1
|
Wu J, Bao Q, Wang X, Chen H, Chen X, Wen Y, Chen J. Research progress of co-delivery nanoparticle drug delivery systems in non-small cell lung cancer: A review. Colloids Surf B Biointerfaces 2025; 254:114795. [PMID: 40403441 DOI: 10.1016/j.colsurfb.2025.114795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/25/2025] [Accepted: 05/10/2025] [Indexed: 05/24/2025]
Abstract
Non-small cell lung cancer (NSCLC), as the most commonly diagnosed type of lung cancer, has long been a major focus for cancer drug researchers. Traditional chemotherapy has shown significant efficacy in patients initially diagnosed with NSCLC; however, with the emergence of drug resistance and notable toxic side effects, conventional and single-agent chemotherapy can no longer meet the treatment needs of patients. Nanomedicine systems have gained widespread attention among scholars due to their unique advantages, such as particle size, stable in vivo circulation, and multifunctional carrier materials. However, most single-drug delivery systems fail to meet the treatment expectations for NSCLC patients, prompting the active development of co-delivery nanomedicine systems in preclinical NSCLC research. These systems can utilize surface-modified carriers to co-deliver drugs, genes, photosensitizers, or sonosensitizers with different mechanisms of action. This approach not only achieves the synergistic effects of multiple drugs, multiple pathways, and the combination of chemotherapy with photodynamic/sonodynamic therapy but also, through the encapsulation of inorganic materials, allows for more controllable drug release under external forces such as magnetic fields. This further amplifies the synergistic effects between the drugs, and the results of these studies are significantly superior to those of single-drug treatments. In conclusion, this review summarizes the delivery strategies and the extended use of inorganic materials in the co-delivery of nanoparticles for NSCLC research in recent years, with the hope of providing reference for researchers' drug design strategies.
Collapse
Affiliation(s)
- Jiali Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Qiaohong Bao
- Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Xinyu Wang
- Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Hang Chen
- Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Xinmei Chen
- Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Yan Wen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, No.415, Fengyang Road, Shanghai 200003, China.
| | - Jianming Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
2
|
Yan Z, Yu T, Wu X, Deng M, Wei P, Su N, Ding Y, Xia D, Zhang Y, Zhang L, Chen T. Nanoemulsion based lipid nanoparticles for effective demethylcantharidin delivery to cure liver cancer. Chem Biol Drug Des 2024; 104:e14580. [PMID: 39031936 DOI: 10.1111/cbdd.14580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024]
Abstract
Demethylcantharidin (DEM) is a widely used antitumor drug; however, its poor tumor targeting and serious organotoxicity limit its application. The aim of this study was to develop a new drug delivery system for efficient delivery of DEM. Nanoemulsion based lipid nanoparticles containing demethylcantharidin (DNLNs) were prepared by loading nanoemulsions into lipid nanoparticles. The cells proliferation, apoptosis, cycle, and uptake were investigated by Cell counting kit-8 (CCK-8), flow cytometry, and in situ fluorescence assays, respectively. Then, we established the H22 tumor-bearing mouse model to evaluate the antitumor efficacy of DNLNs and further studied its organ toxicity and distribution. DNLNs significantly inhibited the proliferation and promoted apoptosis of H22 cells, and H22 cells could take up more DNLNs. Compared with DEM, DNLNs had certain tumor-targeting properties, and the tumor inhibition rate increased by 23.24%. Moreover, DNLNs can increase white blood cell count and reduce organ toxicity. This study paves the way for nanoemulsion-based lipid nanoparticle (NLNs)-efficient DEM delivery to treat liver cancer.
Collapse
Affiliation(s)
- Zijun Yan
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Yunnan, Kunming, China
- Department of Pharmacy, Panzhihua Central Hospital, Sichuan, Panzhihua, China
| | - Ting Yu
- Department of Pharmacy, Panzhihua Central Hospital, Sichuan, Panzhihua, China
- School of Pharmacy, Dali University, Yunnan, Dali, China
| | - Xiaoping Wu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Yunnan, Kunming, China
| | - Mengyue Deng
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Yunnan, Kunming, China
| | - Panpan Wei
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Yunnan, Kunming, China
| | - Ning Su
- Department of Pharmacy, Panzhihua Central Hospital, Sichuan, Panzhihua, China
- School of Pharmacy, Dali University, Yunnan, Dali, China
| | - Yuzhen Ding
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Yunnan, Kunming, China
| | - Die Xia
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Yunnan, Kunming, China
| | - Yuehui Zhang
- Department of Neurology, Panzhihua Central Hospital, Sichuan, Panzhihua, China
| | - Liangming Zhang
- Department of Pharmacy, Panzhihua Central Hospital, Sichuan, Panzhihua, China
| | - Tong Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Yunnan, Kunming, China
| |
Collapse
|
3
|
Situ J, Yang Y, Zhang L, Yan H, Cheng Y. Integration of O 2-economised tumour-targeted photosensitive magnetic nanomaterials in the diagnosis and therapy of gastric cancer. RSC Adv 2024; 14:9920-9932. [PMID: 38528931 PMCID: PMC10961965 DOI: 10.1039/d4ra00497c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/09/2024] [Indexed: 03/27/2024] Open
Abstract
Hypoxia in the tumour microenvironment is a major limiting factor in photodynamic therapy. The present study employed a novel O2-economised photosensitizer, ACSN, to effectively curtail oxygen consumption by impeding the aerobic respiration of tumour cells, thereby increasing the reactive oxygen species (ROS) production in photodynamic therapy. To enhance the efficacy of photodynamic therapy, the active targeting peptide iRGD was employed to facilitate drug accumulation in the tumour tissue. Therefore, we constructed a targeted drug platform, ACSN/Fe3O4@MSNs-iRGD, that integrates diagnosis and treatment. The drug exhibited excellent active targeting ability towards gastric cancer MGC-803 cells and can efficiently penetrate the mitochondria upon cellular internalisation. The photosensitizer ACSN, released from the drug, effectively suppressed mitochondrial aerobic respiration to conserve oxygen and exhibited robust ROS production upon laser excitation. The core-shell structure comprises Fe3O4, which offers excellent T2 dark contrast for real-time tumour monitoring through MRI imaging. By incorporating excellent photodynamic therapy and MRI imaging capabilities, this drug can serve as an effective platform for the integration of tumour diagnosis and treatment, thus addressing the limitations associated with conventional tumour therapies. It is anticipated that this approach will soon be clinically translated.
Collapse
Affiliation(s)
- JinRong Situ
- College of Fisheries and Life Science of Shanghai Ocean University Shanghai 201306 China
- Shanghai Jiao Tong University Affiliated Sixth People's Hosptial China
| | - Yingying Yang
- College of Fisheries and Life Science of Shanghai Ocean University Shanghai 201306 China
- Shanghai Jiao Tong University Affiliated Sixth People's Hosptial China
| | - Lingle Zhang
- College of Fisheries and Life Science of Shanghai Ocean University Shanghai 201306 China
- Shanghai Jiao Tong University Affiliated Sixth People's Hosptial China
| | - Hongzhang Yan
- College of Fisheries and Life Science of Shanghai Ocean University Shanghai 201306 China
- Shanghai Jiao Tong University Affiliated Sixth People's Hosptial China
| | - Yingsheng Cheng
- College of Fisheries and Life Science of Shanghai Ocean University Shanghai 201306 China
- Shanghai Jiao Tong University Affiliated Sixth People's Hosptial China
- Tongji Hospital Affiliated to Tongji University Shanghai China
| |
Collapse
|
4
|
Singh T, Kim TW, Murthy ASN, Paul M, Sepay N, Jeong Kong H, Sung Ryu J, Rim Koo N, Yoon S, Song KH, Jun Baek M, Jeon S, Im J. Tumor-homing peptide iRGD-conjugate enhances tumor accumulation of camptothecin for colon cancer therapy. Eur J Med Chem 2024; 265:116050. [PMID: 38128233 DOI: 10.1016/j.ejmech.2023.116050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Poor intracellular uptake of therapeutics in the tumor parenchyma is a key issue in cancer therapy. We describe a novel approach to enhance tumor targeting and achieve targeted delivery of camptothecin (CPT) based on a tumor-homing internalizing RGD peptide (iRGD). We synthesized an iRGD-camptothecin conjugate (iRGD-CPT) covalently coupled by a heterobifunctional linker and evaluated its in vitro and in vivo activity in human colon cancer cells. In vitro studies revealed that iRGD-CPT penetrated cells efficiently and reduced colon cancer cell viability to a significantly greater extent at micromolar concentrations than did the parent drug. Furthermore, iRGD-CPT showed high distribution toward tumor tissue, effectively suppressed tumor progression, and showed enhanced antitumor effects relative to the parent drug in a mouse model, demonstrating that iRGD-CPT is effective in vivo cancer treatment. These results suggest that intracellular delivery of CPT via the iRGD peptide is a promising drug delivery strategy that will facilitate the development of CPT derivatives and prodrugs with improved efficacy.
Collapse
Affiliation(s)
- Tejinder Singh
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Tae Wan Kim
- Department of Medical Life Science, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Akula S N Murthy
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Mohuya Paul
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Nasim Sepay
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Hye Jeong Kong
- Department of Medical Life Science, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Jae Sung Ryu
- Department of Medical Life Science, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Na Rim Koo
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Sujeong Yoon
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Keon-Hyoung Song
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Moo Jun Baek
- Department of Surgery, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Seob Jeon
- Department of Obstetrics and Gynecology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea.
| | - Jungkyun Im
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan, 31538, Republic of Korea; Department of Chemical Engineering, Soonchunhyang University, Asan, 31538, Republic of Korea.
| |
Collapse
|
5
|
Nair M, Chandra A, Krishnan A, Chandra A, Basha R, Orimoloye H, Raut S, Gayathri V, Mudgapalli VV, Vishwanatha JK. Protein and peptide nanoparticles for drug delivery applications. NANOSTRUCTURED MATERIALS FOR BIOMEDICAL APPLICATIONS 2024:339-404. [DOI: 10.1016/b978-0-323-90838-2.00011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Thirumalai A, Girigoswami K, Pallavi P, Harini K, Gowtham P, Girigoswami A. Cancer therapy with iRGD as a tumor-penetrating peptide. Bull Cancer 2023; 110:1288-1300. [PMID: 37813754 DOI: 10.1016/j.bulcan.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 10/11/2023]
Abstract
One of the primary threats in tumor treatment revolves around the limited ability to penetrate tumor sites, leading to reduced therapeutic effectiveness, which remains a critical concern. Recently gaining importance are novel peptides, namely CRGDK/RGPD/EC (iRGD), that possess enhanced tumor-penetrating and inhibitory properties. These peptides specifically target and penetrate tumors by binding to αvβ integrins, namely αvβ3 and αvβ5, as well as NRP-1 receptors. Remarkably abundant on both the vasculature and tumor cell surfaces, these peptides show promising potential for improving tumor treatment outcomes. As a result, iRGD penetrated deep into the tumor tissues with biological products, contrast agents (imaging agents), antitumor drugs, and immune modulators after co-injecting them with peptides or chemically linked to peptides. The synthesis of iRGD peptides is a relatively straightforward process compared to the synthesis of other traditional peptides, and they significantly improved tumor tissue penetration inhibiting tumor metastasis effectively. Recent studies demonstrate the effectiveness of iRGD-driven dual-targeting chemotherapeutics on cancer cells, and the nanocarriers were modified with iRGD, serving as a favorable delivery strategy of payloads for deeper tumor regions. This review aims to provide an overview to emphasize the recent advancements and advantages of iRGD in treating and imaging various cancers.
