that the liposomes have an average diameter of 157.9nm with well-defined spherical morphology. In vitro drug release studies confirmed that the Di-PTX-GPC liposomes have controlled release profile of PTX at a weakly acidic environment, which formulates them suitable for sustained drug delivery. Additionally, in vitro cellular uptake analysis and cytotoxicity evaluation showed that Di-PTX-GPC liposomes were internalized successfully into tumor cells to induce the apoptosis against MCF-7, HeLa and HepG-2 cells. In vivo pharmacokinetics study revealed that such liposomal formulation of Di-PTX-GPC has longer retention half-life in bloodstream, which subsequently leads to slight accumulate in tumor sites due to enhanced permeability and retention (EPR) effect. More importantly, Di-PTX-GPC liposomes demonstrated good in vivo anticancer activities compared to Taxol with reduced adverse effects. Conclusively, these results suggest that Di-PTX-GPC liposomes could be an effective PTX delivery vehicles in clinical cancer chemotherapy.
Collapse
Affiliation(s)
- Longbing Ling
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Yawei Du
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Muhammad Ismail
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Ruiyu He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Yongpeng Hou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Zhenglin Fu
- National Center for Protein Science, Shanghai, 200000, PR China
| | - Ying Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Chen Yao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China.
| |
Collapse
|
40
|
Colloidal strategies for electrophoretic deposition of organic-inorganic composites for biomedical applications. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.12.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Ling L, Yao C, Du Y, Ismail M, He R, Hou Y, Zhang Y, Li X. Assembled liposomes of dual podophyllotoxin phospholipid: preparation, characterization and in vivo anticancer activity. Nanomedicine (Lond) 2017; 12:657-672. [DOI: 10.2217/nnm-2016-0396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: A novel amphiphilic prodrug dual podophyllotoxin (PPT) succinate glycerophosphorylcholine (Di-PPT-GPC) assembled liposomes was developed to improve efficiency of PPT. Materials & methods: Di-PPT-GPC liposomes were prepared by thin film technique and characterized by dynamic light scattering and cryo-electron microscopy. Results: In vitro release studies showed that Di-PPT-GPC liposomes could significantly release PPT in weakly acidic environment but had good stability under biological conditions. Methyl tetrazolium assay data revealed that the liposomes have comparable cytotoxicities to free PPT against MCF-7, HeLa and U87 cells. More importantly, in vivo antitumor evaluation indicated that Di-PPT-GPC liposomes exhibited favorable tumor growth inhibition without side effects. Conclusion: Di-PPT-GPC liposomes might have potential to promote the therapeutic effect of PPT for cancer therapy.
Collapse
Affiliation(s)
- Longbing Ling
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Chen Yao
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yawei Du
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Muhammad Ismail
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Ruiyu He
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yongpeng Hou
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Ying Zhang
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xinsong Li
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, PR China
| |
Collapse
|
42
|
Gao L, Gao L, Fan M, Li Q, Jin J, Wang J, Lu W, Yu L, Yan Z, Wang Y. Hydrotropic polymer-based paclitaxel-loaded self-assembled nanoparticles: preparation and biological evaluation. RSC Adv 2017. [DOI: 10.1039/c7ra04563h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydrotropic polymer-based paclitaxel-loaded self-assembled nanoparticles: preparation and biological evaluation.
Collapse
|
43
|
Redox-sensitive mPEG-SS-PTX/TPGS mixed micelles: An efficient drug delivery system for overcoming multidrug resistance. Int J Pharm 2016; 515:281-292. [DOI: 10.1016/j.ijpharm.2016.10.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 01/25/2023]
|
44
|
Meng Z, Lv Q, Lu J, Yao H, Lv X, Jiang F, Lu A, Zhang G. Prodrug Strategies for Paclitaxel. Int J Mol Sci 2016; 17:E796. [PMID: 27223283 PMCID: PMC4881612 DOI: 10.3390/ijms17050796] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 01/08/2023] Open
Abstract
Paclitaxel is an anti-tumor agent with remarkable anti-tumor activity and wide clinical uses. However, it is also faced with various challenges especially for its poor water solubility and low selectivity for the target. To overcome these disadvantages of paclitaxel, approaches using small molecule modifications and macromolecule modifications have been developed by many research groups from all over the world. In this review, we discuss the different strategies especially prodrug strategies that are currently used to make paclitaxel more effective.
Collapse
Affiliation(s)
- Ziyuan Meng
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Quanxia Lv
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Jun Lu
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Houzong Yao
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Xiaoqing Lv
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Feng Jiang
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
- The State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Aiping Lu
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Ge Zhang
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| |
Collapse
|