Collapse
Affiliation(s)
- Anbazhagan Thirumalai
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Koyeli Girigoswami
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Pragya Pallavi
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Karthick Harini
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Pemula Gowtham
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Agnishwar Girigoswami
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India.
| |
Collapse
|
7
|
Song X, Zheng Z, Ouyang S, Chen H, Sun M, Lin P, Chen Y, You Y, Hao W, Tao J, Zhao P. Biomimetic Epigallocatechin Gallate-Cerium Assemblies for the Treatment of Rheumatoid Arthritis. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37399544 DOI: 10.1021/acsami.3c02768] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune and inflammatory disease that is so far incurable with long-term health risks. The high doses and frequent administration for the available RA drug always lead to adverse side effects. Aiming at the obstacles to achieving effective RA treatment, we prepared macrophage cell membrane-camouflaged nanoparticles (M-EC), which were assembled from epigallocatechin gallate (EGCG) and cerium(IV) ions. Due to its geometrical similarity to the active metal sites of a natural antioxidant enzyme, the EC possessed a high scavenge efficiency to various types of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The macrophage cell membrane assisted M-EC in escaping from the immune system, being uptaken by inflammatory cells, and specifically binding IL-1β. After tail vein injection to the collagen-induced arthritis (CIA) mouse model, the M-EC accumulated at inflamed joints and effectively repaired the bone erosion and cartilage damage of rheumatoid arthritis by relieving synovial inflammation and cartilage erosion. It is expected that the M-EC can not only pave a new way for designing metal-phenolic networks with better biological activity but also provide a more biocompatible therapeutic strategy for effective treatment of RA.
Collapse
Affiliation(s)
- Xiangfei Song
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhiyuan Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sixue Ouyang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huiting Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mingyan Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peiru Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuying Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuanyuan You
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenwen Hao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
8
|
Zhu D, Yan H, Zhou Y, Nack LM, Liu J, Parak WJ. Design of Disintegrable Nanoassemblies to Release Multiple Small-Sized Nanoparticles. Adv Drug Deliv Rev 2023; 197:114854. [PMID: 37119865 DOI: 10.1016/j.addr.2023.114854] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
The therapeutic and diagnostic effects of nanoparticles depend on the efficiency of their delivery to targeted tissues, such as tumors. The size of nanoparticles, among other characteristics, plays a crucial role in determining their tissue penetration and retention. Small nanoparticles may penetrate deeper into tumor parenchyma but are poorly retained, whereas large ones are distributed around tumor blood vessels. Thus, compared to smaller individual nanoparticles, assemblies of such nanoparticles due to their larger size are favorable for prolonged blood circulation and enhanced tumor accumulation. Upon reaching the targeted tissues, nanoassemblies may dissociate at the target region and release the smaller nanoparticles, which is beneficial for their distribution at the target site and ultimate clearance. The recent emerging strategy that combines small nanoparticles into larger, biodegradable nanoassemblies has been demonstrated by several groups. This review summarizes a variety of chemical and structural designs for constructing stimuli-responsive disintegrable nanoassemblies as well as their different disassembly routes. These nanoassemblies have been applied as demonstrators in the fields of cancer therapy, antibacterial infection, ischemic stroke recovery, bioimaging, and diagnostics. Finally, we summarize stimuli-responsive mechanisms and their corresponding nanomedicine designing strategies, and discuss potential challenges and barriers towards clinical translation.
Collapse
Affiliation(s)
- Dingcheng Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, 311121, China; Fachbereich Physik, Universität Hamburg, Hamburg, Germany.
| | - Huijie Yan
- Fachbereich Physik, Universität Hamburg, Hamburg, Germany
| | - Yaofeng Zhou
- Fachbereich Physik, Universität Hamburg, Hamburg, Germany
| | - Leroy M Nack
- Fachbereich Physik, Universität Hamburg, Hamburg, Germany
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, 311121, China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | | |
Collapse
|
9
|
Saifi MA, Sathish G, Bazaz MR, Godugu C. Exploration of tumor penetrating peptide iRGD as a potential strategy to enhance tumor penetration of cancer nanotherapeutics. Biochim Biophys Acta Rev Cancer 2023; 1878:188895. [PMID: 37037389 DOI: 10.1016/j.bbcan.2023.188895] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023]
Abstract
Cancer therapy continues to be a huge challenge as most chemotherapeutic agents exert serious adverse effects on healthy organs. Chemotherapeutic agents lack selective targeting and even the existing target specific therapies are failing due to poor distribution into the tumor microenvironment. Nanotechnology offers multiple advantages to address the limitations encountered by conventional therapy. However, the delivery of nanotherapeutics to tumor tissue has not improved over the years partly due to the poor and inadequate distribution of nanotherapeutics into deeper tumor regions resulting in resistance and relapse. To curb the penetration concerns, iRGD was explored and found to be highly effective in improving the delivery of cancer nanomedicine. The preclinical observations are highly encouraging; however, the clinical translation is at a nascent stage. Based on this, we have made an elaborative effort to give a detailed account of various promising applications of iRGD to increase anticancer and tumor imaging potential. Importantly, we have comprehensively discussed the shortcomings and uncertainties associated with the clinical translation of iRGD-based therapeutic approaches and future directions.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Gauri Sathish
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Mohd Rabi Bazaz
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India.
| |
Collapse
|
10
|
Pei P, Chen L, Fan R, Zhou XR, Feng S, Liu H, Guo Q, Yin H, Zhang Q, Sun F, Peng L, Wei P, He C, Qiao R, Wang Z, Luo SZ. Computer-Aided Design of Lasso-like Self-Assembling Anticancer Peptides with Multiple Functions for Targeted Self-Delivery and Cancer Treatments. ACS NANO 2022; 16:13783-13799. [PMID: 36099446 DOI: 10.1021/acsnano.2c01014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anticancer peptides are promising drug candidates for cancer treatment, but the short circulation time and low delivery efficiency limit their clinical applications. Herein, we designed several lasso-like self-assembling anticancer peptides (LASAPs) integrated with multiple functions by a computer-aided approach. Among these LASAPs, LASAP1 (CRGDKGPDCGKAFRRFLGALFKALSHLL, 1-9 disulfide bond) was determined to be superior to the others because it can self-assemble into homogeneous nanoparticles and exhibits improved stability in serum. Thus, LASAP1 was chosen for proving the design idea. LASAP1 can self-assemble into nanoparticles displaying iRGD on the surface because of its amphiphilic structure and accumulate to the tumor site after injection because of the EPR effect and iRGD targeting to αVβ3 integrin. The nanoparticles could disassemble in the acidic microenvironment of the solid tumor, and cleaved by the overexpressed hK2, which was secreted by prostate tumor cells, to release the effector peptide PTP-7b (FLGALFKALSHLL), which was further activated by the acidic pH. Therefore, LASAP1 could target the orthotopic prostate tumor in the model mice after intraperitoneal injection and specifically inhibit tumor growth, with low systematic toxicity. Combining the multiple targeting functions, LASAP1 represents a promising design of self-delivery of peptide drugs for targeted cancer treatments.
Collapse
Affiliation(s)
- Pengfei Pei
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Long Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Ruru Fan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xi-Rui Zhou
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, P.R. China
| | - Shan Feng
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Hangrui Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Quanqiang Guo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Huiwei Yin
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Qiang Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Fude Sun
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Liang Peng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Peng Wei
- School of Traditional Chinese Medicine, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Renzhong Qiao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
11
|
Jiang G, Fan D, Tian J, Xiang Z, Fang Q. Self-Confirming Magnetosomes for Tumor-Targeted T 1 /T 2 Dual-Mode MRI and MRI-Guided Photothermal Therapy. Adv Healthc Mater 2022; 11:e2200841. [PMID: 35579102 DOI: 10.1002/adhm.202200841] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 12/29/2022]
Abstract
Nanomaterials as T1 /T2 dual-mode magnetic resonance imaging (MRI) contrast agents have great potential in improving the accuracy of tumor diagnosis. Applications of such materials, however, are limited by the complicated chemical synthesis process and potential biosafety issues. In this study, the biosynthesis of manganese (Mn)-doped magnetosomes (MagMn) that not only can be used in T1 /T2 dual-mode MR imaging with self-confirmation for tumor detection, but also improve the photothermal conversion efficiency for MRI-guided photothermal therapy (PTT) is reported. The MagMn nanoparticles (NPs) are naturally produced through the biomineralization of magnetotactic bacteria by doping Mn into the ferromagnetic iron oxide crystals. In vitro and in vivo studies demonstrated that targeting peptides functionalized MagMn enhanced both T1 and T2 MRI signals in tumor tissue and significantly inhibited tumor growth by the further MRI-guided PTT. It is envisioned that the biosynthesized multifunctional MagMn nanoplatform may serve as a potential theranostic agent for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Gexuan Jiang
- Laboratory of Theoretical and Computational Nanoscience CAS Key Laboratory of Nanophotonic Materials and Devices CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Di Fan
- Laboratory of Theoretical and Computational Nanoscience CAS Key Laboratory of Nanophotonic Materials and Devices CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jiesheng Tian
- State Key Laboratories for Agro‐biotechnology and College of Biological Sciences China Agricultural University Beijing 100193 P. R. China
| | - Zhichu Xiang
- Laboratory of Theoretical and Computational Nanoscience CAS Key Laboratory of Nanophotonic Materials and Devices CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 P. R. China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education) College of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Qiaojun Fang
- Laboratory of Theoretical and Computational Nanoscience CAS Key Laboratory of Nanophotonic Materials and Devices CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Sino‐Danish Center for Education and Research Beijing 101408 China
| |
Collapse
|
12
|
Liu Z, Zhao L, Tan X, Wu Z, Zhou N, Dong N, Zhang Y, Yin T, He H, Gou J, Tang X, Gao S. Preclinical evaluations of Norcantharidin liposome and emulsion hybrid delivery system with improved encapsulation efficiency and enhanced antitumor activity. Expert Opin Drug Deliv 2022; 19:451-464. [PMID: 35385376 DOI: 10.1080/17425247.2022.2063834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Norcantharidin (NCTD) has a certain degree of hydrophilicity and poor lipophilicity, and has some side-effects, including short t1/2, vascular irritation, cardiotoxicity and nephrotoxicity, which bring difficulties for formulation research. In this study, we aim to develop a novel nanocarrier to improve encapsulation efficiency, increase sterilization stability and enhance antitumor activity. METHODS Phospholipid complexes methods were used for increasing the lipophilicity of norcantharidin (NCTD), then NCTD phospholipid complexes were not only loaded in the oil phase and oil-water interface surface, but also encapsulated in phospholipid bilayers to obtain NCTD liposome-emulsion hybrid (NLEH) delivery system. The in vitro cytotoxicity and apoptosis, in vivo tissue distribution, tumor penetration, heterotopic and orthotopic antitumor studies were conducted to evaluate therapeutic effect. RESULTS NLEH exhibited an improved encapsulation efficiency (89.3%) and a better sterilization stability, compared to NCTD liposomes and NCTD emulsions. NLEH can achieve a better antitumor activity by promoting absorption (1.93-fold), prolonging blood circulation (2.08-fold), enhancing tumor-targeting accumulation (1.19 times), improving tumor penetration, and increasing antitumor immunity. CONCLUSIONS The liposome-emulsion hybrid (LEH) delivery system was potential carrier for NCTD delivery, and LEH could open opportunities for delivery of poorly soluble anticancer drugs, especially drugs that are more hydrophilicity than lipophilicity.
Collapse
Affiliation(s)
- Zixu Liu
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Linxuan Zhao
- Department of Pharmaceutics, College of Pharmacy Sciences, Jilin University, Changchun 130021, China
| | - Xinyi Tan
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Zixuan Wu
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Ning Zhou
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Nan Dong
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Yu Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Tian Yin
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Haibing He
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Jingxin Gou
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Xing Tang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Song Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
13
|
Chen H, Timashev P, Zhang Y, Xue X, Liang XJ. Nanotechnology-based combinatorial phototherapy for enhanced cancer treatment. RSC Adv 2022; 12:9725-9737. [PMID: 35424935 PMCID: PMC8977843 DOI: 10.1039/d1ra09067d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/19/2022] [Indexed: 12/15/2022] Open
Abstract
Nanotechnology-based phototherapy has attracted enormous attention to cancer treatment owning to its non-invasiveness, high controllability and accuracy. Given the fast development of anti-tumor strategies, we summarize various examples of multifunctional nanosystems to highlight the recent advances in nanotechnology-based combinatorial phototherapy towards improving cancer treatment. The limitations of the monotherapeutic approach and the superiority of the photo-involved combinatorial strategies are discussed in each part. The future breakthroughs and clinical perspectives of combinatorial phototherapy are also outlooked. Our perspectives may inspire researchers to develop more effective phototherapy-based cancer-treating approaches.
Collapse
Affiliation(s)
- Han Chen
- School of Pharmacy, Pharm-X Center, Shanghai Jiao Tong Univeristy Shanghai 200240 China
| | - Peter Timashev
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University Moscow 119991 Russia
| | - Yuanyuan Zhang
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University Moscow 119991 Russia
| | - Xiangdong Xue
- School of Pharmacy, Pharm-X Center, Shanghai Jiao Tong Univeristy Shanghai 200240 China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology of China Beijing 100190 China
| |
Collapse
|
14
|
Ge T, Weiwei Z, Ge F, Zhu L, Song P, Li W, Gui L, Dong W, Tao Y, Yang K. A bone-targeting drug delivery vehicle of a metal-organic framework conjugate with zoledronate combined with photothermal therapy for tumor inhibition in cancer bone metastasis. Biomater Sci 2022; 10:1831-1843. [PMID: 35253030 DOI: 10.1039/d1bm01717a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemotherapy is a conventional treatment method for metastatic bone cancer, but it has limitations, such as lower drug-targeting of bone tissues and serious side effects. Bone metastasis almost always occurs in advanced cancer, and most patients in this period have strong drug resistance, which further worsens the curative effect. To address the above-mentioned difficulties, a drug delivery platform is proposed in this paper that accomplishes the bone-targeting of drugs to efficiently inhibit tumors. First, the anti-cancer drugs 5-fluorouracil (5-Fu) and indocyanine green (ICG) were loaded into a zeolitic imidazolate framework (ZIF-90) to form 5-Fu/ICG@ZIF-90. Polyethylene glycol with zoledronic acid (ZOL) was encapsulated using 5-Fu/ICG@ZIF-90 to synthesize 5-Fu/ICG@ZIF-90-PEG-ZOL nanoparticles, which showed dimensional stability, good thermal stability, and bone-targeting ability. Second, the in vitro anti-cancer activity of the designed platform was investigated using cytotoxicity, apoptosis, live-dead staining, cell cycle, and cell ultrathin section analysis. The results indicated that the nanoparticles inhibited MCF-7 cell activity when chemotherapy was combined with PTT. Finally, H&E staining and TUNEL detection were performed in mouse organs and tumors. The nanoparticles combined with photothermal therapy (PTT) and triggered by near-infrared irradiation induce apoptosis of tumor cells in vivo, displaying a better efficacy of combined chemotherapy and photothermal therapy. Experiments conducted on the 5-Fu/ICG@ZIF-90-PEG-ZOL nanoparticles demonstrated their promising performance for cancer bone metastasis inhibition.
Collapse
Affiliation(s)
- Ting Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China.
| | - Zhang Weiwei
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China.
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China.
| | - Longbao Zhu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China.
| | - Ping Song
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China.
| | - Wanzheng Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China.
| | - Lin Gui
- Department of Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Wan Dong
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China.
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China.
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
15
|
Wan WJ, Huang G, Wang Y, Tang Y, Li H, Jia CH, Liu Y, You BG, Zhang XN. Coadministration of iRGD peptide with ROS-sensitive nanoparticles co-delivering siFGL1 and siPD-L1 enhanced tumor immunotherapy. Acta Biomater 2021; 136:473-484. [PMID: 34571271 DOI: 10.1016/j.actbio.2021.09.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 01/06/2023]
Abstract
The continuous activation and expansion of tumor-specific T cells by various means are the main goal of cancer immunotherapy. Tumor cells overexpress fibrinogen-like protein 1 (FGL1) and programmmed death-ligand 1 (PD-L1), which respectively bind to lymphocyte-activation gene 3 (LAG-3) and programmmed death-1(PD-1) on T cells, forming important signaling pathways (FGL1/LAG-3 and PD-1/PD-L1) that negatively regulate immune responses. In order to interfere with the inhibitory function of FGL1 and PD-L1 proteins, we designed a new type of reactive oxygen species (ROS)-sensitive nanoparticles to load FGL1 siRNA (siFGL1) and PD-L1 siRNA (siPD-L1), which was formed from a stimuli-responsive polymer with a poly-l-lysine-thioketal and modified cis-aconitate to facilitate endosomal escape. Moreover, tumor-penetrating peptide iRGD and ROS-responsive nanoparticles were co-administered to further enhance the delivery efficiency of siFGL1 and siPD-L1, thereby significantly reducing the protein levels of FGL1 and PD-L1 in tumor cells. Our findings indicated that the dual delivery of FGL1/PD-L1 siRNA was a new and powerful treatment method, which was characterized by increasing the infiltration of effector CD4+ and CD8+ T cells, effectively alleviating the tumor immunosuppressive microenvironment. These findings also supported the superiority and feasibility of nanoparticle-mediated tumor immunotherapy, and may provide a different perspective for cancer treatment. STATEMENT OF SIGNIFICANCE: In addition to the idea that cancer vaccines can promote T cell immune responses, nanoparticle delivery modulators (such as small interfering RNA (siRNA) targeting immunosuppressive pathways) may provide more information for the research of nanoparticle-mediated cancer immunotherapy. In this study, we designed a new intelligent nano-delivery system for co-delivery of siFGL1 and siPD-L1, and demonstrated the ability to down-regulate the expression levels of FGL1 and PD-L1 proteins in tumor cells in vitro and in vivo. The constructed nanoparticle had a good tumor microenvironment responsiveness, and the delivery efficiency was enhanced by co-injection with tumor penetrating peptide iRGD. This project proposed a new strategy for tumor immunotherapy based on smart nano-delivery systems, and explored more possibilities for tumor therapy.
Collapse
Affiliation(s)
- Wen-Jun Wan
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Gui Huang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yu Wang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yan Tang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Hui Li
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Chang-Hao Jia
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yang Liu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Beng-Gang You
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Xue-Nong Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
16
|
Ravi Kiran AVVV, Kusuma Kumari G, Krishnamurthy PT, Khaydarov RR. Tumor microenvironment and nanotherapeutics: intruding the tumor fort. Biomater Sci 2021; 9:7667-7704. [PMID: 34673853 DOI: 10.1039/d1bm01127h] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over recent years, advancements in nanomedicine have allowed new approaches to diagnose and treat tumors. Nano drug delivery systems exploit the enhanced permeability and retention (EPR) effect and enter the tumor tissue's interstitial space. However, tumor barriers play a crucial role, and cause inefficient EPR or the homing effect. Mounting evidence supports the hypothesis that the components of the tumor microenvironment, such as the extracellular matrix, and cellular and physiological components collectively or cooperatively hinder entry and distribution of drugs, and therefore, limit the theragnostic applications of cancer nanomedicine. This abnormal tumor microenvironment plays a pivotal role in cancer nanomedicine and was recently recognized as a promising target for improving nano-drug delivery and their therapeutic outcomes. Strategies like passive or active targeting, stimuli-triggered nanocarriers, and the modulation of immune components have shown promising results in achieving anticancer efficacy. The present review focuses on the tumor microenvironment and nanoparticle-based strategies (polymeric, inorganic and organic nanoparticles) for intruding the tumor barrier and improving therapeutic effects.
Collapse
Affiliation(s)
- Ammu V V V Ravi Kiran
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Garikapati Kusuma Kumari
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Renat R Khaydarov
- Institute of Nuclear Physics, Uzbekistan Academy of Sciences, Tashkent, 100047, Uzbekistan.
| |
Collapse
|
17
|
Battistella C, Liang Y, Gianneschi NC. Innovations in Disease State Responsive Soft Materials for Targeting Extracellular Stimuli Associated with Cancer, Cardiovascular Disease, Diabetes, and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007504. [PMID: 34145625 PMCID: PMC9836048 DOI: 10.1002/adma.202007504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/20/2021] [Indexed: 05/10/2023]
Abstract
Recent advances in polymer chemistry, materials sciences, and biotechnology have allowed the preclinical development of sophisticated programmable nanomedicines and materials that are able to precisely respond to specific disease-associated triggers and microenvironments. These stimuli, endogenous to the targeted diseases, include pH, redox-state, small molecules, and protein upregulation. Herein, recent advances and innovative approaches in programmable soft materials capable of sensing the aforementioned disease-associated stimuli and responding via a range of dynamic processes including morphological and size transitions, changes in mobility and retention, as well as disassembly are described. In this field generally, the majority of ongoing and past research effort has focused on oncology. Given this interest, examples of the latest innovative approaches to chemo- and immunotherapy treatment strategies for cancer are presented. Moreover, as the field broadens its attention, applications of programmable materials in other diseases are highlighted, with a special focus on cardiovascular disease and diabetes mellitus, where limited attention is paid by the field, but where many promising avenues exist with high potential impact.
Collapse
Affiliation(s)
- Claudia Battistella
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, IL, 60208, USA
| | - Yifei Liang
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
18
|
Wang L, Han H, Wang Z, Shi L, Yang M, Qin Y. Targeting the Microenvironment in Esophageal Cancer. Front Cell Dev Biol 2021; 9:684966. [PMID: 34513829 PMCID: PMC8427432 DOI: 10.3389/fcell.2021.684966] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Esophageal cancer (EC) is the eighth most common type of cancer and the sixth leading cause of cancer-related deaths worldwide. At present, the clinical treatment for EC is based mainly on radical surgery, chemotherapy, and radiotherapy. However, due to the limited efficacy of conventional treatments and the serious adverse reactions, the outcome is still unsatisfactory (the 5-year survival rate for patients is less than 25%). Thus, it is extremely important and urgent to identify new therapeutic targets. The concept of tumor microenvironment (TME) has attracted increased attention since it was proposed. Recent studies have shown that TME is an important therapeutic target for EC. Microenvironment-targeting therapies such as immunotherapy and antiangiogenic therapy have played an indispensable role in prolonging survival and improving the prognosis of patients with EC. In addition, many new drugs and therapies that have been developed to target microenvironment may become treatment options in the future. We summarize the microenvironment of EC and the latest advances in microenvironment-targeting therapies in this review.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Huiqiong Han
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Zehua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Litong Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Mei Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Su X, Zhang X, Liu W, Yang X, An N, Yang F, Sun J, Xing Y, Shang H. Advances in the application of nanotechnology in reducing cardiotoxicity induced by cancer chemotherapy. Semin Cancer Biol 2021; 86:929-942. [PMID: 34375726 DOI: 10.1016/j.semcancer.2021.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Advances in the development of anti-tumour drugs and related technologies have resulted in a significant increase in the number of cancer survivors. However, the incidence of chemotherapy-induced cardiotoxicity (CIC) has been rising continuously, threatening their long-term survival. The integration of nanotechnology and biomedicine has brought about an unprecedented technological revolution and has promoted the progress of anti-tumour therapy. In this review, we summarised the possible mechanisms of CIC, evaluated the role of nanoparticles (including liposomes, polymeric micelles, dendrimers, and hydrogels) as drug carriers in preventing cardiotoxicity and proposed five advantages of nanotechnology in reducing cardiotoxicity: Liposomes cannot easily penetrate the heart's endothelial barrier; optimized delivery strategies reduce distribution in important organs, such as the heart; targeting the tumour microenvironment and niche; stimulus-responsive polymer nano-drug carriers rapidly iterate; better economic benefits were obtained. Nanoparticles can effectively deliver chemotherapeutic drugs to tumour tissues, while reducing the toxicity to heart tissues, and break through the dilemma of existing chemotherapy to a certain extent. It is important to explore the interactions between the physicochemical properties of nanoparticles and optimize the highly specific tumour targeting strategy in the future.
Collapse
Affiliation(s)
- Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyu Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Yang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiahao Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
20
|
Wang H, Zhou J, Fu Y, Zheng Y, Shen W, Zhou J, Yin T. Deeply Infiltrating iRGD-Graphene Oxide for the Intensive Treatment of Metastatic Tumors through PTT-Mediated Chemosensitization and Strengthened Integrin Targeting-Based Antimigration. Adv Healthc Mater 2021; 10:e2100536. [PMID: 34137204 DOI: 10.1002/adhm.202100536] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/19/2021] [Indexed: 12/16/2022]
Abstract
A limited infiltration and the subsequent low effective drug concentration result in poor chemotherapeutic outcomes against tumors, and even further promote tumor resistance and metastatic. Herein, iRGD-modified graphene oxide (GO) nanosheets (IPHG) are developed for the intensive treatment of metastatic tumors using focus-specific penetrated delivery together with photothermal therapy-mediated chemosensitization and photothermal therapy-strengthened integrin targeting-based antimigration. In vitro and in vivo data verified the mechanism of the tumor-selective infiltration of IPHG is based on a rigid 2D structure-associated advantage regarding hemodynamics and endothelial contact, followed by iRGD-endowed transendothelial and intratumoral transport. Once IPHG-DOX-penetrated 4T1 tumors are exposed to near-infrared irradiation, hyperthermia stress and photothermal therapy-elevated effective drug concentrations result in chemosensitization and prominent tumor suppression. Meanwhile, the specific binding of iRGD to integrins and photothermal therapy leads to the synergistic perturbation of cytoskeleton remodeling and subsequent impairment of cell motility and metastasis. The tailored design of IPHG validates a promising paradigm for drug delivery to combat tumor resistance and metastasis resulting from poor target access for single chemotherapy.
Collapse
Affiliation(s)
- Honglan Wang
- Department of Pharmaceutics China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Jiyuan Zhou
- Department of Pharmaceutics China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Ying Fu
- Department of Pharmaceutics China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Yuzhao Zheng
- Department of Pharmaceutics China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Weiyang Shen
- School of Science China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Jianping Zhou
- Department of Pharmaceutics China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Tingjie Yin
- Department of Pharmaceutics China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| |
Collapse
|
21
|
Yunna C, Mengru H, Fengling W, Lei W, Weidong C. Emerging strategies against tumor-associated fibroblast for improved the penetration of nanoparticle into desmoplastic tumor. Eur J Pharm Biopharm 2021; 165:75-83. [PMID: 33991610 DOI: 10.1016/j.ejpb.2021.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/31/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
The therapeutic effect of nanoparticles is limited in solid tumors, especially desmoplastic tumors, because the tumor matrix hinders the delivery of nanoparticles. As the most abundant cells in the tumor stroma, tumor-associated fibroblasts (TAFs) produce a dense extracellular matrix, which leads to higher tissue fluid pressure, thereby creating a physical barrier for nanoparticle delivery. Therefore, researchers focused on eliminating TAFs to combat desmoplastic tumors. In recent years, a series of methods for TAFs have been developed. In this paper, we first introduced the biological mechanism of TAFs hindering the penetration of nanoparticles. Then, the different methods of eliminating TAFs were summarized, and the mechanism of nanomedicine in eliminating TAFs was highlighted. Finally, the problems and future development directions for TAFs treatment were discussed from the perspective of the treatment of desmoplastic tumors.
Collapse
Affiliation(s)
- Chen Yunna
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
| | - Hu Mengru
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
| | - Wang Fengling
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei, Anhui 230011, China
| | - Wang Lei
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China.
| | - Chen Weidong
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China.
| |
Collapse
|
22
|
Hu J, Yuan X, Wang F, Gao H, Liu X, Zhang W. The progress and perspective of strategies to improve tumor penetration of nanomedicines. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Sun Y, Davis E. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:746. [PMID: 33809633 PMCID: PMC8000772 DOI: 10.3390/nano11030746] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
To achieve the promise of stimuli-responsive drug delivery systems for the treatment of cancer, they should (1) avoid premature clearance; (2) accumulate in tumors and undergo endocytosis by cancer cells; and (3) exhibit appropriate stimuli-responsive release of the payload. It is challenging to address all of these requirements simultaneously. However, the numerous proof-of-concept studies addressing one or more of these requirements reported every year have dramatically expanded the toolbox available for the design of drug delivery systems. This review highlights recent advances in the targeting and stimuli-responsiveness of drug delivery systems. It begins with a discussion of nanocarrier types and an overview of the factors influencing nanocarrier biodistribution. On-demand release strategies and their application to each type of nanocarrier are reviewed, including both endogenous and exogenous stimuli. Recent developments in stimuli-responsive targeting strategies are also discussed. The remaining challenges and prospective solutions in the field are discussed throughout the review, which is intended to assist researchers in overcoming interdisciplinary knowledge barriers and increase the speed of development. This review presents a nanocarrier-based drug delivery systems toolbox that enables the application of techniques across platforms and inspires researchers with interdisciplinary information to boost the development of multifunctional therapeutic nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
| | - Edward Davis
- Materials Engineering Program, Mechanical Engineering Department, Auburn University, 101 Wilmore Drive, Auburn, AL 36830, USA;
| |
Collapse
|
24
|
Choi W, Battistella C, Gianneschi NC. High efficiency loading of micellar nanoparticles with a light switch for enzyme-induced rapid release of cargo. Biomater Sci 2021; 9:653-657. [PMID: 33300507 PMCID: PMC9753762 DOI: 10.1039/d0bm01713b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymeric nanoscale materials able to target and accumulate in the tumor microenvironment (TME) offer promising routes for a safer delivery of anticancer drugs. By reaching their targets before significant amounts of drug are released, such materials can reduce off-target side effects and maximize drug concentration in the TME. However, poor drug loading capacity and inefficient nanomaterial penetration into the tumor can limit their therapeutic efficacy. Herein, we provide a novel approach to achieve high loading profiles while ensuring fast and efficient drug penetration in the tumor. This is achieved by co-polymerizing light-sensitive paclitaxel with monomers responsive to tumor-associated enzymes, and assembling the resulting di-block copolymers into spherical micelles. While light exposure enables paclitaxel to decouple from the polymeric backbone into light-activated micelles, enzymatic digestion in the TME initiates its burst release. Through a series of in vitro cytotoxicity assays, we demonstrate that these light-switch micelles hold greater potency than covalently linked, non-triggered micelles, and enable therapeutic profiles comparable to that of the free drug.
Collapse
Affiliation(s)
- Wonmin Choi
- Department of Chemistry, Department of Materials Science & Engineering, Department of Biomedical Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | |
Collapse
|
25
|
|
26
|
Hu Y, Yu D, Zhang X. 9-amino acid cyclic peptide-decorated sorafenib polymeric nanoparticles for the efficient in vitro nursing care analysis of hepatocellular carcinoma. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Poudel K, Banstola A, Gautam M, Soe Z, Phung CD, Pham LM, Jeong JH, Choi HG, Ku SK, Tran TH, Yong CS, Kim JO. Macrophage-Membrane-Camouflaged Disintegrable and Excretable Nanoconstruct for Deep Tumor Penetration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56767-56781. [PMID: 33289550 DOI: 10.1021/acsami.0c17235] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The consolidation of nanovectors with biological membranes has recently been a subject of interest owing to the prolonged systemic circulation time and delayed clearance by the reticuloendothelial system of such systems. Among the different biomembranes, the macrophage membrane has a similar systemic circulation time, with an additional chemotactic aptitude, targeting integrin proteins. In this study, we aimed to establish a laser-activated, disintegrable, and deeply tumor-penetrative nanoplatform. We used a highly tumor-ablative and laser-responsive disintegrable copper sulfide nanoparticle, loaded it with paclitaxel, and camouflaged it with the macrophage membrane for the fabrication of PTX@CuS@MMNPs. The in vitro paclitaxel release profile was favorable for release in the tumor microenvironment, and the release was accelerated after laser exposure. Cellular internalization was improved by membrane encapsulation. Cellular uptake, cytotoxicity, reactive oxygen species generation, and apoptosis induction of PTX@CuS@MMNPs were further improved upon laser exposure, and boosted permeation was achieved by co-administration of the tumor-penetrating peptide iRGD. In vivo tumor accumulation, tumor inhibition rate, and apoptotic marker expression induced by PTX@CuS@MMNPs were significantly improved by laser irradiation and iRGD co-administration. PTX@CuS@MMNPs induced downregulation of cellular proliferation and angiogenic markers but no significant changes in body weight, survival, or significant toxicities in vital organs after laser exposure, suggesting their biocompatibility. The disintegrability of the nanosystem, accredited to biodegradability, favored efficient elimination from the body. In conclusion, PTX@CuS@MMNPs showed promising traits in combination therapies for excellent tumor eradication.
Collapse
Affiliation(s)
- Kishwor Poudel
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Asmita Banstola
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Milan Gautam
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Zarchi Soe
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Cao Dai Phung
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Le Minh Pham
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, Republic of Korea
| | - Sae Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Tuan Hiep Tran
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong District, Hanoi 100803, Vietnam
- PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No. 167 Hoang Ngan, Cau Giay, Hanoi 11313, Vietnam
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
28
|
Fang X, Lui KH, Li S, Lo WS, Li X, Gu Y, Wong WT. Multifunctional Nanotheranostic Gold Nanocage/Selenium Core-Shell for PAI-Guided Chemo-Photothermal Synergistic Therapy in vivo. Int J Nanomedicine 2020; 15:10271-10284. [PMID: 33364758 PMCID: PMC7751612 DOI: 10.2147/ijn.s275846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/05/2020] [Indexed: 12/30/2022] Open
Abstract
Introduction Cancer theragnosis involving cancer diagnosis and targeted therapy simultaneously in one integrated system would be a promising solution of cancer treatment. Herein, a convenient and practical cancer theragnosis agent was constructed by combining gold nanocages (AuNCs) covered with selenium and a chitosan (CS) shell (AuNCs/Se) to incorporate the anti-cancer drug doxorubicin (DOX) as a multifunctional targeting nanocomposite (AuNCs/DOX@Se-iRGD) for photoacoustic imaging (PAI)-guided chemo-photothermal synergistic therapy that contributes to enhanced anti-cancer efficacy. The novel design of AuNCs/DOX@Se-iRGD gives the nanocomposite two outstanding properties: (1) AuNCs, with excellent LSPR property in the NIR region, act as a contrast agent for enhanced PAI and photothermal therapy (PTT); (2) Se acts as an anti-cancer nanoagent and drug delivery cargo. Methods The photothermal performance of these nanocomposites was evaluated in different concentrations with laser powder densities. These nanocomposites were also incubated in pH 5.3, 6.5, 7.4 PBS and NIR laser to study their drug release ability. The cellular uptake was studied by measuring the Se and Au concentrations inside the cells using inductively coupled plasma-mass spectrometry (ICP-MS). Besides, in vitro and in vivo anti-tumor activity were carried out by cytotoxicity assay MTT and tumor model nude mice, respectively. As for imaging, the PA value and images of these nanocomposites accumulated in the tumor site were sequentially collected at specific time points for 48 h. Results and Discussion The prepared AuNCs/DOX@Se-iRGD showed excellent biocompatibility and physiological stability in different media. In vivo results indicated that the targeting nanocomposite presented the strongest contrast-enhanced PAI signals, which could provide contour and location information of tumor, 24 h after intravenous injection. Likewise, the combined treatment of chemo- and photothermal synergistic therapy significantly inhibited tumor growth when compared with the two treatments carried out separately and showed negligible acute toxicity to the major organs. Conclusion This study demonstrates that AuNCs/DOX@Se-iRGD has great prospect to become a multifunctional anti-tumor nanosystem for PAI-guided chemo- and photothermal synergistic therapy.
Collapse
Affiliation(s)
- Xueyang Fang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, People's Republic of China
| | - Kwok-Ho Lui
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, People's Republic of China
| | - Shiying Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, People's Republic of China
| | - Wai-Sum Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, People's Republic of China
| | - Xin Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, People's Republic of China
| | - Yanjuan Gu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, People's Republic of China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
29
|
Lin C, Tong F, Liu R, Xie R, Lei T, Chen Y, Yang Z, Gao H, Yu X. GSH-responsive SN38 dimer-loaded shape-transformable nanoparticles with iRGD for enhancing chemo-photodynamic therapy. Acta Pharm Sin B 2020; 10:2348-2361. [PMID: 33354506 PMCID: PMC7745177 DOI: 10.1016/j.apsb.2020.10.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/12/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Accurate tumor targeting, deep penetration and superb retention are still the main pursuit of developing excellent nanomedicine. To achieve these requirements, a stepwise stimuli-responsive strategy was developed through co-administration tumor penetration peptide iRGD with shape-transformable and GSH-responsive SN38-dimer (d-SN38)-loaded nanoparticles (d-SN38@NPs/iRGD). Upon intravenous injection, d-SN38@NPs with high drug loading efficiency (33.92 ± 1.33%) could effectively accumulate and penetrate into the deep region of tumor sites with the assistance of iRGD. The gathered nanoparticles simultaneously transformed into nanofibers upon 650 nm laser irradiation at tumor sites so as to promote their retention in the tumor and burst release of reactive oxygen species for photodynamic therapy. The loaded d-SN38 with disulfide bond responded to the high level of GSH in tumor cytoplasm, which consequently resulted in SN38 release and excellent chemo-photodynamic effect on tumor. In vitro, co-administering iRGD with d-SN38@NPs+laser showed higher cellular uptake, apoptosis ratio and multicellular spheroid penetration. In vivo, d-SN38@NPs/iRGD+laser displayed advanced penetration and accumulation in tumor, leading to 60.89% of tumor suppression in 4T1 tumor-bearing mouse model with a favorable toxicity profile. Our new strategy combining iRGD with structural transformable nanoparticles greatly improves tumor targeting, penetrating and retention, and empowers anticancer efficacy.
Collapse
Affiliation(s)
- Congcong Lin
- Department of Radiology, Zhuhai People's Hospital, Jinan University, Zhuhai 519000, China
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Fan Tong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Rui Liu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Rou Xie
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Ting Lei
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Yuxiu Chen
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Zhihang Yang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
- Corresponding authors. Tel./fax: +86 28 85502532.
| | - Xiangrong Yu
- Department of Radiology, Zhuhai People's Hospital, Jinan University, Zhuhai 519000, China
- Corresponding authors. Tel./fax: +86 28 85502532.
| |
Collapse
|
30
|
Cheng X, Li H, Ge X, Chen L, Liu Y, Mao W, Zhao B, Yuan WE. Tumor-Microenvironment- Responsive Size-Shrinkable Drug-Delivery Nanosystems for Deepened Penetration Into Tumors. Front Mol Biosci 2020; 7:576420. [PMID: 33330618 PMCID: PMC7729065 DOI: 10.3389/fmolb.2020.576420] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/13/2020] [Indexed: 01/04/2023] Open
Abstract
Over the years, the manipulation and clinical application of drug-delivery nanosystems for cancer diseases have attracted a rapid growth of academic research interests, and some nanodrugs have been approved for clinic application. Although encouraging achievements have been made, the potency of nanomedicines in cancer treatment is far from satisfaction, and one significant reason is the inefficient penetration of nanoparticles into solid tumors. Particle size is one of the most significant features that influence diffusion ability of the drug-delivery system in tumors. Size-shrinkable drug-delivery nanosystems possess a size-switchable property that can achieve passive targeting via the enhanced permeability and retention (EPR) effect and transform into ultrasmall particles in tumors for deep penetration into tumors. The tumor microenvironment is characterized by acidic pH, hypoxia, upregulated levels of enzymes, and a redox environment. In this review, we summarize and analyze the current research progresses and challenges in tumor microenvironment responsive size-shrinkable drug-delivery nanosystems. We further expect to present some meaningful proposals and enlightenments on promoting deep penetration into tumors of nanoparticles.
Collapse
Affiliation(s)
- Xiaoliang Cheng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Houli Li
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Lijuan Chen
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Yao Liu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Wenwei Mao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-En Yuan
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Forest CR, Silva CAC, Thordarson P. Dual‐peptide functionalized nanoparticles for therapeutic use. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Chelsea R. Forest
- School of Chemistry, the Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of New South Wales Sydney New South Wales Australia
| | - Caitlin A. C. Silva
- School of Chemistry, the Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of New South Wales Sydney New South Wales Australia
| | - Pall Thordarson
- School of Chemistry, the Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of New South Wales Sydney New South Wales Australia
| |
Collapse
|
32
|
Abstract
Nanomedicine is an interdisciplinary field of research, comprising science, engineering, and medicine. Many are the clinical applications of nanomedicine, such as molecular imaging, medical diagnostics, targeted therapy, and image-guided surgery. Despite major advances during the past 20 years, many efforts must be done to understand the complex behavior of nanoparticles (NPs) under physiological conditions, the kinetic and thermodynamic principles, involved in the rational design of NP. Once administrated in physiological environment, NPs interact with biomolecules and they are surrounded by protein corona (PC) or biocorona. PC can trigger an immune response, affecting NPs toxicity and targeting capacity. This review aims to provide a detailed description of biocorona and of parameters that are able to control PC formation and composition. Indeed, the review provides an overview about the role of PC in the modulation of both cytotoxicity and immune response as well as in the control of targeting capacity.
Collapse
Affiliation(s)
- Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
33
|
Kong L, Zhang SM, Chu JH, Liu XZ, Zhang L, He SY, Yang SM, Ju RJ, Li XT. Tumor Microenvironmental Responsive Liposomes Simultaneously Encapsulating Biological and Chemotherapeutic Drugs for Enhancing Antitumor Efficacy of NSCLC. Int J Nanomedicine 2020; 15:6451-6468. [PMID: 32922011 PMCID: PMC7457883 DOI: 10.2147/ijn.s258906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is one of the most lethal types of cancer with highly infiltrating. Chemotherapy is far from satisfactory, vasculogenic mimicry (VM) and angiogenesis results in invasion, migration and relapse. PURPOSE The objective of this study was to construct a novel CPP (mmp) modified vinorelbine and dioscin liposomes by two new functional materials, DSPE-PEG2000-MAL and CPP-PVGLIG-PEG5000, to destroy VM channels, angiogenesis, EMT and inhibit invasion and migration. METHODS AND RESULTS The targeting liposomes could be enriched in tumor sites through passive targeting, and the positively charged CPP was exposed and enhanced active targeting via electrostatic adsorption after being hydrolyzed by MMP2 enzymes overexpressed in the tumor microenvironment. We found that CPP (mmp) modified vinorelbine and dioscin liposomes with the ideal physicochemical properties and exhibited enhanced cellular uptake. In vitro and in vivo results showed that CPP (mmp) modified vinorelbine and dioscin liposomes could inhibit migration and invasion of A549 cells, destroy VM channels formation and angiogenesis, and block the EMT process. Pharmacodynamic studies showed that the targeting liposomes had obvious accumulations in tumor sites and magnificent antitumor efficiency. CONCLUSION CPP (mmp) modified vinorelbine plus dioscin liposomes could provide a new strategy for NSCLC.
Collapse
Affiliation(s)
- Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Shi-meng Zhang
- Department of Neurology, Linyi People’s Hospital, Linyi276003, People’s Republic of China
| | - Jia-hao Chu
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing102617, People’s Republic of China
| | - Xin-ze Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Lu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Si-yu He
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Si-min Yang
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing102617, People’s Republic of China
| | - Rui-jun Ju
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing102617, People’s Republic of China
| | - Xue-tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| |
Collapse
|
34
|
Kang S, Lee S, Park S. iRGD Peptide as a Tumor-Penetrating Enhancer for Tumor-Targeted Drug Delivery. Polymers (Basel) 2020; 12:E1906. [PMID: 32847045 PMCID: PMC7563641 DOI: 10.3390/polym12091906] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
The unique structure and physiology of a tumor microenvironment impede intra-tumoral penetration of chemotherapeutic agents. A novel iRGD peptide that exploits the tumor microenvironment can activate integrin-dependent binding to tumor vasculatures and neuropilin-1 (NRP-1)-dependent transport to tumor tissues. Recent studies have focused on its dual-targeting ability to achieve enhanced penetration of chemotherapeutics for the efficient eradication of cancer cells. Both the covalent conjugation and the co-administration of iRGD with chemotherapeutic agents and engineered delivery vehicles have been explored. Interestingly, the iRGD-mediated drug delivery also enhances penetration through the blood-brain barrier (BBB). Recent studies have shown its synergistic effect with BBB disruptive techniques. The efficacy of immunotherapy involving immune checkpoint blockades has also been amplified by using iRGD as a targeting moiety. In this review, we presented the recent advances in iRGD technology, focusing on cancer treatment modalities, including the current clinical trials using iRGD. The iRGD-mediated nano-carrier system could serve as a promising strategy in drug delivery to the deeper tumor regions, and be combined with various therapeutic interventions due to its novel targeting ability.
Collapse
Affiliation(s)
| | | | - Soyeun Park
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea; (S.K.); (S.L.)
| |
Collapse
|
35
|
Yu W, Hu C, Gao H. Intelligent Size-Changeable Nanoparticles for Enhanced Tumor Accumulation and Deep Penetration. ACS APPLIED BIO MATERIALS 2020; 3:5455-5462. [PMID: 35021784 DOI: 10.1021/acsabm.0c00917] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wenqi Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chuan Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
36
|
Song Y, Xu M, Li Y, Li Y, Gu W, Halimu G, Fu X, Zhang H, Zhang C. An iRGD peptide fused superantigen mutant induced tumor-targeting and T lymphocyte infiltrating in cancer immunotherapy. Int J Pharm 2020; 586:119498. [PMID: 32505575 DOI: 10.1016/j.ijpharm.2020.119498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/07/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022]
Abstract
Solid tumors are intrinsically resistant to immunotherapy because of the major challenges including the immunosuppression and poor penetration of drugs and lymphocytes into solid tumors due to the complicated tumor microenvironment (TME). Our previous study has created a novel superantigen mutant ST-4 to efficiently active the T lymphocytes and alleviate immune suppression. In the present study, to accumulate ST-4 into the TME, we constructed a recombinant protein, ST-4-iRGD, by fusing ST-4 to a tumor-homing peptide, iRGD. We hypothesized that ST-4-iRGD could internalize into the TME through iRGD-mediated tumor targeting and tumor tissue penetrating to activate the regional immunoreaction. The results of in vitro studies showed that ST-4-iRGD achieved improved tumor targeting and cytotoxicity in mouse B16F10 melanoma cells. The iRGD-mediated tumor tissue penetration was further confirmed by imaging and immunofluorescence studies in vivo, wherein higher distribution of ST-4-iRGD was observed in the mouse 4T1 breast tumor model. Moreover, ST-4-iRGD exhibited enhanced anti-solid tumor characteristics and induced improved lymphocyte infiltration in the B16F10 and 4T1 models. In conclusion, using iRGD to facilitate better dissemination of the therapeutic agent ST-4 throughout a solid tumor mass is feasible, and ST-4-iRGD may be a potential candidate for efficient cancer immunotherapy in the future.
Collapse
Affiliation(s)
- Yubo Song
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, 72 WenHua Road, Shenyang 110016, PR China
| | - Mingkai Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, 72 WenHua Road, Shenyang 110016, PR China.
| | - Yongqiang Li
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, 72 WenHua Road, Shenyang 110016, PR China
| | - Yansheng Li
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, 72 WenHua Road, Shenyang 110016, PR China
| | - Wu Gu
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, 72 WenHua Road, Shenyang 110016, PR China
| | - Gulinare Halimu
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; University of Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, PR China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, 72 WenHua Road, Shenyang 110016, PR China
| | - Xuanhe Fu
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, 72 WenHua Road, Shenyang 110016, PR China
| | - Huiwen Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, 72 WenHua Road, Shenyang 110016, PR China
| | - Chenggang Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, 72 WenHua Road, Shenyang 110016, PR China
| |
Collapse
|
37
|
Yang X, Chen X, Lei T, Qin L, Zhou Y, Hu C, Liu Q, Gao H. The construction of in vitro nasal cavity-mimic M-cell model, design of M cell-targeting nanoparticles and evaluation of mucosal vaccination by nasal administration. Acta Pharm Sin B 2020; 10:1094-1105. [PMID: 32642415 PMCID: PMC7332807 DOI: 10.1016/j.apsb.2020.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 12/18/2022] Open
Abstract
In order to better evaluate the transport effect of nanoparticles through the nasal mucosa, an in vitro nasal cavity-mimic model was designed based on M cells. The differentiation of M cells was induced by co-culture of Calu-3 and Raji cells in invert model. The ZO-1 protein staining and the transport of fluorescein sodium and dexamethasone showed that the inverted co-culture model formed a dense monolayer and possessed the transport ability. The differentiation of M cells was observed by up-regulated expression of Sialyl Lewis A antigen (SLAA) and integrin β1, and down-regulated activity of alkaline phosphatase. After targeting M cells with iRGD peptide (cRGDKGPDC), the transport of nanoparticles increased. In vivo, the co-administration of iRGD could result in the increase of nanoparticles transported to the brain through the nasal cavity after intranasal administration. In the evaluation of immune effect in vivo, the nasal administration of OVA-PLGA/iRGD led to more release of IgG, IFN-γ, IL-2 and secretory IgA (sIgA) compared with OVA@PLGA group. Collectively, the study constructed in vitro M cell model, and proved the enhanced effect of targeting towards M cell with iRGD on improving nasal immunity.
Collapse
Affiliation(s)
- Xiaotong Yang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, China
| | - Xianchun Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Ting Lei
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, China
| | - Lin Qin
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, China
| | - Yang Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, China
| | - Chuan Hu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, China
| | - Qingfeng Liu
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, China
| |
Collapse
|
38
|
Yu W, Liu R, Zhou Y, Gao H. Size-Tunable Strategies for a Tumor Targeted Drug Delivery System. ACS CENTRAL SCIENCE 2020; 6:100-116. [PMID: 32123729 PMCID: PMC7047275 DOI: 10.1021/acscentsci.9b01139] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Indexed: 05/18/2023]
Abstract
Nanoparticles have been widely used in tumor targeted drug delivery, while the antitumor effects are not always satisfactory due to the limited penetration and retention. As we all know, there is a paradox that nanoparticles with large sizes tend to distribute around tumor blood vessels rather than penetrate into tumor parenchyma, while smaller sizes can penetrate deeply but with poor tumor retention. In recent days, an intelligent, size-tunable strategy provided a solution to determine the size problem of nanoparticles and exhibited good application prospects. In this review, we summarize series of stimuli-induced aggregation and shrinkage strategies for tumor targeted drug delivery, which can significantly increase the retention and penetration of nanodrugs in tumor sites at the same time, thus promoting treatment efficacy. Internal (enzymes, pH, and redox) and external (light and temperature) stimuli are introduced to change the morphology of the original nanodrugs through protonation, hydrophobization, hydrogen bond, π-π stacking and enzymolysis-resulted click reactions or dissociation, etc. Apart from applications in oncotherapy, size-tunable strategies also have a great prospect in the diagnosis and real time bioimaging fields, which are also introduced in this review. Finally, the potential challenges for application and future directions are thoroughly discussed, providing guidance for further clinical transformation.
Collapse
Affiliation(s)
| | | | - Yang Zhou
- Key Laboratory of Drug-Targeting
and Drug Delivery System of the Education Ministry and Sichuan Province,
Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan
Research Center for Drug Precision Industrial Technology, West China
School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting
and Drug Delivery System of the Education Ministry and Sichuan Province,
Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan
Research Center for Drug Precision Industrial Technology, West China
School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
39
|
Zhang D, Chu Y, Qian H, Qian L, Shao J, Xu Q, Yu L, Li R, Zhang Q, Wu F, Liu B, Liu Q. Antitumor Activity of Thermosensitive Hydrogels Packaging Gambogic Acid Nanoparticles and Tumor-Penetrating Peptide iRGD Against Gastric Cancer. Int J Nanomedicine 2020; 15:735-747. [PMID: 32099362 PMCID: PMC6999774 DOI: 10.2147/ijn.s231448] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Gambogic acid (GA) is proved to have anti-tumor effects on gastric cancer. Due to poor solubility, non-specific biological distribution, toxicity to normal tissues and short half-life, it is hard to be applied into the clinic. To overcome these issues, we developed a thermosensitive and injectable hydrogel composed of hydroxypropyl cellulose, silk fibroin and glycerol, with short gelling time, good compatibility and sustained release, and demonstrated that the hydrogel packaged with gambogic acid nanoparticles (GA-NPs) and tumor-penetrating peptide iRGD could improve the anti-tumor activity. Methods The Gelling time and micropore size of the hydrogels were regulated through different concentrations of glycerol. Controlled release characteristics of the hydrogels were evaluated with a real-time near-infrared fluorescence imaging system. Location of nanoparticles from different carriers was traced by confocal laser scanning microscopy. The in vivo antitumor activity of the hydrogels packaging GA-NPs and iRGD was evaluated by investigating tumor volume and tumor size. Results The thermo-sensitive properties of hydrogels were characterized by 3-4 min, 37°C, when glycerol concentration was 20%. The hydrogels physically packaged with GA-NPs and iRGD showed higher fluorescence intensity than other groups. The in vivo study indicated that the co-administration of GA-NPs and iRGD by hydrogels had higher antitumor activity than the GA-loaded hydrogels and free GA combining with iRGD. Free GA group showed few antitumor effects. Compared with the control group, the body weight in other groups had no obvious change, and the count of leukocytes and hemoglobin was slightly decreased. Discussion The hydrogel constructed iRGD and GA-NPs exerted an effective anti-tumor effect possibly due to retention effect, local administration and continuous sustained release of iRGD promoting the penetration of nanoparticles into a deep part of tumors. The delivery system showed little systemic toxicity and would provide a promising strategy to improve anti-gastric cancer efficacy.
Collapse
Affiliation(s)
- Dinghu Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China.,Department of Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yanhong Chu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Hanqing Qian
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Lingyu Qian
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Jie Shao
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Qiuping Xu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Rutian Li
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Quanan Zhang
- Department of Oncology, Jiangning Hospital, Nanjing, People's Republic of China
| | - Fenglei Wu
- Department of Oncology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, People's Republic of China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Qin Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
40
|
Ding J, Chen J, Gao L, Jiang Z, Zhang Y, Li M, Xiao Q, Lee SS, Chen X. Engineered nanomedicines with enhanced tumor penetration. NANO TODAY 2019; 29:100800. [DOI: 10.1016/j.nantod.2019.100800] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
41
|
Hou L, Chen D, Hao L, Tian C, Yan Y, Zhu L, Zhang H, Zhang Y, Zhang Z. Transformable nanoparticles triggered by cancer-associated fibroblasts for improving drug permeability and efficacy in desmoplastic tumors. NANOSCALE 2019; 11:20030-20044. [PMID: 31612175 DOI: 10.1039/c9nr06438a] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are important barriers for nanoparticles (NPs) to deeply penetrate into tumors and severely limit the antitumor efficacy of nanomedicines. Herein, we proposed a CAF-triggered transformable drug delivery system based on a cleavable peptide responsive to fibroblast activation protein-α (FAP-α) specifically overexpressed on the surface of CAFs. The NPs were composed of cationic poly(amidoamine) (PAMAM) dendrimers cross-linked by our designed peptide, a chemotherapeutical drug was incorporated onto PAMAM using disulfide bonds and finally, hyaluronic acid (HA) was conjugated to improve the tumor targetability as well as biocompatibility through electrostatic interactions. These NPs had an initial size of ∼200 nm and negative zeta potential favorable for stable blood circulation; however, after docking with CAFs, they dissociated into smaller NPs and exposed the relative positive surface charge to facilitate penetration and enter the tumor cells together with CAFs. An interesting finding was that this system intracellularly released different levels of drugs in these two kinds of cells, which was beneficial for the disruption of the stromal barrier and increasing the local drug accumulation. Our investigation confirmed that the constructed system could alleviate the biological barriers and hold promising therapeutic efficiency for desmoplastic solid tumors.
Collapse
Affiliation(s)
- Lin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China. and Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China and Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, China and Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Dandan Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China. and Modern Analysis and Computer Center of Zhengzhou University, China
| | - Lisha Hao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China. and Modern Analysis and Computer Center of Zhengzhou University, China
| | - Chunyu Tian
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China. and Modern Analysis and Computer Center of Zhengzhou University, China
| | - Yingshan Yan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China. and Modern Analysis and Computer Center of Zhengzhou University, China
| | - Ling Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China. and Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China and Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, China
| | - Huijuan Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China. and Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China and Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China. and Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China and Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, China
| |
Collapse
|
42
|
Luo Z, Dai Y, Gao H. Development and application of hyaluronic acid in tumor targeting drug delivery. Acta Pharm Sin B 2019; 9:1099-1112. [PMID: 31867159 PMCID: PMC6900560 DOI: 10.1016/j.apsb.2019.06.004] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/08/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
Hyaluronic acid (HA) is a natural polysaccharide that has gained much attention due to its biocompatibility, enzyme degradation capacity and active tumor targeting capacity. Its receptor, CD44, is overexpressed in many kinds of cancers and is associated with tumor progress, infiltration and metastasis. Therefore, many researchers have developed various HA-based drug delivery systems for CD44-mediated tumor targeting. In this review, we systemically overview the basic theory of HA, its receptor and hyaluronidase, then we categorize the studies in HA-based drug delivery systems according to the functions of HA, including tumor-targeting materials, enzyme-sensitive biodegradable modality, pH-sensitive component, reduction-sensitive component, and the gel backbone. Finally, the perspective is discussed.
Collapse
Affiliation(s)
- Zhijian Luo
- Ultrasound Diagnosis Department of the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, China
| | - Yan Dai
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
43
|
Wang L, Zhang T, Huo M, Guo J, Chen Y, Xu H. Construction of Nucleus-Targeting Iridium Nanocrystals for Photonic Hyperthermia-Synergized Cancer Radiotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903254. [PMID: 31549785 DOI: 10.1002/smll.201903254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Prominent tumor-cell nucleus targeting of radiosensitizer substantially affects the therapeutic consequence of advanced tumor radiotherapy via lethal nucleus DNA damage. Herein, ultrasmall iridium nanocrystals (Ir NCs, <5 nm) are constructed for efficient tumor-specific photonic hyperthermia-synergized radiotherapy. To endow the NCs with qualified cell nucleus-targeting performance, polyethylene glycol (PEG)-modified Ir NCs are decorated with αv β3 integrin-targeting cyclic arginine-glycine-aspartic (c(RGDyC)), designated as RGD, peptides and human immunodeficiency virus-1 transactivator of transcription protein(TAT), respectively, facilitating the tumor-cell-membrane (with overexpressed αv β3 integrin) and cell-nucleus targeting. The formulated Ir-RGD-TAT (Ir-R/T) NCs are demonstrated to accumulate inside the nucleus of tumor cells and generate effective DNA lesions upon X-ray irradiation. Further in vivo evaluations verify the satisfactory carcinoma destruction performance against 4T1 tumor xenografts. Importantly, the intriguing photonic NIR adsorption of Ir-R/T NCs has enabled the hyperthermia therapeutics accompanied with photoacoustic imaging modalities, achieving clinically promising biocompatible multifunctional radiosensitized nanoplatforms for effective tumor therapeutics.
Collapse
Affiliation(s)
- Liying Wang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University Cancer Center, 301 Middle Yanchang Rd, Shanghai, 200072, P. R. China
| | - Tingting Zhang
- Department of Ultrasound, Eastern Hepatobiliary Surgery Hospital (EHBH), Second Military Medical University, 225 Changhai Rd, Shanghai, 200438, P. R. China
- The 985 Hospital of PLA, 30 Qiaodong Rd, Taiyuan, 030001, P. R. China
| | - Minfeng Huo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Rd, Shanghai, 200050, P. R. China
| | - Jia Guo
- Department of Ultrasound, Eastern Hepatobiliary Surgery Hospital (EHBH), Second Military Medical University, 225 Changhai Rd, Shanghai, 200438, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Rd, Shanghai, 200050, P. R. China
| | - Huixiong Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University Cancer Center, 301 Middle Yanchang Rd, Shanghai, 200072, P. R. China
| |
Collapse
|
44
|
Xu Z, Ni R, Chen Y. Targeting breast cancer stem cells by a self-assembled, aptamer-conjugated DNA nanotrain with preloading doxorubicin. Int J Nanomedicine 2019; 14:6831-6842. [PMID: 31695364 PMCID: PMC6717853 DOI: 10.2147/ijn.s200482] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/15/2019] [Indexed: 12/30/2022] Open
Abstract
Background Cancer relapse and metastasis is an obstacle to the treatment of breast cancer. Breast cancer stem cells (BCSCs), which can evade the killing effect of traditional chemotherapies, such as doxorubicin (DOX), may contribute to cancer development. Therefore, it is necessary to develop novel drugs that can target and eliminate BCSCs. While multiple strategies have been conceived, they are normally limited by the low drug loading capacity. Purpose An aptamer-conjugated DNA nanotrain TA6NT-AKTin-DOX, which consists of a CD44 aptamer TA6, DNA building blocks M1 and M2 conjugated with an AKT inhibitor peptide AKTin individually and DOX, was designed. Methods This DNA nanotrain was prepared through hybridization chain reactionand this highly ordered DNA duplex has plenty of sites where DOX and AKTin can be intercalated or anchored. By performing on MCF-7 BCSCs and tumors by xenografting BCSCs into nude mice, efficacy of the newly prepared drug was evaluated and compared with that of free DOX and various DNA nanotrains. Results TA6NT-AKTin-DOX showed better efficacy both in vitro and in vivo. To some extent, the enhanced efficacy could be attributed to the targeting effect of TA6 and the high drug loading capacity of the nanotrain (~20 DOX molecules). Besides, a synergistic response was demonstrated by combining DOX with AKTin, probably due to that the anchored AKTin can reverse the drug resistance of BCSCs including apoptosis resistance and ABC transporters overexpression via the AKT signaling pathway. Conclusion The aptamer-conjugated DNA nanotrain TA6NT-AKTin-DOX demonstrated its targeting capability to BCSCs.
Collapse
Affiliation(s)
- Zhiyuan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Ronghua Ni
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, People's Republic of China.,State Key Laboratory of Reproductive Medicine, Nanjing 210029, People's Republic of China
| |
Collapse
|
45
|
E M Eid E, S Alanazi A, Koosha S, A Alrasheedy A, Azam F, M Taban I, Khalilullah H, Sadiq Al-Qubaisi M, A Alshawsh M. Zerumbone Induces Apoptosis in Breast Cancer Cells by Targeting αvβ3 Integrin upon Co-Administration with TP5-iRGD Peptide. Molecules 2019; 24:molecules24142554. [PMID: 31337024 PMCID: PMC6680663 DOI: 10.3390/molecules24142554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/24/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are highly promising tools to deliver therapeutic molecules into tumours. αVβ3 integrins are cell-matrix adhesion receptors, and are considered as an attractive target for anticancer therapies owing to their roles in the process of metastasis and angiogenesis. Therefore, this study aims to assess the effect of co-administration of zerumbone (ZER) and ZERencapsulated in hydroxypropyl-β-cyclodextrin with TP5-iRGD peptide towards cell cytotoxicity, apoptosis induction, and proliferation of normal and cancerous breast cells utilizing in vitro assays, as well as to study the molecular docking of ZER in complex with TP5-iRGD peptide. Cell viability assay findings indicated that ZER and ZERencapsulated in hydroxypropyl-β-cyclodextrin (ZER-HPβCD) inhibited the growth of estrogen receptor positivebreast cancer cells (ER+ MCF-7) at 72 h treatment with an inhibitory concentration (IC)50 of 7.51 ± 0.2 and 5.08 ± 0.2 µg/mL, respectively, and inhibited the growth of triple negative breast cancer cells (MDA-MB-231) with an IC50 of 14.96 ± 1.52 µg/mL and 12.18 ± 0.7 µg/mL, respectively. On the other hand, TP5-iRGD peptide showed no significant cytotoxicity on both cancer and normal cells. Interestingly, co-administration of TP5-iRGD peptide in MCF-7 cells reduced the IC50 of ZER from 7.51 ± 0.2 µg/mL to 3.13 ± 0.7 µg/mL and reduced the IC50 of ZER-HPβCD from 5.08 ± 0.2 µg/mL to 0.49 ± 0.004 µg/mL, indicating that the co-administration enhances the potency and increases the efficacy of ZER and ZER-HPβCD compounds. Acridine orange (AO)/propidium iodide (PI) staining under fluorescence microscopy showed evidence of early apoptosis after 72 h from the co-administration of ZER or ZER-HPβCD with TP5-iRGD peptide in MCF-7 breast cancer cells. The findings of the computational modelling experiment provide novel insights into the ZER interaction with integrin αvβ3 in the presence of TP5-iRGD, and this could explain why ZER has better antitumor activities when co-administered with TP5-iRGD peptide.
Collapse
Affiliation(s)
- Eltayeb E M Eid
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, 51911 Unaizah, Saudi Arabia.
| | | | - Sanaz Koosha
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Alian A Alrasheedy
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, 51911 Unaizah, Saudi Arabia
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, 51911 Unaizah, Saudi Arabia
| | - Ismail M Taban
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, 51911 Unaizah, Saudi Arabia
| | | | - Mohammed A Alshawsh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
46
|
Qin L, Gao H. The application of nitric oxide delivery in nanoparticle-based tumor targeting drug delivery and treatment. Asian J Pharm Sci 2019; 14:380-390. [PMID: 32104467 PMCID: PMC7042479 DOI: 10.1016/j.ajps.2018.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/04/2018] [Accepted: 10/29/2018] [Indexed: 12/29/2022] Open
Abstract
Nitric oxide (NO) shows great role in tumor biology. Recent years, more and more researches utilized NO donor in tumor targeting drug delivery and treatment. In this review, we summarized the NO donors by their endogenous and exogenous stimuli. Then the application of NO donors, which was the main aim of the review, was discussed in detailed according to their functions, including inducing tumor cell apoptosis, reversing tumor multidrug resistance, inhibiting tumor metastasis and improving drug delivery.
Collapse
Affiliation(s)
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| |
Collapse
|
47
|
iRGD: A Promising Peptide for Cancer Imaging and a Potential Therapeutic Agent for Various Cancers. JOURNAL OF ONCOLOGY 2019; 2019:9367845. [PMID: 31346334 PMCID: PMC6617877 DOI: 10.1155/2019/9367845] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
Poor penetration into the tumor parenchyma and the reduced therapeutic efficacy of anticancer drugs and other medications are the major problems in tumor treatment. A new tumor-homing and penetrating peptide, iRGD (CRGDK/RGPD/EC), can be effectively used to combine and deliver imaging agents or anticancer drugs into tumors. The different “vascular zip codes” expressed in different tissues can serve as targets for docking-based (synaptic) delivery of diagnostic and therapeutic molecules. αv-Integrins are abundantly expressed in the tumor vasculature, where they are recognized by peptides containing the RGD integrin recognition motif. The iRGD peptide follows a multistep tumor-targeting process: First, it is proteolytically cleaved to generate the CRGDK fragment by binding to the surface of cells expressing αv integrins (αvβ3 and αvβ5). Then, the fragment binds to neuropilin-1 and penetrates the tumor parenchyma more deeply. Compared with conventional RGD peptides, the affinity of iRGD for αv integrins is in the mid to low nanomolar range, and the CRGDK fragment has a stronger affinity for neuropilin-1 than that for αv integrins because of the C-terminal exposure of a conditional C-end Rule (CendR) motif (R/KXXR/K), whose receptor proved to be neuropilin-1. Consequently, these advantages facilitate the transfer of CRGDK fragments from integrins to neuropilin-1 and consequently deeper penetration into the tumor. Due to its specific binding and strong affinity, the iRGD peptide can deliver imaging agents and anticancer drugs into tumors effectively and deeply, which is useful in detecting the tumor, blocking tumor growth, and inhibiting tumor metastasis. This review aims to focus on the role of iRGD in the imaging and treatment of various cancers.
Collapse
|
48
|
Xiang Z, Jiang G, Yang X, Fan D, Nan X, Li D, Hu Z, Fang Q. Peptosome Coadministration Improves Nanoparticle Delivery to Tumors through NRP1-Mediated Co-Endocytosis. Biomolecules 2019; 9:biom9050172. [PMID: 31060320 PMCID: PMC6572427 DOI: 10.3390/biom9050172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Improving the efficacy of nanoparticles (NPs) delivery to tumors is critical for cancer diagnosis and therapy. In our previous work, amphiphilic peptide APPA self-assembled nanocarriers were designed and constructed for cargo delivery to tumors with high efficiency. In this study, we explore the use of APPA self-assembled peptosomes as a nanoparticle adjuvant to enhance the delivery of nanoparticles and antibodies to integrin αvβ3 and neuropilin-1 (NRP1) positive tumors. The enhanced tumor delivery of coadministered NPs was confirmed by better magnetosome (Mag)-based T2-weighted magnetic resonance imaging (MRI), liposome-based fluorescence imaging, as well as the improved anti-tumor efficacy of monoclonal antibodies (trastuzumab in this case) and doxorubicin (DOX)-containing liposomes. Interestingly, the improvement is most significant for the delivering of compounds that have active or passive tumor targeting ability, such as antibodies or NPs that have enhanced permeability and retention (EPR) effect. However, for non-targeting small molecules, the effect is not significant. In vitro and in vivo studies suggest that both peptosomes and the coadministered compounds might be internalized into cells through a NRP1 mediated co-endocytosis (CoE) pathway. The improved delivery of coadministered NPs and antibodies to tumors suggests that the coadministration with APPA self-assembled peptosomes could be a valuable approach for advancing αvβ3 and NRP1 positive tumors diagnosis and therapy.
Collapse
Affiliation(s)
- Zhichu Xiang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Gexuan Jiang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoliang Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Di Fan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaohui Nan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhiyuan Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Sino-Danish Center for Education and Research, Beijing 101408, China.
| | - Qiaojun Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Sino-Danish Center for Education and Research, Beijing 101408, China.
- Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Beijing 100190, China.
| |
Collapse
|
49
|
Luo Z, Xu Y, Ye E, Li Z, Wu YL. Recent Progress in Macromolecule-Anchored Hybrid Gold Nanomaterials for Biomedical Applications. Macromol Rapid Commun 2019; 40:e1800029. [PMID: 29869424 DOI: 10.1002/marc.201800029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/12/2018] [Indexed: 12/16/2022]
Abstract
Gold nanoparticles (AuNPs), with elegant thermal, optical, or chemical properties due to quantum size effects, may serve as unique species for therapeutic or diagnostic applications. It is worth mentioning that their small size also results in high surface activity, leading to significantly impaired stability, which greatly hinders their biomedical utilizations. To overcome this problem, various types of macromolecular materials are utilized to anchor AuNPs so as to achieve advanced synergistic effect by dispersing, protecting, and stabilizing the AuNPs in polymeric-Au hybrid self-assemblies. In this review, the most recent development of polymer-AuNP hybrid systems, including AuNPs@polymeric nanoparticles, AuNPs@polymeric micelle, AuNPs@polymeric film, and AuNPs@polymeric hydrogel are discussed with respect to their different synthetic strategies. These sophisticated materials with diverse functions, oriented toward biomedical applications, are further summarized into several active domains in the areas of drug delivery, gene delivery, photothermal therapy, antibacterials, bioimaging, etc. Finally, the possible approaches for future design of multifunctional polymer-AuNP hybrids by combining hybrid chemistry with biological interface science are proposed.
Collapse
Affiliation(s)
- Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yang Xu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
50
|
Dong X, Liu HJ, Feng HY, Yang SC, Liu XL, Lai X, Lu Q, Lovell JF, Chen HZ, Fang C. Enhanced Drug Delivery by Nanoscale Integration of a Nitric Oxide Donor To Induce Tumor Collagen Depletion. NANO LETTERS 2019; 19:997-1008. [PMID: 30676760 DOI: 10.1021/acs.nanolett.8b04236] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Delivery of therapeutics into the solid tumor microenvironment is a major challenge for cancer nanomedicine. Administration of certain exogenous enzymes which deplete tumor stromal components has been proposed as a method to improve drug delivery. Here we present a protein-free collagen depletion strategy for drug delivery into solid tumors, based on activating endogenous matrix metalloproteinases (MMP-1 and -2) using nitric oxide (NO). Mesoporous silica nanoparticles (MSN) were loaded with a chemotherapeutic agent, doxorubicin (DOX) as well as a NO donor ( S-nitrosothiol) to create DN@MSN. The loaded NO results in activation of MMPs which degrade collagen in the tumor extracellular matrix. Administration of DN@MSN resulted in enhanced tumor penetration of both the nanovehicle and cargo (DOX), leading to significantly improved antitumor efficacy with no overt toxicity observed.
Collapse
Affiliation(s)
- Xiao Dong
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology and Chemical Biology, Institute of Medical Sciences , Shanghai Jiao Tong University School of Medicine (SJTU-SM) , 280 South Chongqing Road , Shanghai 200025 , China
| | - Hai-Jun Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology and Chemical Biology, Institute of Medical Sciences , Shanghai Jiao Tong University School of Medicine (SJTU-SM) , 280 South Chongqing Road , Shanghai 200025 , China
| | - Hai-Yi Feng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology and Chemical Biology, Institute of Medical Sciences , Shanghai Jiao Tong University School of Medicine (SJTU-SM) , 280 South Chongqing Road , Shanghai 200025 , China
| | - Si-Cong Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology and Chemical Biology, Institute of Medical Sciences , Shanghai Jiao Tong University School of Medicine (SJTU-SM) , 280 South Chongqing Road , Shanghai 200025 , China
| | - Xue-Liang Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology and Chemical Biology, Institute of Medical Sciences , Shanghai Jiao Tong University School of Medicine (SJTU-SM) , 280 South Chongqing Road , Shanghai 200025 , China
| | - Xing Lai
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology and Chemical Biology, Institute of Medical Sciences , Shanghai Jiao Tong University School of Medicine (SJTU-SM) , 280 South Chongqing Road , Shanghai 200025 , China
| | - Qin Lu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology and Chemical Biology, Institute of Medical Sciences , Shanghai Jiao Tong University School of Medicine (SJTU-SM) , 280 South Chongqing Road , Shanghai 200025 , China
| | - Jonathan F Lovell
- Department of Biomedical Engineering , University at Buffalo, State University of New York , Buffalo , New York 14260 , United States
| | - Hong-Zhuan Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology and Chemical Biology, Institute of Medical Sciences , Shanghai Jiao Tong University School of Medicine (SJTU-SM) , 280 South Chongqing Road , Shanghai 200025 , China
| | - Chao Fang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology and Chemical Biology, Institute of Medical Sciences , Shanghai Jiao Tong University School of Medicine (SJTU-SM) , 280 South Chongqing Road , Shanghai 200025 , China
| |
Collapse
|